VERMONT AGENCY OF TRANSPORTATION

Materials & Research Section
Research Report

STATISTICAL ANALYSIS OF WEIGH-IN-
MOTION DATA FOR BRIDGE DESIGN
IN VERMONT

Report 2014 — 14
December 2014

REPORT 2014 - 14



STATISTICAL ANALYSIS OF WEIGH-IN-
MOTION DATA FOR BRIDGE DESIGN
IN VERMONT

Report 2014 - 14

DECEMBER 2014

Reporting on SPR-RAC-729

STATE OF VERMONT
AGENCY OF TRANSPORTATION

RESEARCH & DEVELOPMENT SECTION

BRIAN R. SEARLES, SECRETARY OF TRANSPORTATION

CHRIS COLE, DIRECTOR OF POLICY, PLANNING AND INTERMODAL DEVELOPMENT
JOE SEGALE, P.E./PTP, PLANNING, POLICY & RESEARCH
WILLIAM E. AHEARN, P.E., RESEARCH & DEVELOPMENT

Prepared By:

University of Vermont, Transportation Research Center
Eric M. Hernandez, Ph.D., Assistant Professor, School of Engineering

Transportation Research Center
Farrell Hall

210 Colchester Avenue
Burlington, VT 05405
Phone: (802) 656-1312 i

Website: www.uvm.edu/transportationcenter The Unive rsity l)fl- Vermont

=


http://www.uvm.edu/transportationcenter




The information contained in this report was compiled for the use of the Vermont Agency
of Transportation (VTrans). Conclusions and recommendations contained herein are based upon
the research data obtained and the expertise of the researchers, and are not necessarily to be
construed as Agency policy. This report does not constitute a standard, specification, or

regulation. VTrans assumes no liability for its contents or the use thereof.






Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
2014-05 - -
4. Title and Subtitle 5. Report Date
October 2014

STATISTICAL ANALYSIS OF WEIGH-IN-MOTION DATA
FOR BRIDGE DESIGN IN VERMONT

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Eric M. Hernandez, Assistant Professor, School of

Engineering 2014-09

9. Performing Organization Name and Address 10. Work Unit No.

UVM Transportation Research Center 11. Contract or Grant No.

Farrell Hall]

210 Colchester Avenue

Burlington, VT 05405 RSCHO017-729

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Vermont Agency of Transportation | Federal Highway Administration Final
Materials and Research Section Division Office _
1 National Life Drive Federal Building .
National Life Building Montpelier, VT 05602 14. Sponsoring Agency Code

Montpelier, VT 05633-5001

15. Supplementary Notes

16. Abstract

This study investigates the suitability of the HL-93 live load model recommended by AASHTO LRFD Specifications
for its use in the analysis and design of bridges in Vermont. The method of approach consists in performing a
statistical analysis of weigh-in-motion (WIM) data collected between the years 2000-2012 at 12 stations across the
state of Vermont. In total 36,754,819 individual WIM events were analyzed in this study. We compared the
statistics of the lane moment and shear induced by the WIM data to the corresponding lane moment and shear
induced by the HL-93 live load model. This analysis was performed on two types of very common bridge decks: (i)
steel girders and concrete slabs and (ii) concrete girders with concrete slabs. In all cases the decks were
considered to be acting fully composite. We considered span lengths in the range of 5-60 meters (~ 16-200 ft). The
mains findings of this study are: (i) The probability that the lane moment and shear induced by the WIM data
exceeds the corresponding values induced by the HL-93 model, decreases with span length. Averaged over all
years considered in this study, the largest probability of exceedance was found to be approximately 1%. (ii) For
span lengths exceeding 10 m, the annual probability of failure induced by the WIM data analysis did not exceed
the annualized AASHTO target probability of failure. This indicates that for typical bridge decks with span length
exceeding 10 meters, the HL-93 live load model is adequate for its use in Vermont. (iii) We propose that a more
detailed study be carried out for short span structures such as culverts. Evidence from our study suggests that for
very short spans (< 10 m), the HL-93 live load model might not be conservative.

17. Key Words 18. Distribution Statement
Statistical Analysis, Weigh-in-Motion, Bridge .
ysSIS, 9 9 No Restrictions.
Design, LRFD,
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. Pages 22. Price

Form DOT F1700.7 (8-72) Reproduction of completed pages authorized







Acknowledgements

The author would like to acknowledge funding from the Vermont Agency
of Transportation and the USDOT thru the University Transportation Center
(UTC) program at the University of Vermont.

Disclaimer

The contents of this report reflect the views of the authors, who are
responsible for the facts and the accuracy of the data presented herein. The
contents do not necessarily reflect the official view or policies of the University
of Vermont. This report does not constitute a standard, specification, or
regulation.






ABSTRACT

This study investigates the suitability of the HL-93 live load model recommended by AASHTO LRFD
Specifications for its use in the analysis and design of bridges in Vermont. The method of approach
consists in performing a statistical analysis of weigh-in-motion (WIM) data collected between the years
2000-2012 at 12 stations across the state of Vermont. In total 36,754,819 individual WIM events were
analyzed in this study. We compared the statistics of the lane moment and shear induced by the WIM data
to the corresponding lane moment and shear induced by the HL-93 live load model. This analysis was
performed on two types of very common bridge decks: (i) steel girders and concrete slabs and (ii)
concrete girders with concrete slabs. In all cases the decks were considered to be acting fully composite.
We considered span lengths in the range of 5-60 meters (~ 16-200 ft). The mains findings of this study
are: (i) The probability that the lane moment and shear induced by the WIM data exceeds the
corresponding values induced by the HL-93 model, decreases with span length. Averaged over all years
considered in this study, the largest probability of exceedance was found to be approximately 1%. (ii) For
span lengths exceeding 10 m, the annual probability of failure induced by the WIM data analysis did not
exceed the annualized AASHTO target probability of failure. This indicates that for typical bridge decks
with span length exceeding 10 meters, the HL-93 live load model is adequate for its use in Vermont. (iii)
We propose that a more detailed study be carried out for short span structures such as culverts. Evidence
from our study suggests that for very short spans (< 10 m), the HL-93 live load model might not be
conservative.






EXECUTIVE SUMMARY

This study investigates the suitability of the HL-93 live load model recommended by AASHTO LRFD
Specifications for its use in the analysis and design of bridges in Vermont. The method of approach
consists in performing a statistical analysis of weigh-in-motion (WIM) data collected between the years
2000-2012 at 12 stations across the state of Vermont. In total 36,754,819 individual WIM events were
analyzed in this study. The statistics of the lane moment and shear induced by the WIM data was
compared with the corresponding lane moment and shear induced by the HL-93 live load model. This
analysis was performed on two types of very common bridge decks: (i) steel girders and concrete slabs
and (ii) concrete girders with concrete slabs. In all cases, the decks were considered to be acting fully
composite. Span lengths in the range of 5-60 meters (~ 16-200 ft) were considered. As a general trend it
was found that as the span length increases, the probability that the lane moment and shear induced by the
WIM data exceeds the values induced by the HL-93 model, decreases. Averaged over all years considered
in this study, the largest probability of exceedance was found to be approximately 1%, this occurred in 5
meter spans. The largest probability of exceedance in any single year and station was found to be 2.5%,
again for 5 meters span lengths.

In terms of structural reliability, an analysis that included the variability in loading (using the statistical
analysis of WIM data) and the variability in strength of the bridge deck (using values from the literature)
were performed. This analysis was done for steel girder and concrete slab decks for span lengths in the
range of 10-60 meters (~ 16-200ft). The results were compared with the AASHTO LRFD target reliability
index of 3.5 in 75 years (probability of failure of 0.023% in 75 years). In this analysis it was found that
the annual probability of failure induced by the WIM data analysis did not exceed the annualized
AASHTO target probability of failure. This indicates that for typical bridge decks with span length
exceeding 10 meters, the HL-93 live load model is adequate for its use in Vermont.

Based on our statistical analysis of the available WIM data and the subsequent reliability analysis, it is
proposed that a more detailed study be carried out for short span structures such as culverts. Evidence
from our study suggests that for very short spans (< 10 m), the HL-93 live load model might not be
conservative, in the sense that it is not consistent with the target reliability index of 3.5 in 75 years. This
requires a separate study since culverts have a different type of structural system in comparison with
typical bridge decks.
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Chapter 1

Introduction

1.1 History of Design Codes

Civil structures are essential for the social, economic, and political wellbeing
of modern society. These structures must be designed such that their use does
not pose any danger to people. This has been and continues to be the goal of
all design codes: to ensure the safety of those who use the structure(s). The
earliest known building code is contained in the Code of Hammurabi, written
in 1772 BC in Mesopotamia (modern day Iraq). Although the standards set
forth in this code are extremely simple and somewhat drastic compared to
modern codes, the underlying concepts remain valid:

228. If a builder builds a house for someone and complete it,
he shall give him a fee of two shekels in money for each sar of
surface.

229 If a builder builds a house for someone, and does not con-
struct it properly, and the house which he built fall in and kill its
owner, then that builder shall be put to death.

230. If it kills the son of the owner the son of that builder shall
be put to death.

231. If it kills a slave of the owner, then he shall pay slave for
slave to the owner of the house.

232. If it ruins goods, he shall make compensation for all that
has been ruined, and inasmuch as he did not construct properly
this house which he built and it fell, he shall re-erect the house
from his own means.

11



233. If a builder builds a house for someone, even though he has
not yet completed it; if then the walls seem toppling, the builder
must make the walls solid from his own means.

From these simple lines we can appreciate important concepts such as risk,
reward, and failure criteria. Fast forward several thousand years: the indus-
trial revolution created a much greater need for infrastructure, particularly
bridges. The invention of the car further increased this need, as people began
to travel greater distances with more frequency. In the 20" century engineers
began to develop design codes that mandate a common load to be used in
design of any structure of a given type. These codes started operating on a
local or state level. One of the first design loads for bridges was suggested
in 1912 by Henry Seaman [1]. The first load models were uniform loads,
but engineers soon realized that these were not a reflection of reality. L.R.
Manville and R.W. Gastmeyer first noted this in 1914 when they used statis-
tics of existing trucks to suggest that live load with a concentration should
be used to better represent a typical heavy vehicle [2]. In the 1920s and 30s
many load models that were suggested were considered to represent heavy
trucks. These load models incorporated both uniform and point loads. In
the 1944 the H20 load was adopted. This load included a uniform load and a
vehicle load with a variable axle spacing to more accurately model the trucks
on the road at that time. However, the debate continued over which live load
model was best. As the United States became more industrialized, different
types of heavy trucks became more commonplace on the roads. A tradeoff
between the cost of building and maintaining highway bridges and the cost
of transporting goods by trucks caused changes in the regulations regard-
ing axle configurations and weight limits of trucks. This further fueled the
debate over the live load model because design had to accommodate more
than one type of truck. The variety of trucks in use made the problem more
statistical in nature.

Recently, this statistical nature has been realized and accounted for. Over
the past several decades there has been an initiative to nationalize bridge
design standards. The result is the AASHTO LRFD Bridge design specifi-
cations. The goal of this code is to ensure a satisfactorily low probability of
failure for any bridge structure designed using it. This code uses probabilistic
design methods. This type of design has emerged as an alternative to factor
of safety design, a school of thought that some might argue is inadequate.
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1.2 Probabilistic Design vs. Allowable Stress
Design

The basic equation that governs LRFD, a probabilistic design philosophy, is
that the sum of the factored load effects shall be less than or equal to the
factored resistance:

> " 7Qi < ¢R, (1.1)

In this equation v; > 1 are load factors, statistically based multipliers that
correspond to the load effects (Q;. ¢ < 1is also a statistically based factor that
is applied to the nominal resistance to determine the factored resistance. This
contrasts with the deterministic approach of Allowable Stress Design (also
called Factor of Safety Design). The equation that governs the deterministic
approach says that the sum of the load effects must be less than the elastic
resistance divided by a safety factor:

> Qi < Rp/FS (1.2)

The first problem with his method is that exact calculation of elastic
resistance is frequently impossible. This value depends on things such
as elastic modulus, which cannot be determined exactly in some cases,
making the value of elastic resistance an estimate. The second problem
is that it assumes the same safety factor independent of the statistical
variability of the loads. This generates structures with potentially large
differences in effective safety factors. To more accurately characterize loads
and resistances, a statistical approach is necessary.

The basic idea of probabilistic design is depicted in fig. 1.1. Data and
prior knowledge are used to form statistical models of both loads (Q) and
structure resistance (R). From this, the probability distribution of the re-
sistance minus the loads can be determined. The probability to the left of
zero represents the failure region and the goal is to control this area to levels
acceptable to society. This area can be controlled by selecting the proper
combination of loads with load and resistance factors, hence the name Load
and Resistance Factored Design (LRFD). 8 is known as the reliability index.
For bridges a target reliability index of 3.5 has been proposed in AASHTO
LRFD.

In some instances the loads and resistances can be modeled as normal

13
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Figure 1.1: Concept of Probabilistic Design

random variables. In this case the random variable that is the subtraction
of the loads from resistances is also normally distributed. Such a case is
depicted in fig. 1.2. For normally distributed loads and resistance the fol-
lowing equations can be used to calculate both the mean resistance and the

resistance factor:
O(R-Q) = \/Oh T+ 0% (1.3)

g=Hr_Ho (1.4)
\/ Ok + 05

pr = po + 5 ‘712%4’039:)\3:%)\2%@@' (1.5)
A 7iQi

b= > i€ (1.6)

o + By/0% + 0
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Figure 1.2: Normally Distributed Loads and Resistance

1.3 Evaluation of Live Load Model in
AASHTO LRFD

The design loads in the AASHTO Specifications were calibrated in the 1980s
and 1990s. Ever since states in the US have been using this code to design
bridges, researchers have sought to analyze their performance from the stand-
point of bridge reliability. The basic question they are trying to answer is:
Does using the AASHTO specified design loading result in the target level of
reliability consistent with field data? The goal of this project was to explore
this question for the state of Vermont. This project focuses on one type of
load, the vehicular live load. For bridges, the primary source of live load is
heavy vehicles. The Vermont Agency of Transportation (VTrans) has pro-
vided 12 years of Weigh-in-Motion (WIM) data to use for comparison with
the AASHTO loads. This is an extensive data set, containing roughly 37
million vehicles. As a comparative reference, the live load in the AASHTO

15



specifications (HL-93) was calibrated using 9,250 vehicles.

The Vermont data contains many pieces of important information: a
timestamp, vehicle gross weight, axle count, individual axle weight and axle
spacing. The first step in the data processing was to use structural analysis
to determine the maximum stress demand (shear force and bending moment)
each vehicle produces in a bridge deck. Once an algorithm that could handle
all of the data in a timely manner was developed all of the data was passed
through it. What resulted was a distribution of stress demands that can be
sorted by time and location.

The next step was to develop models of these distributions to use in re-
liability calculations. Two different approaches were taken at this stage of
the research. The first was to directly model the resulting stress demand
distributions, using Lognormal Mixture Models. As the name suggests these
models are weighted mixtures of lognormal distributions. These models serve
as a flexible and computationally efficient way of modeling the entire stress
demand distribution. The model parameters are estimated from the data
using the Expectation Maximization (EM) algorithm. This provides an ele-
gant way of modeling the distributions and allows for the fit of the estimated
model to be assessed easily.

The second approach was to use extreme value theory and Bayesian statis-
tics to model the distribution of the daily maximum stress demands. Using
the time stamps in the data set, the distribution of daily maximum bending
moments was found for all years for various WIM stations. Bayes Theorem
was used to analyze the fit of potential models to the distribution of these
extremes. Bayes Theorem was also used to estimate the optimal parameters
of these models. By combining these two procedures into one algorithm the
comparison of the models is more robust and can be seen to provide the best
fit for the data.

The different statistical models for the load were then combined with sta-
tistical models for the resistance to determine bridge superstructure reliabil-
ity. The resistance models and parameters are taken from existing literature.
The resistance models were developed by using the AASHTO Specifications
to design sample bridges. In this procedure the structures were designed
to be as close as possible to the minimum threshold, so as to minimize the
contribution of self-weight, referred to as dead load, to the total load on
the structure. Once a design was obtained, finite element analysis (FEA)
was used to determine the amount of live load that each girder must sup-
port. This allowed for an expression of the total dead and live loads that the
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beams in these structures needed to support. With the resistance already
calculated in the design phase, the reliability calculations were completed.
Examination of the yearly probability of failure for different locations in the
state of Vermont is a crucial element of the contents of this report.
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Chapter 2

Literature Review

In this chapter the papers relevant to this project topic are reviewed and
summarized individually.

2.1 NCHRP Report 368: Calibration of
LRFD Bridge Design Code

Published in 1999, NCHRP Report 368 describes the calibration of the
design live load, as well as the calculation of load and resistance factors
used in the AASHTO LRFD Bridge Design Specifications. Included in this
work was the development of load and resistance models, selection of the
reliability analysis method, and the calculation of reliability indices for many
bridges. The reliability index (/) is the number of standard deviations the
mean of the distribution of loads minus resistance is past zero. Another way
to think of this is as the inverse standard normal function of the probability
of failure. This is the measure of reliability that was used throughout the
report. It is a particularly useful measure because it relates to probability
of failure, but is easier to calculate. The report set the target reliability
index for bridges based on the reliability indices of existing bridges designed
using allowable stress and/or load factor design (AASHTO standards before
LRDF).

Roughly 200 sample bridges were selected from around the United States
as representative of the bridge population. Load effects, such as shear
forces and bending moments, and load carrying capacities were calculated
for these bridges. Next, the available data regarding loads and resistances
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were compiled. This data includes truck weight surveys, material tests, and
field measurements among other things. From this data, models of loads
and resistances can be made by considering them to be random variables.
Reliability indices can be computed from these models considering different
limit states (failure modes) using the Rackwitz and Fiessler procedure
along with Monte Carlo simulations and other sampling techniques. The
target reliability index of 3.5 was determined from the reliability indices
calculated for these sample bridges. The load and resistance factors are then
determined so that the factored load has a probability of failure based on
the target reliability index.

The load models treated all dead loads as normal (Gaussian) random
variables. The report includes tabulated bias factors and coefficients of
variation (COV) for various dead load components. The live load effects
(stress demands) that were examined were shear force, positive moment,
and negative moment (for continuous spans). These effects were determined
using data from a truck data survey performed in 1975 in Ontario. This
survey contained about 10,000 trucks that appeared to be heavily loaded.
This report holds that, at the time of the survey, the truck population in
Ontario was similar enough to the truck population in the US to use the
survey for code calibration purposes. The maximum stress demands from
these vehicles were then extrapolated to various return periods using the
assumption that the truck data represented a 2 week time period. The mean
and COV of these stress demands were computed for the various return
periods.

The single vehicle stress demands were then combined to obtain maxi-
mum stress demands for multiple vehicle and multiple lane scenarios. This
combination was done using data regarding headway distance, multiple truck
presence, and degree of correlation between trucks. The report acknowledges
that there is little data available to verify the statistical parameters used
to account for presence of multiple heavy vehicles. Ultimately, the mean
maximum stress demands for one or multiple lanes was determined for
various return periods.

The live load model that was selected was calibrated using the maximum
75 year stress demands. A 75 year time period was thought to correspond
to the service life of a bridge. The objective of selecting a new load model
was to achieve a uniform ratio of the nominal, or design, value to the
maximum 75 year demand. It was determined that the load model that
best accomplished this used the maximum of: i) a combination of the HS-20
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truck and a lane load of 64 pounds per square foot, ii) a tandem of two 25
kip axles spaced 4 feet apart plus the lane load for short spans, or iii) 90%
of two HS-20 trucks plus 90% of the lane load effect. This load model was
designated HL-93 vehicular live load for use in the AASHTO LRFD Bridge
Design Specifications.

Resistance models were also developed for various types of construction
materials. Since bridges usually contain multiple types of materials that
act simultaneously to resist the load, material test data and numerical
simulations were used to determine the statistical parameters of resistances.
This was done for steel girders (composite and non-composite), reinforced
concrete T-beams, and pre-stressed concrete AASHTO-type girders. Ex-
pressions for shear and moment capacity for these types of members were
used to consider limit state functions in the reliability analysis. The report
defines limit states as the boundaries between safety and failure. These
limit state functions have many variables: load components, resistance
parameters, and material properties to name a few.

Direct calculation of the probability of failure is difficult because these
limit states are highly complex due to their dependence on so many vari-
ables. Therefore, an iterative procedure was used to calculate the reliability
index. This procedure, developed by Rackwitz and Fiessler, uses normal
approximations to non-normal distributions at the point of maximum
probability on the failure boundary, called the design point. Initially this
design point is estimated and a reliability index is calculated. This is an
iterative procedure because a new design point is determined based on the
previously calculated reliability index. This procedure is repeated until the
design point converges [3].

2.2 Characteristic Traffic Load Effects from
a Mixture of Loading Events on Short to
Medium Span Bridges

This paper focuses on site specific load effect assessment. As previously
established, Monte Carlo methods are useful for representing synthetic traffic

when the statistics of the traffic are available. The conventional approach
is to identify the maximum load effect during a loading event and fit these
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maxima to an extreme value distribution. This approach assumes that the
loading events are independent and identically distributed (iid). However,
loading events from multiple vehicles are much more complex than single
vehicle events, because they involve considerably more variables. Mixing the
effects from these two different types of events violates the iid assumption
necessary to use extreme value analysis, and can therefore result in errors.

A new way of combining the non iid loading events is proposed. This
method combines the effects of multiple mechanisms that operate on the
same random variables. The assumption that the individual loading events
converge to an extreme value distribution is used to achieve a closed form
for the joint distribution of the load effects. This method is shown to be less
conservative than the conventional approach of using extreme value theory.
One noteworthy finding is that loading events of more than 2 vehicles can
govern the design of short to medium span bridges. This does not agree
with the theory that the 2 vehicle situation governs, as postulated in the
calibration of the AASHTO LRFD specifications [4].

2.3 Probabilistic Characterization of Live
Load Using Visual Counts and In-Service
Strain Monitoring

This paper argues that conservative assumptions are made about the multi-
ple presence of vehicles in the calibration of the AASHTO LRFD design code.
The basis of this argument is that no field data on multiple presence proba-
bility and truck weight correlation were provided in the calibration. For this
study, multiple and single presence occurrences were visually observed along
a highway close to a bridge. A Poisson process-based occurrence model is
used to achieve a closed form result for side-by-side vehicle occurrence rates.
The key assumptions made in this formulation are that occurrence of trucks
in each lane can be modeled by a Poisson pulse process and that these pro-
cesses are independent for each lane. Although these assumptions may not
hold true, this allows for a simple model that is shown to provide adequate
results compared to the data.

Strain data was obtained from gauges positioned on the bridge girders.
This strain data was used to compare an estimated 75 year design load from
the data with the AASHTO load. The largest strain observed from each data
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collection was converted into a bending moment based on girder geometry.
The maximum 75 year effect was computed using statistical extrapolation of
the data set to the 75 year time period. It is shown that the design moment
using HL93 live loading is about 3.5 times that of the estimated maximum
75 year value obtained from data for a particular bridge [5].

2.4 WIM Based Live Load Model for Bridge
Reliability

This study uses a WIM data set of 47 million vehicles from California,
Florida, Indiana, Mississippi, New York, and Oregon to compare with the
data set used to calibrate the HL93 live load. The maximum load effect for
each vehicle in the data set was determined. The comparison of the new and
old data suggested that, on average, the Ontario trucks (data used in the
calibration of HL93) were heavier than the vehicles in the WIM data set.
It was also concluded that extrapolation of the maximum values of the live
load effects from the WIM data would result in the same maximum values
as found when the HL93 load was calibrated. The correlation between truck
weights was also obtained from the WIM data so multiple presence analysis
could be performed.

Six steel girder bridges were designed according to the AASHTO LRFD
code. The WIM data was used in conjunction with FEM analysis to calculate
the reliability indices of these bridges for live load. The calculated reliability
indices are higher than the AASHTO target of 3.5, leading to the conclusion
that the HLL93 live load is still generally valid across the United States. How-
ever, it was noted that a further analysis of New York is necessary because
of the observation of extreme loads at some sites [6].

2.5 Calibration of Live-Load Factor in LRFD
Bridge Design Specifications Based on
State-Specific Traffic Environments

This paper proposes recalibrating the live load factor based on state-specific

traffic and bridge information. Moving load analyses were conducted for
sample bridges selected from the state of Missouri. The loads considered in

22



the analysis came from a WIM data set of approximately 41 million vehi-
cles. The moving load analysis was performed on the heaviest 5% of vehicles
because a strong correlation between maximum load effect and gross vehicle
weight (GVW) were observed. Multiple presence of vehicles was considered
and the daily maximum demand was computed. Girder distribution factors
computed using AASHTO were used to compute the portion of live load sup-
ported by the girders in the sample bridges. A Gumbel Type I distribution
was fitted to the daily maximum values and extreme value theory was used
to determine the mean maximum 75 year demand.

The reliability index of these sample bridges was calculated using FORM
(First Order Reliability Method). For these calculations it was assumed that
the resistance and dead load followed normal and lognormal distributions
respectively. The reliability indices calculated showed that the AASHTO
specifications resulted in over designed bridge superstructures in Missouri.
A method for calibrating the live load factor that results in the target reli-
ability index (3.5) is suggested. This method modifies the current live load
factor (1.75) by using a modification factor based on ADTT (average daily
truck traffic) [7].

2.6 Using Weigh-In-Motion Data to Deter-
mine Aggressiveness of Traffic for Bridge
Loading

This study uses WIM data from highways in the Netherlands, Czech Repub-
lic, Slovenia, Slovakia, and Poland as a basis for Monte Carlo simulation of
bridge loading by two lane traffic. The simulation model was optimized so it
could run thousands of years of traffic to obtain the characteristic bridge load
effects, which are compared to design values for bridges as specified by the
Eurocode Load Model 1 for bridge traffic loading. This comparison serves as
the basis for calculating a BAI (bridge aggressiveness index). The BAI is to
be used to provide an estimate of the magnitude of the characteristic load
effect based on WIM data. This is intended as a rating system for the traffic,
not to provide an estimate of the reliability of the bridge. It is determined
that the BAI can be calculated based on the maximum weekly GVW [8§].

23



2.7 Reliability of Highway Girder Bridges

This paper discusses procedures for reliability calculations for girder bridges.
The various types of girder bridges considered are steel girder (both compos-
ite and non-composite), reinforced concrete T-beams, and prestressed con-
crete girder bridges. Load models are used, but not discussed. Lognormal
resistance models are developed using simulations based on material tests
results and are used in reliability calculations. Individual girder behavior is
described using a moment curvature relationship. Bridge carrying capacities
are found by determining the maximum truck load before failure. In this pro-
cedure single unit and semi-trailer truck configurations are used. The axles
are positioned so they cause the maximum load effect and then the axle loads
are increased until they cause deformations that exceed acceptable values.

Girder reliability is computed using the iterative procedure developed by
Rackwitz and Fiessler for typical slab on girder bridges. The reliability of the
bridge system is calculated using the bridge carrying capacity. The reliabil-
ity of the system is shown to be higher than the reliability of the individual
girders, reflecting the redundancy built into such structures. The fact that
the system reliability is higher than reliability of the individual components
shows that girder bridges exhibit behavior of parallel systems. A sensitivity
analysis revealed that accurately characterizing the resistance parameters,
such as yield stress or steel area, is particularly important when determining
bridge reliability [9].

2.8 Locality of Truck Loads and Adequacy of
Bridge Design Load

This paper focuses on the high variation of loading conditions between bridge
sites. From WIM data obtained in the state of Michigan, it is apparent that
truck weights greatly vary from site to site. The high amount of variation
suggests that the national and state design codes do not account for localized
risk. WIM data consisting of roughly 46,000 vehicles from 9 sites are used to
develop statistical representations of live load effects in the sample bridges at
critical cross sections. The reliability indices for a randomly selected sample
of new bridges from the state of Michigan are based on these statistical
models.
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The results show that the Michigan design load used in 2005 (HS25)
does not consistently attain the desired reliability index in the Detroit Metro
Region. The results also show significant variation in the reliability indices
among both bridge sites and types. This suggests that a site specific live
load calibration using WIM data could help achieve more uniform reliability
indices across the state [10].

2.9 Buckling Reliability of Deteriorating
Steel Beam Ends

This paper proposes a reliability-based damage assessment for deteriorating
steel beam ends that become susceptible to shear buckling as a result of mate-
rial deterioration in the beam webs. The objective was to develop reliability
charts for web buckling based on real time data instead of simply the design
load. The load model in this procedure is based on a WIM data set from
42 WIM stations in the state of Michigan. A detailed finite element model
is used to determine the resistance of the weekend sections. A detailed case
study is presented for one bridge. Varying levels of deterioration are consid-
ered to examine the effect of web thinning on point-in-time reliability indices.
The results of this study can be used to eliminate unnecessary bridge closures
as a result of overestimating the risk resulting from web deterioration [11].

2.10 Evaluation of a Permit Vehicle Model
Using Weigh-In-Motion Truck Records

This study evaluates the Wisconsin permit vehicle based on a WIM data
set of 6 million vehicles collected in 2007. The heaviest 5% of vehicles in
the data set were used to find the maximum demand (shear and bending
moment) in 2 and 3 span continuous girders. The demand values were found
using a moving load analysis in SAP2000, a finite element analysis program.
Multiple presence and distributed lane loads were not included in this analy-
sis. The ratios of these maximum demands to the Wisconsin permit vehicles
were computed. An extreme value distribution was used to fit the resulting
distribution of ratios. The results showed that some short single-unit trucks
could exceed bridge responses forecasted using the Wisconsin permit vehi-
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cle. A new permit vehicle is proposed based on the 95" percentile of the
corresponding axle weights and spacing observed in the WIM data [12].

2.11 Applying Weigh-In-Motion Traffic Data
to Reliability Based Assessment of
Bridge Structures

This study identifies evaluation of the effects increasing traffic volumes on
short to medium span bridges as a critical area of study. These types of
bridges are important because they make up most of the bridge population;
these span lengths make up 85% of the bridge population in France, the area
where the study was conducted. The effects of time variation of traffic loading
on reliability of bridge structures are investigated. A model for the loss of
strength in a reinforced concrete bridge is used in the reliability analysis.
Extreme value theory is used to model the effects of the traffic in the WIM
data set. Extrapolation from daily to yearly maximum values is achieved by
raising the daily extreme distribution to the power of the number of days in
a year. The change in these yearly values is modeled using data on traffic
growth, both in weight and volume. Annual reliability is used as a metric
to quantify the influence of traffic evolution on the reliability of a sample
reinforced concrete bridge [13].

2.12 Site Specific Probability Distribution of
Extreme Traffic Action Effects

This paper seeks to find an empirical relationship between site characteris-
tics and parameters of a Type III extreme value distribution that is used to
model traffic effects on a bridge. Random traffic is simulated by using differ-
ent parameters for distributions of traffic characteristics that correspond to
different traffic scenarios. These characteristics include traffic composition,
axle group weights, vehicle geometry, and axle spacing. The maximum load
effects from the simulated traffic are computed using influence lines. Many
different site characteristics are included in the analysis, including multiple
spans, multiple lanes, different span lengths, and various traffic flow condi-
tions.
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It was found that a Type III distribution best fits the distribution of
maximum load effects. This was expected because the maximum values are
sampled from distributions with an upper bound. The relationships between
the distribution parameters and traffic load parameters are derived. Relia-
bility calculations are performed using the load effect distributions from the
simulated load effects and using the distributions obtained using the derived
relationships. The reliability calculations were done using the FOSM (first
order second moment) method. The reliability indices calculated using the
simulated data and are shown to be very close to the corresponding indices
using the previously mentioned relationships. This shows that the relation-
ships between site characteristics and distribution parameters can be used to
perform site specific reliability calculations for bridges [14].

2.13 Monte Carlo Simulation of Extreme
Traffic Loading on Short and Medium
Span Bridges

This paper is a critical review of the assumptions made in the process of
using statistical distributions as the basis of Monte Carlo simulations used
to predict maximum lifetime traffic load effects. A model for Monte Carlo
simulation of bridge loading from free flowing traffic that can be applied to
different sites is presented. Particular attention is paid to modeling axle
layout, as the estimate of maximum lifetime load effect is particularly sensi-
tive to assumptions regarding axle spacing and wheelbase. For instance, two
trucks with similar GVWs and different lengths can result in a 50 ~ Such a
model gives a more realistic estimate of lifetime loading than others. Vehicles
that cause demands larger than any vehicle in the data set may be used in the
model because of its probabilistic nature. This approach allows for determi-
nation of which loading scenarios can cause the lifetime maximum demands.
It also gives information about which types of vehicles are involved in those
loading scenarios. When a single vehicle occurrence results in a characteris-
tic load effect, it is often the result of a truck significantly heavier than any
observed truck. This highlights the importance of controlling the presence of
these specially loaded vehicles on highways [15].
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2.14 Information Regarding WIM Data Sets
Used in Reviewed Studies

Table 2.1: Number of Vehicles and Time Period Represented in the WIM
Data Sets

Study Approximate Number of Vehicles | Time Frame

1 9,250 2 weeks

2 no WIM data used

3 no WIM data used

4 47,000,000 3 years

5 41,000,000 5 years

6 2,700,000 4 years

7 no WIM data used

8 46,000 N/A

9 101,000,000 5 years

10 6,000,000 1 year

11 600,000 6 months

12 no WIM data used

13 2,700,000 4 years
Our Study 36,000,000 2 years
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Chapter 3

Identification of Mixture
Models from Weigh-in-Motion
Data with Application to

Bridge Deck Reliability
Analysis

This paper proposes the use of mixture models to represent the
aleatoric variability of internal forces in bridge decks induced by
vehicular loads. The proposed mixture models are identified from
vehicle axle data measured in 12 weigh-in-motion (WIM) sta-
tions across the state of Vermont, USA during a period of 12
consecutive years. The temporal and spatial variability of the
parameters that define the mixture models is investigated. The
paper presents a comparison between the demands induced by
the WIM data and the AASHTO HL-93 live load model. The
identified mixture models are used to compute the annual proba-
bility of failure of simply supported bridge decks of various span
lengths under normal operating conditions.
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3.1 Introduction

A mixture model is a probabilistic model that specifies the probability distri-
bution of a random variable Y as a countable sum of distributions fx,(z,0)
weighted by corresponding scalars w; € R

fr(@) =3 _wifx.(.6:) (3.1)

where n € {1,2,...}. The only restriction being that ) w; = 1 in order
to garantee that [ fy(x)dz = 1. The distributions fx,(z,6;) are uniquely
defined by the parameter vector ;. Mixture models are extensively used
in diverse engineering fields [1], including traffic modeling [4]. In this pa-
per we are concerned with using mixture models to describe the probability
distributions of the traffic induced stress demands in the main load carrying
elements of a typical bridge deck. Specifically we are interested in the inverse
problem of identifying mixture models from the vehicle axle data measured
by weigh-in motion (WIM) stations. In this paper we implement the ex-
pectation maximization (EM) algorithm to perform the identification of the
mixture models from WIM data. The data for the statistical analysis pre-
sented in this paper corresponds to axle weight and spacing data of vehicles
obtained from 12 WIM stations spread across the state of Vermont, USA.
The data was collected over the years 2000-2012. In total 36, 754, 819 vehicle
events were recorded by the WIM system and analyzed in this study.

This study is motivated by current efforts at the Vermont Agency of
Transportation (VTrans) to assess the reliability of their bridge inventory
and to determine if the AASHTO live load model [5] provides stress de-
mands consistent with the demands that can be inferred from processing the
WIM data. The current HL-93 live load model used in AASHTO LRFD
Brige Design Specifications was originally calibrated by Nowak [11]. The
vehicle data used to formulate the model was obtained from a truck survey
conducted in Ontario, Canada over a span of approximately two weeks in the
1970’s. Since its adoption, several studies have been carried out to determine
the validity of the model in various geographical settings, especially across
the United States. Remarkably, despite its simplicity and considering that a
relatively small amount of data was used for its initial formulation, most of
the studies typically conclude that the HL-93 is adequate, although poten-
tially conservative, and remains valid under most situations [8, 9]. The intent
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of the current AASHTO LRFD Bridge Design Specifications is, as stated in
NCHRP 368 (Nowak 1999), to provide load and resistance factors that are
consistent with a reliability index () of 3.5 for a service life of 75 years.

Identification of the proposed mixture models from WIM data can have
various applications. One of the most common is for the development of site
specific live load models [2, 3, 22]|. In that application the argument is that
significant savings can be achieved in design of new bridges and assessment
of aging bridges if local traffic conditions are used instead of a “one size fits
all” approach such as the HL-93. In the study by [3], the standard permit
vehicle in Wisconsin was evaluated by using six million WIM truck records
collected in 2007. The evaluation was on the basis of statistical analyses
of the maximum moments and shear in simply supported, 2-span, and 3-
span continuous girders in the selected heaviest 5% of trucks in each vehicle
class/group. The comparisons showed that 5-axle, short, single-unit trucks
may cause larger moment/shear in bridge girders than the standard permit
vehicle, and a 5-axle truck model was proposed to supplement the standard
permit vehicle for possible use in bridge design and rating in Wisconsin.

Existing literature focuses mainly on identifying generalized extreme
value distributions (GEV) from the WIM data and extrapolating these distri-
butions, sometimes along with deterioration models, to estimate the reliabil-
ity index of the bridge deck as a function of time. Consider as a representative
example a recent paper by Zhou, et al. [13]. This paper reports the use of
WIM data during a span of 6 months in highway system in southern France.
The data is used to identify a GEV distribution and then extrapolate it to
100 years using linearly increasing trend of traffic growth. The study inves-
tigated the specific case of short span reinforced concrete bridges and the
main source of strength degradation was chloride induced corrosion. They
found that with the effect of proyected traffic growth of 0.002% per year, the
reliability droped from an initial value of 3.9 to 3.5 in 40 years and to 2.8 in
90 years. Given that the data was of a relatively short amount of time, it
was not possible to assess if the GEV was adequate. In [4] it was found that
significant errors are incurred if standard methods for extreme value model-
ing are used without accounting for the fact the the parent distributions are
not independent and identically distributed (iid). One of the objectives of
this paper is to quantify the temporal and spatial variability of the parent
distribution on the basis of data measured by WIM stations.

In summary, the main contribution of this paper is the identification of
time-variant mixture models from WIM data measured at various locations
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and during a significantly long period of time. This allow us to validate(
or invalidate) the independent and identically distributed (iid) assumption
typically used whenever deriving GEV for reliability analysis of bridge struc-
tures. A less significant, but potentially interesting application of the sta-
tistical analysis developed in the paper is that instead of extrapolating the
identified probability model into the future, we deduce from the data a yearly
probability of failure. This allows for the use of failure rate as a potential
critieria for reliability design and assessment of bridges. In this paper we
focus on the operational failure rate, i.e. the period where the structure
has surpassed the infant mortality phase and has not yet began the wareout
phase.

3.2 AASHTO Live Load Model

To place our work in context, in this section we briefly present the AASHTO
vehicular live load model. The HL-93 live load model is the latest in an
evolving sequence of models that can be traced as far as the early 20th century
with the work of Seaman [18] and Manville and Gastmeyer Manville. The
AASHTO vehicular live load to be applied on roadways of bridges, designated
as HL-93, consists of a combination of a design truck or a design tandem,
and a design lane, whichever produces the largest effect (see Fig.3.1).

Transverse to the direction of travel, both the truck and the tandem loads
are spaced 1.8 m apart and they can be placed anywhere in a 3.6 m wide lane
as long as a clearance of 0.6 m to the lane boundary is maintained (0.30 m
in the case of a deck overhang). The lane load should be spread over a width
of 3.0 m inside a standard lane [5]. In the case of bending moment in simple
spans, for very short spans (< 10 m) the tandem combination governs, how-
ever for longer spans, the truck combination is more critical. For lane shear,
the truck load will typically govern independent of the bridge span. The HL-
93 load model is typically referred to as notional because it is not intended
to represent any particular truck to be found on the interstate highways. In
essence the objective of the HL-93 live load model is to induce stress de-
mands on a bridge structure which are consistent with low probability stress
demands generated by heavy vehicles.

One of the partial objectives of this study is to compare the stress de-
mands in the form of lane shears and lane moments obtained from AASHTO
HL-93 with the ones obtained by applying the measured vehicles on simu-
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lated one span bridges of varying length. Recent studies on the subject have
also proceeded in a similar fashion. In one such study a small set of WIM
data (about 40,000 trucks) was analyzed to evaluate the adequacy of the HS-
25 truck [22]. The HS-25 design truck is used in the HL-93 live load model.
A similar study used WIM records coupled with finite element analysis to
examine maximum live load shear in deteriorating steel beams [23]. Others
compared the girder design moments according to AASHTO standards with
girder moments from WIM data [6].

3.3 Description of Data and Pre-Processing

The Vermont Agency of Transportation currently maintains 12 WIM sta-
tions spread across various roads within the state (See Fig. 3.2). These
stations have been operational since the year 2000. The total number of
vehicles recorded by the system each year during the period 2000-2012 is
shown in Fig. 3.3. Note that significant variation regarding the total num-
ber of recorded vehicles per year can be observed. A typical data file from
the WIM system contains the following information: station identification,
time stamp, vehicle class, axle weight, and axle spacing. We performed an
initial quality control check on the WIM data and eliminated spurious mea-
surements prior to initiating the statistical analysis.

Our approach was to select each data point (measured vehicle) for a
given station and year and determine the maximum lane bending moment
and shear that it would induce on various simple span bridges of varying
length (5-60 meters). For the case of bending moment this was efficiently
carried out by invoking a well-known theorem from structural analysis. The
theorem states that the location of maximum bending moment results from
the maximum of n possible moments, each one of these corresponds to plac-
ing the axles such that in each case one of the loads is equidistant from
the center of the beam with the resultant of the forces [7]. For short spans
and vehicles with many axles, it can occur that only a portion of the axles
are within the span of the beam, therefore an iterative approach is needed in
order to find a stable position of the axles where the resultant of the loads in-
side the beam is equidistant from the load considered (Fig.3.4). The analysis
for shear is simpler since the maximum shear is equal to the maximum reac-
tion corresponding to n possible axle positions where one of the axle loads is
placed immediately adjacent to one of the supports. All the algorithms were
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efficiently implemented and all 36, 754, 819 vehicle measurements were indi-
vidually analyzed. This is in contrast with recent studies that only examine
the heaviest portion of vehicles [3]. Our approach allows the computation of
probabilities interpreted as a fraction of cases of interests to the total number
of cases.

Historgrams such as the ones shown in Figs. 3.6 and 3.7 were generated
after transforming the data from axle weights to lane shears and moments
for each station in a given year for the various lengths considered. These his-
tograms support our hypothesis that the distribution of the lane bending mo-
ment and shear follows a mixture distribution and does not fit any standard
distribution. As a starting point we determined for each station and each year
the proportion of vehicles that generated lane bending moments or shears
which exceeded the lane moments and(or) shear generated by the AASHTO
HL-93 live load. The values depicted in Fig.3.5 are averaged over all of
the years. Although there is significant inter-station variation, shorter span
lengths tend to exhibit a larger fraction of demands over the AASHTO HL-93
value. Other trends that can be observed is that all stations in the eastern
part of the state (X073, X249, N0O1, E020) have a consistently smaller frac-
tion of cases exceeding AASHTO, as opposed to the stations located in the
western portion of Vermont (B379,R001,Y117,R100,A041,A111,D092,G005).
This can be explained by population trends and economic activity which
varies significantly from east to west in Vermont [24]. In addition, it can
be seen that four stations, namely, R100, B379,G005 and R001, present the
highest levels of exceedance with respect to AASHTO HL-93 (nearly 1%).

Fig.3.12 shows the yearly variation of the probability of exceedance for
the lane shear and bending moment with respect to the AASHTO HL-93
demands. The results are shown for four stations, namely, R100, X249,
G005 and R0OO1. Significant variation can be observed from year to year. In
the case of R100 there appears to be an upwards trend, while for the case of
G005 an increase was verified until 2004 however a decrease thereafter. The
other two stations exhibit a more erratic behavior without a clear trend. This
contradict the hypothesis that vehicular live load demands are stationarity
over a long period of time or that they grow or decrease at a constant rate.
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3.4 Statistical Analysis Methods

In this section we present a more detailed spatio-temporal statistical analysis
of the WIM data. We describe the mixture models that were postulated and
the EM algorithm that was employed. We also show the results obtained for
the various stations and years considered.

3.4.1 Mixture Models

A mixture model is a probabilistic model that specifies the probability distri-
bution of a random variable Y as a finite sum of distributions fx,(x) weighted
by corresponding scalars w; € R

fr(z) = Zwiin<x) (3.2)

The restriction being that » w; = 1. A popular choice for many appli-
cations is the Gaussian mixture model (GMM), which as the name suggests,
uses

z—p; \2
() = —o—pe 35 (33)
\/2mo?

From the histograms of the stress demands (Figs. 3.6 and 3.7) it is ap-
parent that a mixture model is a potentially successful model class to de-
scribe the distributions of lane shear or bending moment induced by traffic.
In an initial statistical analysis we tested Gaussian and log-normal mixture
models to determine their power in explaning the data. We found that the
log-normal model is a better fit. We also found that even though a non-
parametric framework allows for an increasing number of distributions to be
included in the mixture in order to adapt to the data, for the data set con-
sidered in this paper, a mixture of three (n = 3) distributions is sufficient
to attain the desired accuracy. The choice made for our application was a
log-normal mixture model (LNMM), which uses

fx;(z) = 1 p(mmy”

\/ 21a2o?

(3.4)
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3.4.2 Expectation Maximization Algorithm

We employed the Expectation Maximization (EM) algorithm [10] to compute
the maximum likelihood estimates (MLE) of the mixture weights (w), means
(m), and variances (v). This algorithm can be readily implemented using the
following equations:

1 N
W= R (3.5)
k=1

1 _;
m; = Zk? k=3 Tk (3.6)
Ek:l 1Zk:j
v — S ooy Loy (i — p1y) (ke — )" (37)
J ZN 1 ' :
k=1 ~2k=J

where 1, —; is the indicator function. The value of z; for the data zj, is
computed as

=7 i fx;(xe) > fx,(we) VI#] (3.8)

The EM algorithm is guaranteed to converge, however, only convergence
to a local maximum is guaranteed so the final estimate is dependent on an
initial guess of the model parameters. The initial guess for the values of o;
and pu; was based on a visual inspection of the data and by using known
relationships between mean m, variance v and the parameters p and o of
each distribution [21], namely

2

ms
c=log| ——1 3.9
1 g< T+m§) (3.9)

= \/log ( m2) (3.10)

3.5 Results

Typical results from the implementation of the EM algorithm are shown in
Fig.3.8 for various years and stations for a span length of 10m. The Fig.3.8
shows the match between the normalized histogram constructed using the
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maximum bending moment induced by the measured vehicle axles and the
identified mixture model using 3 lognormals. As can be seen the match
is adequate and similar quality of results were obtained for other station-
s/years/span length that were analyzed. We proceed to present a spatial
and temporal variability analysis on the basis of the identified LNMM,such
as the ones presented in Fig.3.8.

3.5.1 Spatial Variability

Table 1 presents results for the identified maximum likelihood value of the
LNMM parameters for various stations over all years for which data was
available. Significant inter-station variation can be observed specially in the
weighting coefficients (w;) and to a lesser extent in the (¢;). At the bottom
of the table we show the arithmetic average and the coefficient of variation
(CoV) for all stations. The identified average and coefficient of variation
can be used to postulate a distribution for the model coefficients and sub-
sequently used to generate random synthetic data which can then be used
for long term reliability analysis of bridges. This approach, although more
computationally intensive, could be more realistic than the more traditional
approach of postulating a stationary GEV distribution for the life of the
structure. We illustrate this approach in a subsequent section of the paper.

Table 3.1: Maximum Likelihood Estimate of Mixture Model Parameters in
eq.3.4 for a 10 m span

Station w1 Wo wWs M1 2 M3 01 09 03
R100 0.291 | 0.419 | 0.290 | 6.528 | 7.297 | 8.122 | 0.279 | 0.254 | 0.321
X249 0.345 | 0.374 | 0.281 | 6.347 | 7.209 | 7.872 | 0.367 | 0.226 | 0.335
G005 0.538 | 0.347 | 0.115 | 5.635 | 6.544 | 7.337 | 0.312 | 0.308 | 0.292
R0O01 0.167 | 0.412 | 0.421 | 6.489 | 7.301 | 8.028 | 0.412 | 0.223 | 0.254

Average | 0.336 | 0.387 | 0.275 | 6.495 | 7.321 | 8.063 | 0.356 | 0.260 | 0.295
CoV 0.596 | 0.284 | 0.452 | 0.041 | 0.031 | 0.023 | 0.307 | 0.256 | 0.178

3.5.2 Temporal Variability

In order to illustrate the intra-stational temporal variability of the mixture
models, Fig.3.9 shows the variation of the identified weighting coefficients

37



as a function of time (averaged results for every year). Fig.3.10 shows the
variability of the y parameter and Fig.3.11 the variability of the ¢ parameter.
The parameters (p;) do not change significantly, however consistent with the
results shown in Table 1, the relative weights (w;) and the parameters (¢;) do
vary appreciably with time. The variation of the parameters is not monotonic
and it does not exhibit any particularlly clear trend and can be described as
aleatoric. Using the identified LNMM, Fig.3.12 depicts the probability of any
random truck exceding the AASHTO HL-93 induced lane bending moment
and(or) shear for each of the stations considered in a 10m bridge deck. Note
that this is not the probability that the heaviest truck in a given time frame
exceeds the AASHTO HL-93 induced lane bending moment and(or) shear.

3.6 Reliability Analysis

One potenial application of the identified LNMM is in reliability analysis of
bridges. This involves defining distributions for the dead (D) and total loads
(Q = D+ L). The distribution for the dead load was estimated as normally
distributed with the nominal value equal to the dead load calculated on the
basis of an AASHTO complying bridge design. As recommended by [11],
a bias factor of 1.05 and coefficient of variation (COV) of 0.1 were used to
determine the mean and variance of the component dead load distribution.
For the wearing surface dead load a mean thickness of 3.5 in and COV of
0.25 were used [11]. Convolving the distribution for the dead load with that
of the live load will give is the distribution of the total load (Q = D + L) as
depicted in Fig. 3.14 for a particular case of a 5m and 10m span bridge.

“+oo

falq) = fo(x)frlq —x)dz (3.11)

The nominal resistance (R) was estimated as the resistance of one lane
of the bridge. A bias factor of 1.14 and COV of 0.13 were applied to these
values to get the means and variance of the resistance [11]. The resistance
was estimated as a log-normally distributed random variable. This model
does not consider degradation of the bridge or any repair actions that migth
be taken during the service life of the structure. In this calculation we are
operating under hte premise that the structure is in good condition and no
significant degradation has taken place. Once the distribution of the resis-
tance is computed we can proceed to find the distribution of the resistance
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minus the total loads Z = R — (). This was done by taking the correlation
between the resistance and loads as shown in Fig.9.

—+00

fz(2) = fo(x)fr(z + z)dx (3.12)

The area to the left of zero corresponds to the probability of failure, i.e.

p=/ f2(2)dz (3.13)

The probability of failure calculated for the particular case shown in
Fig.3.15 is 2.83 x 107, significantly lower than the AASHTO underlying
target probability induced by a 8 = 3.5 (3.1 x 107%). A a bias factor of 0.546
for the resistance is necessary to match the AASHTO target reliability index.

Similar calculations can be carried out for all other stations and span
lengths. To illustrate one particular case, consider the results shown in
Fig.3.16 for 10m span length across time. As can be seen the probability
of failure varies greatly across five orders of magnitude and it does not ex-
ceed the implicit AASHTO target threshold. So even though the behavior
is not stationary, it appears to be conservative to assume stationary at the
AASHTO target reliability level. These results do not include any degrada-
tion of strength the bridge may experience, therefore they constitute a lower
bound. However, for the type of structure analyzed (steel-concrete decks)
this condition is not unrealistic. This is not the case for reinfroced concrete
decks.

3.7 Conclusions and Future Work

This paper proposes the use of mixture models to represent the aleatoric
variability of internal forces in bridge decks induced by vehicular live loads.
The proposed mixture models were properly identified from vehicle axle data
measured in 12 weigh-in-motion (WIM) stations across the state of Vermont,
USA during a period of 12 consecutive years. The temporal and spatial vari-
ability of the parameters that define the mixture models were investigated.
It was found that significant variation exists within and among stations. The
identified mixture models were used to compute the time-varying reliability
of simply supported bridge decks of various span lengths.
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Future work on this subject will involve the formulation of a probabilistic
model for the random process that defines the variability of the mixture
model parameters. We will also look at the formulation of extreme value
distribution that represent the mixture models that have been found through
this study. Finally we will also investigate the applicability of using WIM
data for bridge structural health monitoring and asset management.
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3.9 Figures
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Figure 3.1: AASHTO HL-93 live load model per lane of traffic.
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Figure 3.2: Geographical location and designation of WIM stations in Ver-
mont.
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Figure 3.3: Total number of measured vehicles per year in all WIM stations
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Figure 3.5: Proportion of measured vehicles that generate moments and(or)

shears that exceed HL-93 induced moments and(or) shears as a function of
stations and averaged over all years.
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Figure 3.9: Mixture model weight parameters by station for 10 m length
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Figure 3.11: Mixture model standard deviation parameters by station for 10
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Chapter 4

Bayesian Model Averaging
Methods for Identifying Live
Load Stress Demand Extreme
Value Distributions in Bridges

This paper proposes the use of the Bayesian Model Averaging
to identify the optimal model of the extreme values of internal
forces in bridge decks from weigh-in-motion (WIM) data. The
identified models are used for reliability analysis of bridge decks.
The weigh-in-motion data was collected by the Vermont Agency
of Transportation during a period of 12 years. The paper presents
a comparision between the demands induced by the WIM data
and the AASHTO HL-93 live load model.

4.1 Introduction

The study of the occurrence of low probability /high consequence events is
a crucial aspect of developing a probabilistic design code. The AASHTO
LRFD Bridge Design Specifications were generated through such studies.
The goal of this code is to provide load and resistance factors consistent
with a reliability index (f) of 3.5 for a service life of 75 years [7]. In order
to do this, the occurrence of extreme loading events needs to be carefully
considered. Since 75 years of continuous data are not available, methods for
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extrapolating smaller periods of data to the 75 year design life are necessary.
This extrapolation often involves making assumptions about the behavior
of traffic that can influence the results [3, 4]. Despite this, it is generally
agreed upon that extreme value theory provides an adaquate method for
this extrapolation.

Many researchers have been able to use extreme value analysis to calcu-
lated lifetime characteristic load effects for bridge spans [2, 10]. Others [9]
modeled truck loads by using the most extreme trucks by weight. Although
this may not be completely consistent with extreme value theory, the anal-
ysis was able to show that using only extreme values by weight to evaluate
truck load models is possible. A strong correlation between gross vehicle
weight (GVW) and and a vehicle producing a maximum stress demand has
been observed [6]. However, axle layout has a more significant effect on
this outcome [4]. This is especially true in short and medium span bridges
(L < 50m) where the length of a truck might exceed the length of the span.
These types of bridges are important because they constitute the largest part
of the bridge population. This study focuses on bending moment demand in
short and medium span bridges.

The data for this study comes from 4 Weigh-In Motion (WIM) stations in
the state of Vermont taken over a twelve year period (2000-2011). These sta-
tions collect truck axle weights and spacing data, among other things. From
this data the maximum bending moment each truck produces in a simple
span can be calculated using structural analysis algorithms. The data were
also time stamped so the moments can be sorted by day of ocurrence. How-
ever, no data on speed or headway between vehicles was recorded, so multiple
presence can not be assessed. The maximum bending moment produced by a
vehicle in each day was attained because it was of interest to develop a prob-
ability model that describes the occurrence of the largest (extreme) bending
moments. This paper describes the various probability models that were
tested, as well as the methods used to test their adaquacy to represent the
data. The best fitting model is then used to perform reliability calculations
for sample bridge superstructures of varying lengths.

The estimated probability of failure is computed using resistance models
developed by others [7, 8]. The estimated probability of failure can be com-
pared with the target value from AASHTO. A reliability index () of 3.5 for
75 years corresponds to a probability of failure of 0.000233. Since there is
only 12 years of data available, and less for some stations, we must postulate
a probabilistic model for the yearly probability that is consistent with the
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desired probability for a 75 year service life. To calculate the desired yearly
probability a binomial model is postulated. If one assumes that the process
is stationary and the probability of failure is constant every year, one finds
that a Bernoulli process would result in a probability of at least one failure
given by

PZ<0l=1-(1-p)" (4.1)

where p is the yearly probability of failure. Setting P[Z < 0] = 0.000233
one can solve the previous equation and obtain the corresponding yearly
probability of p = 3.1 x 107%. This can then be used to find the 12 (or 10)
year failure probability by

P[Z <0l=1-(1-p)* (4.2)

resulting in a 12 year probability of pi» = 3.72x 107 and a 10 year probability
of pip = 3.1 x 107°. These probabilities will be compared to the estimates of
the probability of failure computed using WIM data.

4.2 The Data

The data was extracted by taking the maximum value from a certain each
day over the data set. This is different from what has been done in the
past [6, 9]. Commonly, the heaviest or largest 5% of the data is taken and
used for the data. This is not consistent with extreme value theory, and
the potential issues with this are not discussed in this paper, for more detail
see [5]. A histogram of the data is shown in fig. 4.1. The difference between
the distribution of the data in fig. 4.1 and figs. 4.2 and 4.3 is drastic. Fig. 4.2
shows the histogram of the largest 5% of moments with the AASHTO value
denoted by a red line, along with the percent of cases over AASHTO. Fig. 4.3
shows the bending moments that resulted from the heaviest 5 % of trucks.
It is clear that selecting data in either of these manners will lead to very
different conclusions about design values of bending moments than selecting
the daily extreme value. This can be seen in two key ways. The first is the
extreme difference in the fraction of cases that exceeded the AASHTO value,
this value is three times greater when using the daily maximum moments.
The second is the difference in the shape of the distributions. If one were to
fit a distribution to the maximum daily moments it would be a completely
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different fit from the largest 5% of the moments. In order to be consistent
with extreme value theory the maximum daily moments were used for this
study.

4.3 Extreme Value Theory

Extreme value theory states that one of three extreme value distributions,
Gumbel, Frechét, or Weibull, will describe the distribution of extreme (max-
imum or minimum) values of independent and identically distributed (iid)
variates. These distributions are all part of a family called the General-
ized Extreme Value (GEV) distribution. Formally, the GEV distribution
is a limiting distribution of the extrema of n iid random variables, X;, as
n — oo. Each X; was the maximum daily bending moment. Which of the
three distributions best describes the maxima/minima depends on the parent
distribution of the variates. In the case of the bending moments, the par-
ent distribution of the daily bending moment is unknown. Therefore other
methods to evauluate the appropriateness of each distribution were used and
are discussed later in this paper.

For the Gumbel, the parent distribution of the X, is in the form of
fo(x) = e79@) with g—g > (0. The normal, exponential, and gamma distri-
butions all have this form. An important aspect to consider is that in reality
random variables are hardly ever independent or identical. According to
Gumbel this condition does not need to completely satisfied in order to use
this distribution (Gumbel, 1958). This is particularly helpful in the case of
the bending moment data, since it is virtually impossible to prove that the
truck data is independent or identicaly distributed when examined from a
daily persepctive.

For the Frechét, the distribution of the X; is of the form f,(x) =
kAz~*+1) where z > 0 and A is a constant. Distributions of this family
include the Cauchy and Pareto. This distribution is one sided, an important
aspect because the bending moments considered are all the same sign. The
underlying, or parent, distributions for the type II usually have longer tails
than those of the type I. The distribution of the maximum bending moments
produced by every truck has a very long tail, further suggesting this is a
strong potential candidate distribution.

For the Weibull the parent distribution is f,(x) = Ak(w — x)F1, with
x < w and A a constant. Examples of these types of distributions are the
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uniform, triangular, and gamma. This distribution is typically used when
X, is limited in the tail of interest to a maximum value w. Like the type
I1, this is also a one sided distribution. Although the Weibull dsitribution
is typically used for failure, the flexibility of the distribution to fit a wide
variety of data makes it useful for this situation. The thought here is that
if Weibull analysis can provide good failure forecasts with little data, it can

also forecast the occurrence of large stress demands with similar accuracy
(Abernathy, 2006).

4.4 Daily Maximum Bending Moments and
Extreme Value Theory

The condition that populations from which the extremes are being sampled
are iid needs to be met in order to use extreme value theory. If this does
not hold then none of the asymptotic distributions will suffice to represent
the extremes. This is because the derivation of the asymptotic distributions
is based on the iid asumption. This assumption is such that probability of
the extremes being less than a certain value is a function of the cumulative
distribution of the population which the extremes came from:

P[Xl,Xg, ,Xn S [I)] = Fx(l')n (43)

If this does not hold true the stability postulate cannot be applied so the
asymptotic distribution of the extremes does not converge to a GEV distri-
bution [5]. Therefore examination of the distribution of the daily bending
moments is necessary.

From fig. 4.4 it is clear that the daily bending moments do not have the
same parent distribution. Although they all appear to be mixture distribu-
tions, the weights, means, and standard deviations of the moxture compo-
nents appear to be completely different from day to day. Clearly this violated
the iid assumption necessary to invoke extreme value theory. Therefore we
will consider other distributions, as well as the GEV distributions, as poten-
tial proabbility models for the daily maximum bending moments.
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4.5 Probability Models

The following sections describe the various probability distributions that were
tested for their fit to the data. Six probability distributions were tested to
fit the data in this study. Since the iid condition necessary to use extreme
value theory was not satisfied 3 additional distributions were tested. These
other diustributions, the Gaussian, log-normal, and Gamma distributions,
were selected based on the shape of the data histogram. These three were
thought to have the most potential to fit the data outside of the three GEV
distributions because of their shape. The following sections explain how the
parameters for each model were estimated.

4.5.1 Normal Models

Gaussian (normal) and log-normal distributions were considered as potential
models because of their shape. In fig. 1 the data appear to have a similar
shape to these types of distributions. The mean and variance of the data are
the parameters for the Gaussian and are easily obtained. For the log-normal
distribution the parameters were transformed using the following equations,
with m and v representing the mean and variance of the data respectively.
Plots of these distributions over the data are shown in fig. 2.

= log(\/%) (4.4)

v
g = A llOg(l + W) (45)
4.5.2 GEV Models

As previously stated, all three types of GEV distributions were tested. The
GEV Type I distribution is descibed by the following PDF"

fuly) = aeelmmem (4.6)

The parameters o and u are estimated from the data using the following
equations (v is Euler’s constant):

Bly) =y =u+ 2 (47)
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71-2

Varly] = o, = 62 (4.8)

The GEV Type II distribution is described by the following PDF:

B = E(2) e (19)

The parameter estimation for this distribution is less straightforward.
This is because the definition of the moments involves using the gamma
function. The estimation is done using the following equations:

Ely) = p, = ul'(1 — 1/k) (4.10)

Varly] = o) = w?*[0(1 — 2/k) = I*(1 — 1/k)] (4.11)

These can be combined to eliminate v and k£ can be estimated by the
guess and test method using the following equation:

wy _ D(1—2/k)
o2 T2(1-2/k) ! (4.12)

y
The Weibull distribution is described by the following PDF:

fuly) = 7 (g) B_le*@/ «” (4.13)

o\«

The shape parameter [ is estimated iteratively using the following equa-
tion:

(4.14)

- N
P Zi:l(yf - yécv)
Once the shape parameter has been obtained the definition of the first

moment, or expected value, can be used to estimate the scale parameter «.
Like the GEV type II, the expected value is defined as:

N N
1 YL Iy —ykInyy) %Zln%
i=1

Ely = ol'(1 + %) (4.15)

This leads to:
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U (4.16)

(14 1)

4.5.3 Gamma Model

A gamma distribution was also considered as a model for the data. This
is mainly because of the shape of this distribution. This distribution has a
PDF described by:

foly) = %yaleﬁy (4.17)

Where I'(«) represents the gamma function evaluated at «. The param-
eters a and 3 are estimated using the following equations:

Bly) = = (4.18)
Varly] = o} = % (4.19)

4.6 Bayesian Parameter Estimation

As previously discussed, methods for computing the maximum likelihood
estimates for the parameters of these distributions have been developed
and well documented. However, a more robust comparison of the models
was deirable. This means statistical distributions for the parameters were
neeeded. Bayesian methods can be used to compute the posterior distribu-
tion of the parameters and make maximum a posteriori (MAP) estimates of
them. The MAP is a mode of the posterior distribution, f(6|y), of the param-
eters, #, that has been computed based on the data, y. The joint posterior
distribution is computed using Bayes’ Theorem in the following manner:

_ __fWl9)g(9)
T = ot 20

In this expression f(y|€) is the likelihood function. The likelihood func-
tion for a data point is the probability density function evaluated at that
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point for all values being considered in the parameter space ©. The expres-
sion for the evidence, in the denominator, arises due to the total probability
theorem. This term is a normalizing constant that ensures the expression
integrates to one, and is therefore a valid probability density function. The
term ¢(#) is the prior distribution of the parameters. This prior distribution
reflects the belief in the values the parameters take before the Bayesian anal-
ysis has been performed. A logical choice for the prior is an uncorrelated
jointly gaussian distribution centered at the maximum likelihood estimates
(MLE’s). Jointly Gaussian random variables are distributed acccording to
the equation (K is the covariance matrix, m is the vector of means, and n is
the number of random variables):

1 _ (x=m)TK=1(x—m)

fx($) = WG (4.21)

The means used for each parameter were the MLE’s that were calculated
as discussed in the probability models section. A coeffecient of variation
(COV) of 0.2 was applied to get the standard deviations and variances for
each parameter. Before proceeding it was checked that the jointly Gaussian
priors integrated to 1. A sample PDF of a jointly gaussian prior is shown in
fig. 4.5.

The posterior computed from one data point is used as the prior for
the next. The entire data set () is then run through the algorithm to
compute the full posterior, f(6|y). The MAP can be computed at each step
so convergence of the parameter estimates can be tracked and verified. This
is of particular interest because computation time can be saved by minimizing
the amount of data that needs to be run through the algorithim. Fig. 4.6
shows the path the parameters take as the dats is evaluated for the various
distributions.

From the previous plots it can be seen that the parameters do converge,
although some faster than others. The fact that convergence can be observed
strengthens the conclusions regarding the parameter estimates for these dis-
tributions. The normal distribution was also run through this alrorithm, but
the MAP estimates of the parameters were simply the mean and variance of
the data. This was expected and used to verify the algorithm before other
distributions were tested.

An in depth analysis of the posterior is important becausse it gives insight
into the strength of the conclusions drawn from it. Another area of interest
is observing how the posterior changes as more data is analyzed. This shows
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how the belief goes from a spread out jointly gaussian prior into a much
sharper and more precise estimate of the parameters. Fig. 4.7 shows the
evolution of the posterior distribution of the GEV type I parameters as more
data us evaluated. This contour plot was generated every 350 data points
throughout the entire data set analysis.

These two figures are important for examing the behavior of the posterior,
because this gives us informatuion about the accuracy of the parameter es-
timates. The contours are significantly stretched along the « direction. This
means that this parameter converges slower, which can also be seen in the
previous figure that traces the MAP estimate of . This behavior remains
constant throughout the evolution of the posterior. Although the peak be-
comes much sharper throughout this process, this means that there is more
uncertainty on the true value of o than u. The higher uncertainty can also
be seen in the ranges of the credible intervals. A credible interval represents
the interval that the true value of the parameter has a certain probability of
falling within. The 95% credible interval for avis 7.0171 x 104 —7.4735x 10~*
and 5.6798 x 103 — 5.8345 x 103 for w.

Fig. 4.8 shows a similar behavior for the GEV Type II posterior. Here,
the difference in uncertainty is less pronounced, but the uncertainty on the
true value of u is still significantly less than than than of k. The credible
itnerval for v is 5.4876 x 10% — 5.6640 x 10% and 3.5441 — 3.7352 for k. It
only takes about 500 data points for u to converge within 5% of its MAP
value, while k£ appears to be trending thowards a MAP value, but does not
appear to have completely converged for the total amount of data available.
This was the only instance where a parameter appeared to not completely
converge. In fig. 4.6 all parameters for all other distributions appear to have
leveled off in the neighborhood of the MAP estimates.

The difference in uncertainty on the Weibull parameters is noticably less,
as shown in fig. 4.9. However, there is still more uncertainty on the true value
of 3 than on a. The 95 % credible interval for avis 6.96341 x 10® —7.1418 x 103
and 4.5790—4.8564 for 5. This was expected since fig. 4.6 shows o converging
faster than 3. The value of a gets to and stays within 5% of the MAP roughly
550 points before the value of 3 does.

The uncertainty on the gamma parameters was shared evenly between the
parameters o and 3. This can be seen by the almost one-to-one line formed
by the posterior in fig. 4.10. When looking at the convergence of these
parameters this shared uncertainty makes sense. Both parameters appear to
have coverged at an alomst identical rate, suggesting that the uncertainty
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on them is similar. The MAP estimates were only slightly different than the
MLE estimates. The MAP estimate for a was 20.69, while the MLE was
20.92. The 95% credible interval was 18.0931 — 20.1947. For 8 the MAP and
MLE were 7.24x10~* and 7.32210~% respectively. The 95 % credible interval
was 2.7820 x 1073 — 3.1109 x 1073,

The uncertainty on the log-normal and Gaussian parameters was virtually
nonexistent, the credible intervals were roughly +1% of the MLE’s. This
means that the posterior modes were very sharp and decayed quickly moving
away from the MLE’s.

4.7 Evaluation of Probability Models

Two tools were used to evaluate the adaquacy of the possible probability
models. These are the Chi-Square test and Bayesian model comparison, both
of which are discussed in this section. The chi-square test is a frequently used
frequentist method of testing the fit of a probability model to data. Bayesian
model comparison is a newer method of model evaluation that is ideal for
applications with large amounts of data, such as this.

4.7.1 Chi-Square test

The chi-square test is commonly used to determine the goodness of fit of
a distribution to a data set. The basic idea is to determine the chance of
observing a result as extreme as the data if it does come from the postulated
distribution. If it turns out that this chance, called the observed significance
level, is greater than a desirted and pre-dtermined significance level («, typi-
cally 0.01 or 0.05) then the data cannot be described by the proposed model.
The steps to carry out the test are as follows:

1. Divide the sample space Sx into K disjoint intervals (bins).

2. Calculate the probability b, than an outcome falls within the £** in-
terval based on the assumption that X has the postulated CDF. Set
my, = nb, where my, is the expected number of outcomes that fall in
the k™ interval if the experiment is repeated n times.

3. Calculate the chi-square statistic as the weighted difference between the
observed number of outcomes in each interval (V) and the expected
number (my) using the following equation:
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(N, — my)?
my

M)~

D? =
k=1

4. D?* is then compared to a threshold value (tupn.). If D* > t, the pro-
posed distribution is an acceptable model for the data. This threshold
value is determined from a chi-square PDF with K — 1 degrees of free-
dom and follows the following equation:

PX >t,) =«

This test was performed on each of the proposed probability models. Each
distribution is shown over the data in fig. 4.11. The Chi-Square statistic for
each distribution is also shown on these plots. The threshold value for a 0.05
significance level using 30 bins is 42.56. This means that the test showed
that none of the models was a particularly good fit for the data. Therefore
another means for evaluating the models was needed.

4.7.2 Bayesian Model Averaging

Since the chi-square test was incinclusive, Bayesian model averaging provided
an alternative and more conclusive way of comparing the models for the data.
This method for model comparisson uses Bayesian methods to compute the
belief that each model is a propper fit for the data. To start, first consider
what is occurring onthe individual model level. Bayes’ theorem is used to
calculate the probability of observing the data if each model were correct
(P[y|M;]). For a given model and set of parameters 8, the probability density
function of the parameters given the data is found using Bayes’ Theorem (eq.
17). The evidence is proportional to the predictive strength of the model.
This leads to:

PlylM,] = / £(416)£(6)d6 (4.22)

The models can be compared using the probability of observing the data
given each model. This requires a probability mass function that defines
the prior belief in each model (P[M;]). Bayes theorem is used again here
to develop an expression for the probability of the model being the best fit
given the data (P[M;ly]):
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Table 4.1: Results of Model Averaging

Distribution | Probability
Log-Normal 0.0
Gaussian 0.3495
GEV Type-I 0.0
Gamma 0.6505
GEV Type-II 0.0
Weibull 0.0
FMily) = DI (4.2
j_lP[yle]P[Mj]

Again, to compare multiple models, the jointly gaussian distribution cen-
tered at the parameter MEL’s were used for the parameter priors. The
likelihood for a data point was simply the probability model evaluated at
that point for all possible values of the parameter. Numerical integration
was used to compute the evidence.

The prior for each model was considered to be 1/6 since it was not clear
which model would be the best fit from the previous analysis performed. For
the model comparison, the evidence calculated for each model at a given
point was used as the likelihood for that model. The total evidence for at
each point was then computed as the sum of the individual likelihoods times
the corresponding model priors, as shown in the denominator of equation 19.
The posterior probability was therefore the likelihood of the model times the
prior for the model divided by the evidence. This process was repeated for
every point in the data set with the posterior being used as the new prior.
The belief in each model is then updated every time a new data point is
considered. Afrter running through the entie data set the model that best
fits will have the highest posterior value. Different values for the COV were
used after the initial analysis was performed. This was to examine the effect
that the COV had on the results. It was determined that a 100% increase in
the COV resulted in less than a 1% change in the results.

The results of the Bayesian model averaging are shown in table 1. The
Gaussian and Gamma distributions are overwhelmingly favored: the belief
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in all other models rounds to zero from over 10 decimal places. The data was
run sequentially starting with the maximum bending moment from the first
day of data. The belief in each probability model that was found using Bayes’
rule can be used as weights to form a mixture distribution. The evolution
of these weights, or mixing coeffecients, as the data was run are shown in
fig. 4.12. It can be seen that the belief that the Log-Normal, GEV Type-I,
GEV Type-II, and Weibull models diminishes quickly, while the belief in the
Gaussian and Gamma models fluctuates throughout the process.

These beliefs can be thought of as weights for a mixture distribution. In
this case the mixture is of Gaussian and Gamma distributions. The Log-
Normal and GEV Type-I distributions are excluded from this because of
their large chi square statistics and virtually zero belief as found using Bayes’
Theorem. Since it is not evident that the belief in the Gamma and Gaussian
coverged, different weights were tested ranging between 0.3-0.7 for each dis-
tribution. The mixture distribution is shown over the data in fig. 4.13 along
with the Chi-Square statisitc for this distribution. This mixture distribution
is a better fit visually and mathematically than to the other distributions
(shown in fig. B.3), as seen through the Chi-Square statistic. The critical
value for the 0.05 significance level is 42.6, so the distribution passes the test.

4.8 Results

The purpose of this project was to combine the credible intervals on the
parameters and model comparisson results to model the live load stress de-
mands. To do this, the distributions, with each combination of parameter
estimates, were mixed according to the model comparrison results. Using the
lower bound of a with corresponding value of 3 found using equation 15 gave
values of .3860 of cases over AASHTO, while using the upper bound of a and
corresponding value of g gave a value of .3809 of cases over AASHTO. Re-
peating the same procedure for the upper and lower values of 3 led to results
within 2% of the values for when the upper and lower bounds of o were used.
This showed that the uncertainty on the parameter values results in minimal
uncertainty on the probability of exceeding AASHTO. These distributions
can then be used to perform reliability calculations on bridge girders.

In order to complete a full live load reliability analysis for the superstruc-
ture, the dead load and girder resistances needed to be calculated. This was
done by using AASHTO to design bridges that were as close to the minimum
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Table 4.2: Results of Reliability Analysis

Estimated Probability of Failure

Station L=10m L=20m
R100 | 4.86 x 1078 1.89 x 1076
X249 | 7.45 x 1078 5.83 x 1078
G005 | 1.30 x 1077 1.39 x 10~°
R0O0O1 | 1.84 x 1077 2.11 x 107

Table 4.3: Results of Reliability Analysis Using GEV Distribution for the
Live Load

Estimated Probability of Failure
Station L=10m L=20m
R100 | 1.75 x 107° 6.95 x 107
X249 | 1.55 x 107° 3.66 x 107°
G005 | 1.42 x 107° 6.44 x 107°
RO01 | 4.69 x 107° 2.21 x 107°

requirements for strength as possible. From the superstructure design, the
dead load and resistances could be calculated. The dead load and resistance
were then assigned distributions based on available literature [7]. SAP2000
was used to model the bridge decks to determine the maximum amount of
live load that each girder would need to support.

Table 2 shows the estimated probability of failure for the 4 WIM stations
considered for both 10 and 20 meter length spans. The probability model
used for the live load was the mixture determined using Bayesian Model
Averaging. The values here are all at least one order of magnitude smaller
than the 10 and 12 year target values given in the introduction. Table 3
shows the estimated probability of failure using a GEV type I distribution
for the live load. In all cases there is a noticable difference in the estimated
probability of failure, with the estimate using a GEV distribution for the live
load much larger. In all but one case this difference is greater than one order
of magnitude.
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This large difference in estimated probability of failure can be attributed
to the shape of the tail of the GEV type I distribution. The GEV type
I with MAP parameters and the best fitting distribution are shown in fig.
4.14. The tail of the GEV distribution is noticably heavier than the tail of
the best fit. A convolution is used to add the dsitribution of the live load
effects to the distribution of the dead load effects. A cross corelation is then
used to subtract the distribution of the load effects from the distribution of
the resistance. These two processes compound the effect of the heavier tail,
as can be seen in the difference in estimated probability of failure.

4.9 Conclusion

The results of this study show that using extreme value theory to model live
load effects in bridge spans can lead to over estimating the probability of
failure. Other distributions, or mixtures of other distributions, have been
shown to better fit the extreme values of the live load effects. The reason for
the difference in probability of failure is that these other distributions have
lighter tails than the GEV dsitributions. Furthermore, it has been shown
that the parent distributions that the extreme load effects come from are not
identical. This violates one of the necessary conditions to use extreme value
theory.

Bayes” Theorem has been shown to be a powerful method for determining
the optimal probability model for these load effects have been developed. We
have shown that this method result in better fitting probability models than
simply using extreme value theory. Furthermore, the optimal parameters
for these probability models vary from the maximum likelihood estimates.
Bayesian methods also provide suitable methods for determining the param-
eters.

4.10 Figures
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Figure 4.1: Histogram of Daily Maximum Bending Moments, Station R100
10m Span

0.35 T T T :
PIM>=Mj pg7d=0.19048
03 1

0.25 1

f(m)

0.15 1

01 MaasHTo i

0.05 1

500 700 900 1100 1300
Moment (KN*m)

Figure 4.2: Histogram of 5% Largest Maximum Bending Moments, Station
R100 10m Span

70



0.2 T T T T T T T T T

PIM>=Mpgh70l=0.16313
0.16 1
0.12 1
£
= MaasHTO 1
0.08 4
0.04 ]
0 - .
400 600 800 1000 1200

Moment (KN*m)

Figure 4.3: Histogram of Maximum Bending Moments from 5% Heaviest
Vehicles, Station R100 10m Span
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Figure 4.4: Histograms of Maximum Bending Moments for Randomly Se-
lected Days from Station R001 in 2006
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Figure 4.5: Independent Jointly Gaussian PDF
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Figure 4.6: Behavior of Parameters as Data is Evaluated

73



350 Points x 10° 1050 Points

135 14 145 15 155 16 16 165 17 175 18 185 19 17 175 18 18 19 195 2
x 10" o X 10 o X 10

¢ 1400 Points X 10° 1750 Points X 10° 2100 Points

165 17 175 18 185 19 195 16 165 17 175 18 185 19 15 16 165 17 175 18 185
o x10° « x 10" o x10*

10" 2450 Points 2800 Points 10" 3160 Points

o x10* o x10*

Figure 4.7: Evolution of GEV Type I Posterior
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Figure 4.8: Evolution of GEV Type II Posterior
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Appendix A: Axle
by Station

Statistics

This section displays the axle statistics for vehicles categorized by WIM sta-
tion. The percentage of vehicles with a given number of axles is shown by
station in table A.1. The mean axle weights and spacing, as well as the co-
variance matrix are also presented for the 2-7 axle vehicle groups by station.
The covariance matrix contains the variance on the diagnals and is symetric.
The axle statistics matricies were formed by taking the covariance of the data
organized in vectors with the following format:

Table A.1: Fraction of Vehicles by Axle Count by Station

[Pl...Pn Sl---Sn—l}

Number of Axles

Station R100

Station X249

Station G005

Station R001

2 0.4469 0.5319 0.6705 0.2418
3 0.0736 0.0808 0.0894 .0568
4 0.0577 0.0752 0.0728 0782
5 0.2937 0.2901 0.1523 0.5773
6 0.1277 0.0216 0.0147 50.0452
7 0.0004 0.0005 0.0003 0.0007
o= 1.0000 1.0000 1.0000 1.0000

85




Table A.2: 2 Axle Vehicle Means for Station R100

Hp1 | Hp2 | sl
23.77|29.10143.12

Covariance Matrix for 2 Axle Vehicles

178.7255.9 87.63
255.8542.1174.5
87.6 174.5154.8

Table A.3: 3 Axle Vehicle Means for Station R100

ot | B2 | B3 | st | Hs2
51.75(52.22[45.79/52.88[19.61

Covariance Matrix for 3 Axle Vehicles

313.9 289.3 290.8 45.0 —78.6
289.3 770.8 602.2 68.4 —2.9
290.8 602.2 684.8 6.2 —53.1
45.0 684 6.2 1344 87.2
—78.6 —2.9 —53.1 —87.2 340.3

Table A.4: 4 Axle Vehicle Means for Station R100

Hp1 | Hp2 /L(p3> Mpa | Hs1 | Hs2 | Hs3
41.57\47.38|37.13|34.3341.04/57.63|23.22

Covariance Matrix for 4 Axle Vehicles

[ 376.3 256.7 449.5 395.9 35.1 —203.5 30.6 |
256.7 611.4 385.0 2769 30.1 179.7 —55.2
449.5 385.0 874.0 724.8 36.0 —462.7 70.1
3959 276.9 7248 7378 2.3 —365.4 23.5
35.1 30.1 36.0 23 685 —90.4 54.2
—203.5 179.7 —462.7 —365.4 —90.4 1322.9 —529.2
30.6 —55.2 70.1 23.5 542 —529.2 T18.9
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Table A.5: 5 Axle Vehicle Means for Station R100

Hp1 | Hp2 | Bp3 | Hpa | Hps | Hs1 | Hs2 | Hs3 | Hsd
45.95|44.52|43.29(37.35|36.69(47.12|13.40|88.48(14.03

Covariance Matrix for 5 Axle Vehicles

[162.4134.0131.3110.8108.0 20.1 —2.7 21.8 7.7 |
134.0455.1434.5413.7407.8 27.1 0.9 344 10.7
131.3434.5447.2412.8407.2 26.9 —3.9 37.3 11.2
110.8413.7412.8510.5490.9 17.5 —=3.2 204 13.2
108.0407.8407.2490.9500.8 16.6 —3.3 26.7 8.3
20.1 27.1 269 17.5 16.6 53.9 —0.8 25.1 10.0
-2.7 09 -39 -32 -33-08 159 —18.3 —0.6
21.8 344 373 204 26.7 25.1 —18.3 218.1 —14.2
| 7.7 107 11.2 13.2 83 10.0 —0.6 —14.2 32.0 |

Table A.6: 6 Axle Vehicle Means for Station R100

Hp1 | Hp2 | Hp3 | Hpda | Hps | Hp6 | Hs1 | Hs2 | Hs3 | Hsa | Hs5
48.06]68.26(68.13/51.91]59.12|58.87|43.88|13.18|74.68|14.36|13.23

~ Covariance Matrix for 6 Axle Vehicles
190.3 225.9 234.4 195.2 179.9 177.0 54 0.5 —=20.5 22.7 0.05

2259 704.9 667.2 477.7 509.5 501.0 3.0 04 20 3.6 —4.0
234.4 667.2 715.7 501.1 520.4 512.3 5.2 —-0.6 —21.6 23.1 —-1.9
195.2 477.7 501.1 565.1 477.3 461.7 1.0 —-0.7 =37.7 22.0 3.8
179.9 509.5 520.4 477.3 713.2 703.2 20.0 —1.9 —61.6 —5.2 5.6
177.0 501.0 512.3 461.7 703.2 763.0 23.7 —2.0 —66.2 —4.2 6.8
24 3.0 52 10 20.0 237 400 0.7 —-29.0 184 14
05 04 -06 -0.7 -19 =20 0.7 21 -1.7 0.7 —-0.02
—20.5 2.0 —21.6 -37.7—-61.6 -66.2-29.0 —1.7 134.9 —65.3 —4.2
22.7 3.6 23.1 220 -—-52 —4.2 184 0.7 —65.3 57.7 2.0
| 0.04 —40 —-19 38 56 68 14 —-0.02-42 20 41
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Table A.7: 7 Axle Vehicle Means for Station R100

Hp1 | Hp2 | Bp3 | Hpa | Hp5 | Hps | Hp7 | Hs1 | Hs2 | Hs3 | Hsa | Hs5 | Hs6
53.11]53.71|81.10(74.16|61.56/60.80(59.77|45.26(13.73|29.04(73.34{19.74/15.10
) Covariance Matrix for 7 Axle Vehicles )
204.1 133.1 91.0 69.2 328 09 49 101 04 10.28 -—8.8 6.7 =25
133.1 510.3 199.1 394 93.7 685 60.9 235 9.1 404 -61.5 162 -0.5
91.0 199.1 969.4 950.8 627.4 585.1 574.9 —33.1 —10.9 —69.0 209.6 —15.7 —2.3
69.2 39.4 950.8 1216.0 753.8 679.7 658.6 —52.9 —8.1 —133.8 323.3 —-34.2 1.1
32.8 93.7 627.4 753.8 772.2 677.3 658.8 —35.3 0.5 —81.1 2278 —-144 23
0.9 685 585.1 679.7 677.3 829.8 805.4 —38.0 6.4 —67.7 1194 -39.5 —5.2
4.9 60.9 574.9 658.6 658.8 805.4 836.5 —35.7 5.3 —60.6 116.5 —38.1 —4.9
10.1 23.5 —33.1 —52.9 —35.3 -38.0—-35.7 1079 2.9 70.1 —-2055 79.9 3.2
04 91 -109 -81 05 64 5.3 29 472 —-43 -383 —-1.6 —2.2
10.3 40.4 —69.0 -133.8 —81.1 —67.7 —60.6 70.1 —4.3 981.0 —893.2 —24 —-2.6

| —25 -05 =23 1.1

2.3

88

3.2

—-1.6
—2.2

—40.4

—8.8 —61.5 209.6 323.3 227.8 119.4 116.5 —205.5 —38.3 —893.2 1551.2 —159.5 —40.4
6.7 16.2 —15.7 —34.2 —14.4-39.5—-38.1 79.9
—-5.2 —49

—24 —159.5 179.7 0.9
—2.6

0.9

81.4 |



Table A.8: 2 Axle Vehicle Means for Station X249

Hp1 | Hp2 s
15.71]18.28]42.94

Table A.9: 3 Axle Vehicle Means for Station X249

Hpl | Hp2 | Hp3 | Hs1 | Hs2
47.03|45.79(40.33|48.84(25.97

Covariance Matrix for 2 Axle Vehicles

151.3201.145.7
201.1362.175.3
45.7 75.3 68.5

Covariance Matrix for 3 Axle Vehicles

214.5 187.2193.2 552 —113.2
187.2 542.0 439.9 36.9 —4.5
193.2 439.9 490.9 275 —-99.0
55.2 36.97 27.5 139.1 —145.9
—113.2 —4.5 -99.0 —145.9 524.1

Covariance Matrix for 4 Axle Vehicles

[228.1 176.3 256.8 236.3 24.8 —70.5 38.6 ]|
176.3 407.0 229.6 178.1 14.2 185.8 —20.1
256.8 229.6 513.0 440.4 24.9 —288.0 46.5
236.3 178.1 440.4 457.6 5.7 —237.7 25.2
24.8 14.2 249 57 55.8 —749 47.8
—70.5 185.8 —288.0 —237.7 —74.9 1063.7 —266.8
| 38.6 —20.1 465 252 47.8 —266.8 335.7 |

Table A.10: 4 Axle Vehicle Means for Station X249

M1 2 M3 Ma | Hs1 | Us2 | Hs3
36.56(42.05(29.12|28.46(39.1169.13|16.17
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Table A.11: 5 Axle Vehicle Means for Station X249

Hpl | Hp2

Hp3

Hpa

Hps

Hs1 Hs2 Hs3

Hsa

44.14/44.06

42.47\37.13

37.16

46.77/16.01|88.22(17.06

18.9

Covariance Matrix for 5 Axle Vehicles

1.0 7.

4 2.

6 194 50.3 —184.7 342.5 —169.5
| -85 21.0 —-7.8 —0.2 14.7 —13.0 132.0 —169.5 171.1 |

979 81.5 84.0 766 77.7 189
81.5 451.7 434.5 409.9 4155 1.0 193 =329 21.0
84.0 434.5 4584 417.8 4270 74 —-178 95 7.8
76.6 409.9 417.8 484.0 4772 2.8 —-151 46 —0.2
T77.7T 4155 427.0 477.2 503.9 4.0 -273 194 —-14.7
8 4.0 656 —26.5 50.3 —13.0
—15.7 19.3 —-17.8 -15.1 -27.3 -26.5 154.8 —18
304 =329 95 4.

—15.7 304 —8.5 ]

4.7 132.0

Table A.12: 6 Axle Vehicle Means for Station X249

Hp1

Hp2 | Hp3

Fpd

Hps

Hp6

Ms1 | Us2 | Hs3

Hs4 Hs5

46.49

56.73|56.30/42.65

41.79

41.49/48.43(15.0|66.76

23.87|120.74

—-23.1 -1

Covariance Matrix for 6 Axle Vehicles

188.6 2159 245.1
2159 7181 697.7
245.1 697.7 794.3
150.0 382.1 452.2
114.8 4129 446.9
132.9 442.0 478.7
63.9 91.5 104.6

2 —68.0

150.0
382.1
452.2
484.4
363.8
359.6
30.6

114.8 132.9 63.9 23.1 —124.1 123.7 —72.4

412.9 4420 915 —-1.2
446.9 478.7 104.6 —68.0
363.8 359.6 0.6 —44.7
450.5 433.1 20.9 —44.2
433.1 483.3 36.9 —43.9
209 36.9 899 -16.3
—44.7 —44.2 -43.9 —16.3 153.0

90

—124.1 -122.2 -143.8 —=105.7 —0.5 —19.2 —=57.9 —91.1
123.7 1204 181.1 1249 153 30.6 71.8 —14.0
| —72.4 —178.6 —186.4 —24.4 —46.8 —84.5—-104.2—-15.8 —37.7 32.2 368.1 |

—122.2 1204 —178.6
—143.8 181.1 —186.4
—105.7 1249 —-244
—0.5 15.33 —46.8
—19.2 30.6 —84.5
—57.9 T71.8 —104.2
—91.1 —-14.0 —15.8
737.7 —455.0 =37.7
—455.0 407.0 32.2




Table A.13: 7 Axle Vehicle Means for Station X249

Hp1 | Hp2 | Hp3 | Hpa | Hps | Hp6 | Up7 | Hs1 | Hs2 | Hs3 | Hsa | Hs5 | [Hs6
49.75(59.22|73.67/59.98]47.33|46.71|46.28|49.58(17.45|32.65|67.58|15.80(14.06

) Covariance Matrix for 7 Axle Vehicles )
285.0 196.5 193.9 102.0 36.6 16.2 27.8 60.6 —11.3 —17.0 6.6 0.7 -1.7

196.5 781.0 413.6 74.5 73.2 61.6 77.0 581 =55 —22.0 2.9 —4.8 —-0.9
193.9 413.6 881.3 684.1 461.6 449.3 4279 13.9 —-314 —-478 1187 52 9.9
102.0 74.5 684.1 926.8 592.1 570.2 530.7 —37.8 —-13.0 —-30.3 126.7 1.8 9.5
36.6 73.2 461.6 592.1 613.1 531.9 485.1 —49.2 —4.3 0.8 66.5 3.9 6.8
16.2 61.6 449.3 570.2 531.9 547.8 501.3 =504 —5.5 —3.8 67.8 72 7.2
27.8 77.0 4279 530.7 485.1 501.3 516.4 —48.4 —13.2 —0.5 70.7 7.7 64
60.6 58.1 13.9 —37.8-49.2-50.4-48.4198.1 —28.0 —24.7 —-894 172 -0.6
—11.3 =55 =31.4-13.0 —4.3 —5.5 —13.2-28.0 3483 —-95.3 —-213.9 —19.0 —13.8
—-17.0-22.0-478-30.3 0.8 —-3.8 —0.5 —24.7 -95.3 1306.8 —1014.5 51.5 —6.2
6.6 2.9 118.7 126.7 66.5 67.8 70.7 —89.4-213.9-1014.5 1482.6 —110.9 2.9
0.7 —-48 2 18 39 72 77 172 -190 51.5 —110.9 178.8 13.8
| 1.7 =09 99 95 68 72 64 -06 —-138 —6.2 2.9 13.8  54.9 |
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Table A.14: 2 Axle Vehicle Means for Station G005

Hp1 | Hp2 s
17.99|22.69/42.61

Table A.15: 3 Axle Vehicle Means for Station G005

Hpl | Hp2 | Hp3 | Hs1 | Hs2
51.55|51.59|46.74|47.89|20.81

Covariance Matrix for 2 Axle Vehicles

167.7250.7 57.5
250.7515.1118.8
27.5 118.8 98.5

Covariance Matrix for 3 Axle Vehicles

279.4 291.5 313.1 22.1 —111.9
291.5 932.2833.0 =9.0 1.1

313.1 833.0 883.2 —20.0 —77.1
22.1 —9.0 -20.0 91.5 —79.1
—111.9 1.1 —77.1-79.1 401.0

Covariance Matrix for 4 Axle Vehicles

392.6 2194 542.6 505.6 4.3 —265.2 40.9
219.4 592.7 300.4 265.2 —-2.1 225.0 2.7
542.6 300.4 1084.1 1009.3 —12.2 —606.2 50.6
505.6 265.2 1009.3 1022.8 —27.9 —=554.7 47.4
43 =21 —-122 =279 321 -21.6 168
—265.2225.0 —606.2 —554.7 —21.6 1190.0 —162.5
| 409 2.7 506 474 16.8 —162.5 186.9 |

Table A.16: 4 Axle Vehicle Means for Station G005

M1 2 M3 Ma | Hs1 | Us2 | Hs3
40.47\48.21|38.66(37.19|37.67|63.72{14.09

92



Table A.17: 5 Axle Vehicle Means for Station G005

Hpl | Hp2

Hp3 | Hpd

Hps | Hsi

Hs2 Hs3

Hsa

45.86(49.21

46.72

41.30

41.13|43.91(1

6.18|84.13

16.88

Table A.18: 6 Axle Vehicle Means for Station G005

Hp1 | Hp2 | Hp3 | Hpa | Hp5 | Hp6 | Hs1 | Hs2 | Hs3 | Hsa | Hs5
49.98|66.04|65.13]51.10|51.98(50.93|47.60|13.06(67.29|17.23|15.11
Covariance Matrix for 5 Axle Vehicles

[104.2 88.1 90.1 79.0%77.9 20.1 —21.0 21.0 —7.1

88.1 598.7 567.4 563.2 556.2 55 25.0 -—55.7 31.0
90.1 5674 574.8 562.4 560.0 12.1 —-19.7 28 5.7
79.0 563.2 562.4 6926 670.8 9.5 —25.7 88 —13.7
77.9 556.2 560.0 670.8 689.5 10.7 —38.6 31.9 -—-32.2
20.1 5.5 12.1 9.5 10.7 55.7 —25.4 474 —13.3
—21.0 25.0 —19.7 —25.7 —-38.6—-25.4 169.4 —209.7 144.7
21.0 —=55.7 2.8 8.8 31.9 474 —209.7 390.1 —196.4

_—7.1 31.0 =5.7 —13.7 —=32.2-13.3 144.7 —196.4 185.2 |

Covariance Matrix for 6 Axle Vehicles

[160.5 53.7 59.8 67.3 43.0 21.6 7.0 —0.4 —79.3 33.7 3.7 |
53.7 812.7 787.1 600.4 629.7 632.2 23.0 —=3.5 39.5 =52 —39.3
59.8 787.1 812.4 621.8 636.3 634.7 24.0 —5.4 10.2 245 —41.9
67.4 600.4 621.8 802.8 645.2 581.8 —10.7 —4.0 —80.7 28.8 13.0
43.0 629.7 636.3 645.2 799.9 740.2 —-16.6 -3.2 —75.8 —1.8 11.5
21.6 632.2 634.7 581.8 740.2 783.6 —3.8 —3.2 —48.8 —-7.6 —5.2
7.0 23.0 24.0 —-10.7-16.6 —3.8 0.9 0.3 9.9 15.9 -20.1
—-04 =35 —54 —40 -32 -32 03 44 -32 0.1 0.1
—79.3 39.5 10.2 —80.7-75.8—-48.8 9.9 —-3.2 389.2 —119.5-36.7
33.7 =52 245 288 —-18 —-7.6 159 0.1 —-119.5 109.2 15.6
3.7 —-39.3-419 13.0 11.5 —5.2 —20.1 0.1 —-36.7 15.6 66.2
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Table A.19: 7 Axle Vehicle Means for Station G005

,Upl

ﬂp?

Hp?)

Hpa | Hps

ﬂpﬁ

Hp7

Hs1 Hs2 Hs3

Hsa

Hss

Hs6

47.36

95.93

82.94

70.21/63.43

63.32

62.01

43.66(13.27|34.55

63.71

18.46

14.79

[152.1

9.9
—4.4
—4.4

9.1
-3.2
—-0.4
20.0
—4.1

-2.9

29.3

120.7
109.2
143.7
16.5
-3.3
9.7
94.7
23.5
-1.1

29.3 597.4 1634
76.2 163.4 751.9
74.1 —127.0 643.9 1020.3 510.7
428.
441.
428.

—169.9 —255.9 —184.8 —180.3 —163.2 180.3 6.8
199.7 306.3 142.6 149.4 119.7 —205.8-49.3 —1007.3 1583.8 —246.6 —40.6

Covariance Matrix for 7 Axle Vehicles
76.2 74.1

9.9

—127.0 120.7
643.9 428.8

8 510.7 654.4
1 5314 12.0
7 488.8 596.2
—65.5 —99.3 —64.4
—20.2 —17.3 —18.8

—4.4
109.2
441.1
531.4
612.0
660.8
630.6
—66.4
—-19.1

—47.8 —69.8 —46.3 49.2
80 78

0.8

14

94

—-44 91 =32

143.7 16,5 —3.3
428.7 —65.5 —20.2 —169.9
488.8 —99.3 —17.3 —255.9
596.2 —64.4 —18.8 —184.8
630.6 —66.4 —19.1 —180.3
652.3 —62.2 —17.4 —163.2

—62.2 86.7 2

1

—-174 21 38.1

—45.0 803 -1.9
.8

23 262 0

—-0.4
9.7

180.3
6.8
967.4

165.7
27.0

20.0

—94.7
199.7
306.3
142.6
149.4
119.7
—205.8
—49.3
—1007.3

—246.6 327.6 13.3
—40.6

—4.1
23.5
—47.8
—69.8
—46.3
—49.2
—45.0
80.3
-1.9
165.7

13.3

—29]
~1.1
~8.0
7.8
0.8
1.4
2.3
26.2
—0.8
27.0

84.2 |



Table A.20: 2 Axle Vehicle Means for Station R001

Hp1 | Hp2 s
16.70(22.54|44.16

Table A.21: 3 Axle Vehicle Means for Station R001

Hp1 | Hp2 | Hp3 | Hs1 | Hs2
47.33/50.94|41.12/50.95/21.96

Covariance Matrix for 2 Axle Vehicles

186.4258.3 67.7
258.3536.8127.9
67.7 127.9100.8

Covariance Matrix for 3 Axle Vehicles

313.1 269.7 215.5 100.6 —83.2
269.7 842.3 538.2 87.5 41.7
215.5 538.2 569.7 16.6 —13.6
100.6 87.5 16.6 205.0 —135.1
—83.2 41.7 —13.6 —135.1 500.5

Covariance Matrix for 4 Axle Vehicles

300.9 249.2 295.7 264.3 —23.5 —8.3 354 |
249.2 676.3 365.5 307.5 —21.9 321.0 —84.5
295.7 365.5 525.1 443.8 —22.8 —74.7 45.3
264.3 307.5 443. 473.8 —46.8 —32.5 31.8
—23.5-21.9-22.8-46.8 87.0 —81.8 52.6
—8.3 321.0 —74.7—-32.5 —81.8 1012.8 —422.3
| 354 —84.5 45.3 31.8 52.6 —422.3 465.7 |

Table A.22: 4 Axle Vehicle Means for Station R001

M1 2 M3 Ma | Hs1 | Us2 | Hs3
38.03(51.10(32.63|31.13|36.77|70.82(18.23
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Table A.23: 5 Axle Vehicle Means for Station R001

Hp1

Hp2

Hp3

Hpa

Hps

Hs1

Hs2

Hs3

Hsa

44.65

49.32

47.77

43.43

43.04(45.32

12.71|88.60

13.41

Table A.24: Six Axle Vehicle Means for Station R001

Hp1

Hp2

Hp3

Hpa

Hps

Hp6

Hs1

Hs2

Hs3

Hsa

Hss

46.75

68.36

67.79/48.44

49.0

48.18

47.13

12.99

69.65/15.71|1

2.70

57.3. 27.5
| 0.2 —-10.8 —-10.7 8.7

[99.1

Covariance Matrix for 5 Axle Vehicles

91.3

88.2 85.7 84.2 164

91.3 550.8 530.4 546.2 546.3 23.8

88.2 530.4539.6 543.1544.1 25.1
85.7 546.2543.1676.8653.0 27.4
84.2 546.3544.1653.0673.8 27.0
25.1 274 27.0 63.6
54 =23 =23 -3.0-1.5
6.4 19.4 30.7 29.0 299 24.2 —24.8 158.4 —14.9
| 2.2 10.6 88 18.6 15.0 10.9 8.2 —14.9 37.1 |

16.4
—0.1

23.8

-0.1

0.4

—2.3
—2.3
—3.0
—-1.5
25.8 —24.8 8.2

6.4
194
30.7
29.0
29.9
24.2

Covariance Matrix for 6 Axle Vehicles
—2.6 —81.4 57.3

[161.9 190.5 206.5 120.3
190.5 1015.0 969.9 661.7
206.5 969.9 1031.6 717.1
120.2 661.7 717.1 825.1
118.9 706.7 728.2 649.2
127.1 701.4 725.1 595.1
34.9 385
—2.6 —3.9 —18.9 —11.7-12.8—13.0 0.2
—81.4 —57.2 —104.7 —74.1 —60.0 —80.0 —15.9 —21.0
76.9 749 422 52.1 21.8

41.8

118.9 127.1
706.7 701.4
728.2 725.1
649.2 595.1
721.8 657.7
657.7 709.9

-5.5 =03 8.6

5.0

1.1

96

34.9
38.5

-3.9

—57.2

2.2 ]
10.6
8.8
18.6
15.0
10.9

27.5

41.8 —18.9 —-104.7 76.9
—-5.5 —11.7 —74.1
—-0.3 —12.8 —60.0

8.6
63.7

0.2

—13.0 —80.0
0.2 -159
37.0 —21.0

0.3

—4.5

74.9
42.2
52.1
21.8

14

357.5 —177.2 —4.5
1.4 —-177.2 150.9 9.0

9.0

—0.2 |

~10.8

~10.7
8.7
5.0
1.1
0.2
0.3

23.6



Table A.25: Seven Axle Vehicle Means for Station R001

Hp1

Hp2

Hp3

Hp4

Hps

Hp6

Hp7

Hs1

Hs2

Hs3

Hsa Hss Hs6

20.29

63.72

79.09

59.94/57.23

99.29

53.21

43.58

14.72

24.75

61.08/16.83|13.31

Covariance Matrix for 7 Axle Vehicles

97

[241.5 1922 194.1 129.4 29.7 509 91.4 —3.3 45 —16.7 —25.2 —4.0 1.4 |
192.2 909.5 420.6 —120.3 220.0 158.6 28.6 17.1 —-13.7 —43.4 —13.9 —-23.1 —-25.1
194.1 420.6 831.0 526.6 421.5 452.1 414.8 —-16.2 —18.9 —40.8 26.5 —-3.2 1.8
129.4 —120.3 526.6 1114.4 307.5 398.0 638.8 —19.1 0.1 134 959 1.9 226
29.7 220.0 421.5 307.5 815.9 534.2 301.0 —26.2 —23.3 —57.6 1124 —15.5 —11.7
50.9 158.6 452.1 398.0 534.2 7124 406.2 —30.4 —18.3 —61.4 60.6 10.8 —1.3
91.4 28.6 414.8 638.8 301.0 406.2 775.7 —8.6 —4.6 —-16.6 65.0 —1.6 120
=33 171 -16.2 -19.1 —26.2-30.4 —8.6 123.1 6.5 195 -27.1 -10.8 —6.1
45 —-13.7 —-189 0.1 —-23.3-183 —4.6 —6.5 195.8 —28.2 —122.6 —0.2 14
—16.7 —43.5 —40.8 134 —-57.6-61.4-16.6 19.5 —28.2 865.7 —586.1 —26.1 —0.9
—25.2 —13.9 26.5 959 1124 60.6 65.0 —27.1 —-122.6 —586.1 1223.6 —192.2 —36.2
-4.0 -23.1 -32 19 -155 10. -1.6 —10.8 —0.2 —-26.1 —192.2 2248 3.2
14 -25.1 18 226 -11.7 -1.3 120 -6.1 14 —-09 -36.3 3.2 98.2




Appendix B: Cross Sections of
Superstructures

Designed using
AASHTO LRFD

‘1'5‘ 2.5, 9.17 | 9.17° | 9.17° | 2.5° ‘1°5‘
I \ \ \ \ -
Slab Reinforcement: #6 @ 3” primary #4 @ 6” 3
transverse
I L I 0. 75’
W 24x84
(typ.)

Figure B.1: 10m Bridge Superstructure Cross Section
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1.5’ 1.5’

25 9.17° 917 | 9.17° | 2.5’ |
1 \ \ \
Slab Reinforcement: #6 @ 3” primary, #4 @ 6” 30
transverse
I I I I -
W 40x211 W 40x167
(typ.) (typ.)
Figure B.2: 20m Bridge Superstructure Cross Section
Ly 2 r 7
1 { { 1
2.05° | ) 2.05°
Slab Reinforcement: #6 @ 3” primary, #4 @ 6” 3’
transverse
I I I I -
0.86”
|
0.4”—>|<— }.25’
2.3’
Built-up Section
(typ.)

Figure B.3: 30m Bridge Superstructure Cross Section
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Appendix C: Bridge Finite El-
ement Models

This appendix shows screen captures of the finite element models of sample
bridges. The models were used to verify design calculations, as well as to
determine the true proportion of the live load that each girder must support.
This was a crucial step for the reliability calculations because the distribution
factors calculated using the AASHTO Specifications use the lever rule, which
gives a conservative estimate of this proportion. The lever rule is conservative
because it does not account for the redundancy due to multiple girders and
overall structure stiffness. The models were formulated using the software
SAP2000. The parameters that were input include concrete compressive
strength, steel yeild strength, reinforcing steel area, as well as the level of
composite action between slab and girders.
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-21.6

Figure C.1: Finite Element Model Showing Stress Contours in Slab
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Figure C.2: Finite Element Model Showing Bendimg Moment Diagram
Beams
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Appendix D: Fit of Mixture
Models to Data

This appendix shows the fitted mixture models plotted over a relative fre-
quency histogram of the bending moments produced by all vehicldes in a
given year at the four stations analyzed. The x axis values are bending mo-
ments and the y axis represents a probability density or relative frequency.

Figure D.1: Station R100 years 2002 (left) and 2003 (right)
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Figure D.2: Station R100 years 2004 (left) and 2005 (right)

Figure D.3: Station R100 years 2006 (left) and 2007 (right)

Figure D.4: Station R100 years 2008 (left) and 2009 (right)
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Figure D.5: Station R100 years 2010 (left) and 2011 (right)

Figure D.6: Station X249 years 2000 (left) and 2001 (right)

Figure D.7: Station X249 years 2002 (left) and 2003 (right)
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Figure D.8: Station X249 years 2004 (left) and 2006 (right)

Figure D.9: Station X249 years 2007 (left) and 2008 (right)

Figure D.10: Station X249 years 2009 (left) and 2010 (right)
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Figure D.11: Station X249 year 2011

Figure D.12: Station G005 years 2000 (left) and 2001 (right)

Figure D.13: Station G005 years 2002 (left) and 2003 (right)
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Figure D.14: Station G005 years 2004 (left) and 2005 (right)

Figure D.15: Station G005 years 2006 (left) and 2007 (right)

Figure D.16: Station G005 years 2008 (left) and 2009 (right)
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Figure D.17: Station G005 years 2010 (left) and 2011 (right)

Figure D.18: Station R001 years 2000 (left) and 2001 (right)

Figure D.19: Station R001 years 2002 (left) and 2003 (right)
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Figure D.20: Station R001 years 2004 (left) and 2005 (right)

Figure D.21: Station R001 years 2006 (left) and 2007 (right)

Figure D.22: Station R001 years 2008 (left) and 2009 (right)
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Figure D.23: Station R001 years 2010 (left) and 2011 (right)
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