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Abstract

Data streams are emerging everywhere such as Web logs, Web page click streams, sensor data
streams, and credit card transaction flows. Different from traditional data sets, data streams are
sequentially generated and arrive one by one rather than being available for random access before
learning begins, and they are potentially huge or even infinite that it is impractical to store the whole
data.

To study learning from data streams, we target online learning, which generates a best–so far
model on the fly by sequentially feeding in the newly arrived data, updates the model as needed, and
then applies the learned model for accurate real-time prediction or classification in real-world ap-
plications. Several challenges arise from this scenario: first, data is not available for random access
or even multiple access; second, data imbalance is a common situation; third, the performance of
the model should be reasonable even when the amount of data is limited; fourth, the model should
be updated easily but not frequently; and finally, the model should always be ready for prediction
and classification. To meet these challenges, we investigate streaming feature selection by taking
advantage of mutual information and group structures among candidate features. Streaming feature
selection reduces the number of features by removing noisy, irrelevant, or redundant features, and
selecting relevant features on the fly, and brings about palpable effects for applications: speeding
up the learning process, improving learning accuracy, enhancing generalization capability, and im-
proving model interpretation. Compared with traditional feature selection, which can only handle
pre-given data sets without considering the potential group structures among candidate features,
streaming feature selection is able to handle streaming data and select meaningful and valuable
feature sets with or without group structures on the fly.

In this research, we propose 1) a novel streaming feature selection algorithm (GFSSF, Group
Feature Selection with Streaming Features) by exploring mutual information and group structures
among candidate features for both group and individual levels of feature selection from stream-
ing data, 2) a lazy online prediction model with data fusion, feature selection and weighting tech-
nologies for real-time traffic prediction from heterogeneous sensor data streams, 3) a lazy online
learning model (LB, Live Bayes) with dynamic resampling technology to learn from imbalanced
embedded mobile sensor data streams for real-time activity recognition and user recognition, and 4)
a lazy update online learning model (CMLR, Cost-sensitive Multinomial Logistic Regression) with
streaming feature selection for accurate real-time classification from imbalanced and small sensor
data streams. Finally, by integrating traffic flow theory, advanced sensors, data gathering, data fu-
sion, feature selection and weighting, online learning and visualization technologies to estimate and
visualize the current and future traffic, a real-time transportation prediction system named VTraffic
is built for the Vermont Agency of Transportation.
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Chapter 1

Introduction

1.1 Background

Traffic congestion is a situation of transportation systems that occurs as the
saturation of road network capacity, due to increased traffic volume or interrup-
tions, and is characterized by slower speeds, increased vehicular queuing, and
longer trip times. Congestion is one external cost of transport and the reduction
of its impact is often one of the primary objectives for transport policy makers.
Traffic congestion, continuously one of the major problems in various trans-
portation systems, has many negative effects on travelers, businesses, agencies
and cities. One significant aspect is the value of the wasted fuel and additional
time. The top 15 urban areas include about 58 percent of the delay estimated
for 2010, and the top 20 areas account for over 65 percent of the annual delay.
Based on wasted time and fuel, traffic congestion costs about $115 billion in the
439 urban areas in 2010 [1].

The negative impacts of traffic congestion may be alleviated by providing
timely and reliable prediction information to system dispatchers and motorists
[2, 3, 4, 5, 6]. However, traffic situations vary significantly depending on the
weather situation, the season of the year, the day of the week, and even the
time of day. In addition, the capacity, which is often mistakenly considered
to be constant, may vary because of weather, work zones, or traffic incidents
and so on [7, 8, 9]. Furthermore, those conditions are not independent of each
other, and most of them are interrelated explicitly or implicitly. Therefore,
there are a great number of differing and changing circumstances which cause or
aggravate congestion. It is a great challenge to estimate under which conditions
a “congestion” may occur suddenly.

The use of advanced technologies such as wireless communication and sen-
sors on transportation networks has made a significant increase in traffic data
available in recent years. A series of infrastructure-based in-road detectors, road-
side sensors, bridge sensors, videos and floating vehicles have facilitated better
transportation data collection for both operations and planning. Many trans-
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portation agencies have developed techniques for collecting these data realtime
and storing them historically, while few have been making a full use of them.
The Federal Highway Administration (FHWA) has shown significant interest in
this topic as described in the recent study of Cross-Cutting Studies and State
of the Practice Reviews: Archived and Use of Intelligent Transportation Sys-
tems (ITS) Generated Data (http://www.its.dot.gov/). With this data, traffic
prediction has the ability to improve traffic conditions and to reduce travel de-
lays by facilitating better utilization of available capacity. By integrating traffic
flow theory, advanced sensors, data gathering, data fusion, data mining and
visualization technologies, the current and future traffic can be estimated and
visualized.

In this project, acoustic sensors were installed to monitor and to collect
real-time data. Reliable predictions can be obtained from historical data and
be verified and refined by the current and near future real-time data. This
topic is emerging primarily at the federal level as a core strategy for better
transportation system monitoring and management. Some unique characteris-
tics of northern communities such as limited rural communication infrastructure
compounded by congested primary arterial roadways, inclement weather condi-
tions, and heavy seasonal tourism traffic demand also motivate us to examine
in depth the impact of real-time data on transportation network management.
Over the last few years, University of Vermont (UVM) researchers have begun
to study the opportunities and challenges of ITS deployment in northern and
rural communities.

1.2 Project Description

Three factors come together to motivate this research to harvest data for reli-
able real-time transportation network management: the availability of a great
amount of data from a variety of sources; readily accessible advanced technolo-
gies and the desire to develop a knowledge-based system to improve transporta-
tion planning and operation, serving such purposes as congestion management,
emergency evacuation, operation, planning and policy decision making; and the
urgency of providing an integrated reliable rural and urban primary arterials
traffic monitoring and management system in northern communities.

Objectives: The primary goal is to design and develop state-of-the-art data
mining and fusion techniques and modeling tools that provide reliable and real-
time transportation network management including traffic congestion predic-
tion, incident identification and bridge structural health monitoring. This suite
will be achieved by designing and using advanced data gathering, processing and
mining tools to estimate the current and future transportation system perfor-
mance. The resulting modeling tools will be enabled by emerging technologies
suitable for implementation by transportation agencies in northern communities.
A secondary goal is to quantify the effect of travel behavior changes and con-
sequent planning and modeling challenges in the use of advanced technologies.
Research findings will be disseminated to multidisciplinary academic outlets,
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transportation agencies, and emergency management and planning organiza-
tions. Specifically, the project will probe how data mining paradigms can be
utilized to address three critical research problems that are at the heart of
transportation operations at the present time:

1. An on-line architecture integrating roadway, bridge, traffic, and crash
information for data usage;

2. Novel data fusion algorithms accounting for heterogeneous data sources
and for real-time congestion and bridge structural performance monitoring, and
incident detection on freeways and major rural and urban arterials with a certain
degree of reliability; and

3. A Geographic Information Systems (GIS)-based visualization tool enabled
with the proposed data fusion models and also as a function of landscape and
meteorological variables.

1.3 Report Organization

Chapter 2 presents the methodology used in this project. Chapter 3 provides a
description of the implementation. Chapter 4 shows the experimental results of
the study. Finally, discussions and conclusions are given in Chapter 5.
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Chapter 2

Methodology

To achieve the goals and objectives of this project, a work plan with various
tasks has been developed, permitting a thorough investigation of harvesting real-
time data for reliable congestion management, structural health monitoring and
incident detection. In this chapter, we present solution methods for our project.

2.1 Data Fusion

2.1.1 Architecture for Data Sources

This project develops an on-line architecture integrating roadway, bridge, traffic,
sensor data, and crash information for data usage, archiving and sharing over
a freeway and arterial network. A web server is applied to store, analyze and
visualize traffic and structural bridge data of a congestion map. A Google fusion
table and the Apache Tomcat real-time Web tools are used in the server.

Typically, interstate highways are the busiest and most important main
roads. There are two interstate highways I89 and I91 across the state of Ver-
mont. Therefore, we choose I89 and I91 to deploy our system. Dozens of acoustic
sensors have already been installed on the two highways.

This project adopts the Vaisala nu-metrics portable traffic analyzer NC-200
shown in Fig. 2.1 to collect real-time traffic data. The sensor can be installed
quickly and easily, which is designed to detect accurate vehicle count, speed,
and classification by utilizing vehicle magnetic imaging (VMI) technology. After
data has been collected from a sensor, the data can be easily exported to the
highway data management (HDM) software shown in Fig. 2.2, where it can be
presented in the form of reports, charts and graphs [10].

As we all know, the impact of weather on traffic is very serious. Weather
includes visibility, precipitation, wind, and temperature, which affects driver
capabilities, vehicle performance, pavement friction, and roadway infrastructure
to impact the state of the transportation system [11].

The Clarus system was established in 2004 to provide weather information
to transportation managers and users to alleviate the effects of adverse weather
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Figure 2.1: NC-200 Figure 2.2: HDM Software

[12, 13]. This system belongs to Federal Highway Administration Research &
Innovative Technology Administration, and it is provided as a public service.
This project gets historical and real-time weather data from the Clarus system.

2.1.2 Innovative Data Fusion

Two areas have been covered in this task to summarize and synthesize the
findings of existing literature: data fusion techniques; and the achievement of
reliable results and feasibility for realtime implementation.

A data fusion strategy has been developed to improve the quality of avail-
able raw data gathered from different sensors and probe vehicles to ensure the
information can be used for traffic state estimation. They are

a) data quality control, including error detection and data cleansing;
b) missing information acquisition; and
c) conflict resolution when overlapping data from different sources are in-

consistent.

2.2 Predicting Transportation System State

2.2.1 Reliable Congestion Estimation

There are several major challenges in predicting a transportation system state
using probe vehicle data. One is to determine its accuracy level with which
sampled data for a given probe vehicle ratio can match the aggregated travel
time experienced by the overall vehicle population on the roadway. Second,
the probe data points are inherently complex as they are collected by diverse
sources with different temporal and spatial attributes and are not related to a
well defined common denominator. Third, the collected data points may not all
represent the same field conditions. To respond to these challenges, the research
team identifies the evolution of the individual travel time measurements between
and within the aggregation periods based on data variability and use statistical
inference methods, including Bayesian methods, to fuse highly variable and
noisy data points to achieve a reliable and robust estimation of travel time.
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Using the novel data fusion techniques, this project develops a methodology
to obtain individual-link traffic state estimates for an integrated freeway and
urban network. Estimation accuracy with the percentage of probe vehicles is
also explored.

2.2.2 Incident Management

The provision of decision support tools to address non-recurring congestion in
large complex networks is necessary for transportation system management.
Developing new techniques to capitalize on the data obtained from advanced
technologies is the major goal of this task. For instance, when a lane-blocking
incident occurs, traffic backs up and a bottleneck forms where the incident has
taken place. The data collected by the probe vehicles and in-road sensors are
essentially time-space trajectory data sampled at a certain frequency. Analysis
of these sampled trajectories produces an estimate of bottleneck locations and
a decision on whether these locations are in unexpected places that might be
attributed to an incident. However, it is not always easy to determine, especially
when the incident does not significantly impact trajectories, e.g., when traffic
demand is low. Furthermore, there is the possibility that false alarms may result
from unexpected slowdowns not necessarily due to an incident. Therefore, the
method developed for incident detection should carefully balance detection and
false alarm rates by maximizing the use of all available information. The impacts
of probe vehicle density along a corridor on detection accuracy is evaluated using
mathematical optimization techniques.

2.2.3 Bridge Structural Health Monitoring

Bridges constitute critical nodes of transportation systems, and, therefore, en-
suring their continuous operation is of the utmost importance for safe and effi-
cient transportation. A novel approach to bridge condition assessment is Struc-
tural Health Monitoring (SHM), defined as the measurement of an operating
and loading environment through use of a sensor system to track and evaluate
incidents, anomalies, damage and deterioration. The ultimate goal of applying
SHM is to detect, localize, and quantify the accumulated structural damage in
real time.

Traditionally, damage assessment techniques are primarily based on the ob-
servation of the changes of model parameters, such as modal frequencies and
vibration shapes. However, several investigations have pointed out that this
technique can be efficient only if very precise measurements are available or a
large level of damage exists. It is obvious that a more robust damage assessment
algorithm must be developed. The objective of this task is to develop a Fuzzy
Expert System of SHM with integrative information system design to perform
damage detection, localization, and severity estimation for bridge structures
subject to traffic loading. The proposed procedure is used for safety assessment
of structures when the data for safety analysis is insufficient or when a decision
for safety management is urgently required. In case exact measurement such
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as when a nondestructive test cannot be utilized to assess a damaged point for
any reason, an expert’s estimation with visual inspection based on the data
of a nondestructive test at a near point can be used. The system reliability-
based safety assessment may then be performed approximately but rationally
by converting the qualitative expert’s estimation to quantitative terms in the
proposed procedure. The fuzzy expert system will also be used as a classification
tool to show that the proposed method can identify different structural condi-
tions as compared to other methods based on non-reduced and ordinary feature
extraction. The system includes statistical pattern recognition algorithms that
analyze statistical distributions of the measured or derived features to enhance
the damage identification process.

2.3 Feature Selection and Weighting

Our real-time traffic predicting algorithm (Algorithm 1) is based on the k-NN
algorithm, and k-NN in its most basic form operates under the implicit assump-
tion that all features are of equal importance. In fact, different features possess
different information with different importance. Especially, when irrelevant,
noisy and redundant features influence the neighborhood search to the same
degree as highly relevant features, the accuracy is likely to deteriorate. There-
fore, removing irrelevant, noisy and redundant features and assigning important
features higher weight values in the preprocessing phrase before learning begins
are very important for achieving a good prediction accuracy.

2.3.1 Feature Selection

Feature selection, a process of selecting an optimal subset from the original
candidate feature set according to certain criteria, removes noisy, irrelevant, or
redundant features, reduces the number of features, and brings about palpable
effects for applications: speeding up the learning process, improving learning
accuracy, enhancing generalization capability, and improving model interpreta-
tion [14]. It is noticeable that among different evaluation criteria, information
metric seems to be more comprehensively studied. The main reason is that
information entropy is a good measurement to quantify the uncertainty of a
feature [15].

There are many feature selection algorithms using information metric such
as MIFS [16] and mRMR [17]. These algorithms can efficiently remove irrele-
vant, noisy and redundant features and select relevant features (such as traffic
speed, number of vehicles and visibility in this project) for producing accuracy
prediction.

2.3.2 Feature Weighting

Feature weighting is a technique for approximating the optimal degree of the
influence of individual features. When successfully applied, relevant features are
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attributed high weight values, whereas irrelevant, noisy and redundant features
are given weight values close to zero.

RELIEF [18, 19] is a famous feature weighting algorithm, it arranges fea-
tures in a descending order and assigns weight values for features according to
their priorities. Therefore, RELIEF can be used for feature weighting and also
discarding features with weight values below a certain threshold.

MIFS and mRMR arrange features in a descending order according to their
priorities too, but they do not assign weight values for selected features. In this
project, the weight values of their selected features are simply set to 1/rank,
where rank is the order of a selected feature. Obviously, this strategy can
guarantee the more important features get higher weight values.

2.4 Visualization

The visualization tool is developed in a GIS web-enabled format with the an-
alytical models developed. GIS is also applied to manage spatial information
on the location of bridges on a regional map and the position of sensors on a
bridge model. It provides users with an interactive interface between the user
and the system so that users cannot only access the raw data of various sensors
from the central database at any time but also visualize or further process the
data. For instance, the map allows users to select specific roadway segments to
compute their travel time and speed estimates. The real-world data provided by
transportation agencies (including the weather data) and additional data gen-
erated from well-calibrated, microscopic traffic simulation models can produce
sufficient data sets for these implementations.

2.5 Other Technologies

• K-nearest neighbors classifier

The k-nearest neighbor algorithm (k-NN) is a method for classifying ob-
jects based on the closest training examples in the feature space. In our
data model, we use the k-NN approach to deal with noisy data and inte-
grate heterogeneous traffic data sources.

• Oracle data management and the Apache Tomcat real-time Web tool are
used in our server.

• A Google fusion table in the cloud is employed for data storage.

• A Google map is adopted for visualization.
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Chapter 3

System Design and
Implementation

The main framework of our system VTraffic is given in Fig. 3.1. In this project,
acoustic sensors were installed on highways, I89 and I91, within the territory of
Vermont to monitor and to collect real-time data.

Firstly, we design a data fusion strategy to improve the quality of raw data
gathered from different sensors and other available historical data to ensure the
information can be used for traffic estimation. Secondly, we use data fusion on
the data which comes from heterogeneous data sources to get useful knowledge
and store in a Google fusion table in the cloud [20]. Thirdly, a prediction model
is built from the knowledge set for real-time traffic predicting, and the real-
time data is employed for verifying previous predictions and refining the model.
Finally, a web portal is implemented using Google maps for visualization [21, 22].
All components in Fig. 3.1 are controlled through the set of system parameters.

3.1 Data Collection

The traffic and weather historical data recorded by transportation managers and
sensors are obtained at the very beginning. Considering the data transmission
efficiency and computational performance, NC-200 sensors continuously gather
real-time traffic data, but only report data once every five minutes. In general,
the weather does not occur great changes in a relatively short period of time.
Therefore, the real-time weather data are fetched once every five minutes from
the Clarus system.

3.2 Data Fusion of Heterogeneous Sources

Many transportation agencies have developed techniques for collecting the real-
time data and storing it historically, while few have been making full use of it.
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Figure 3.1: VTraffic: The Main Framework

In order to make full use of all available data, we have designed a strategy to
integrate data from heterogeneous sources.

3.2.1 Data Preprocessing

The raw attributes of traffic data collected by NC-200 sensors and those of
weather data obtained from the Clarus system are listed in Table 3.1. We also
have some historical traffic data filled by transportation managers, however, this
data only provides general traffic information about some particular sites, we
can only use them for verification during preprocessing.

Table 3.1: Data Formats
Data Source Data Format

NC-200 Location Date Time VehicleCount Volume Speed Report time Occup ...
Clarus Location Date&Time Temperature Humidity WindSpeed WindDirect Visibility ...

Integration Location Date Time Confidence Parents TrafficAttrs WeatherAttrs Children ...

The historical data is preprocessed with the following steps:
1) Remove useless attributes;
2) Guess missing values;
3) Correct wrong data which can be corrected;
4) Remove wrong data which cannot be corrected;
5) Remove redundant data.
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3.2.2 Data Fusion

The traffic data and the weather data are different in source, sensor type, lo-
cation, time, and data format. Therefore, we have to fuse them first, and the
format of the integration data is shown in Table 3.1.

Data fusion consists of the following steps:

1. As mentioned in Section 3.1, the data reported by NC-200 sensors
contain the real-time traffic of the last five minutes. We first split
the data into twenty pieces, each interval of fifteen seconds, and the
data format remains the same.

2. From Table 3.1 we can easily observe that weather data has the
attribute “Date & Time” while there are two attributes “Date” and
“Time” in traffic data. We split “Date & Time” into “Date” and
“Time”.

3. By adding the weather data to each traffic data piece, we fuse those
two data sets into one. Since the location and time between the
weather data and the traffic data may not be exactly the same, we
just choose the weather data with the closest time and location.

4. The integration data generated in Step 3, also called the knowledge
set, is stored in a Google fusion table in the cloud [20].

3.3 Traffic Modeling

As we discussed in Section 3.1, our sensors collect real-time traffic data once
every five minutes. Therefore, we do not know the real-time traffic between any
two consecutive data collection until the next data has arrived. However, five
minutes on the highway is a relatively long time, we have to model the real-time
traffic. The continuous real-time traffic can be modeled according to the real-
time data collected by the sensors and all other available knowledge generated
by the data fusion process in Section 3.2. The model will be used for real-time
traffic prediction and travel-time guidance.

3.3.1 Modeling

In our VTraffic system, there are two interstate highways, I89 and I91, and
obviously, each of them has two directions south and north, which means there
are four highways: I89N, I89S, I91N, and I91S. Therefore, we have to model the
real-time traffic of the four highways. To simplify, we assume that the real-time
traffics of the four highways are independent of each other.

The prediction model for a highway is a 4-tuple (Σ, Υ, Ξ, ∆), where

11



Figure 3.2: The Topology of a Highway

1. Σ is a finite set of sensors, each of which represents the real-time
traffic of its location. As Fig. 3.2 shows, the sensors are sequentially
arranged from 1 to n.

2. Υ is a finite set of roads, each road owning a state represents the real-
time traffic of that road. The ith road is the sub-section between the
ith sensor and the (i+ 1)th sensor, therefore |Υ| = |Σ| − 1.

3. Ξ is a set of knowledge items from the historical data and the real-
time data (mentioned in Section 3.2). Ξ keeps constantly updating
because the real-time data turns into the historical data over time.

4. ∆ : Σ× Ξ×Υ→ (Σ′ × Ξ′ ×Υ′) is the predictor.

Furthermore, we use four separate models to model the four highways respec-
tively, then the four models together form the prediction model of our VTraffic
system.

3.3.2 Real-Time Prediction

We collect the real-time traffic data once every five minutes, and predict the real-
time traffic once every “fifteen seconds”, where the prediction interval “fifteen
seconds” is a system parameter.

Predicting The main idea of our prediction model is: the real-time traffic
at a particular site associates with time, weather, location, the previous traffic
situation, the traffic situation some distance before and so on. Based on this
idea, we use the k-nearest neighbor (k-NN) algorithm [23] to get k knowledge
items from Ξ. The prediction algorithm is shown in Algorithm 1, and uses k-
NN twice: Step 2 uses k-NN to find a set of k-nearest knowledge items N0 at
the prediction site S based on the current weather and time, while Step 4 finds
N1 at other sites based on the current weather, time, and traffic condition at
the site S. Steps 3 and 5 predict the traffic based on N0 and N1 respectively.
Here, the confidence of the predictions <0 and <1 comes from the confidence
of items in N0 and N1 respectively. Step 6 integrates the predictions <0 and
<1 to obtain the final prediction <. Obviously, the items in N0 and N1 are
the parents of <; on the other hand, < is a new child of the items in N0 and
N1. Therefore, Step 7 adds their relationships in their “parents” and “children”
attributes. Finally, Step 8 adds the prediction < into the knowledge set Ξ, and
this algorithm returns the prediction < at Step 10.
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Algorithm 1 Predicting
Require:

Set K =user-specified; Θ =user-specified; S = Site;
< = NULL; Ξ′ = {~|~.location = S&~ ⊆ Ξ}; Ξ′ = Ξ− Ξ′;

Ensure:
1: if S ∈ Σ&Θ ≤ 1&Θ ≥ 0 then
2: N0 ← knn(K,Ξ′,Weather(S), T ime(S));
3: <0 ← predicting(N0);
4: N1 ← knn(K,Ξ′,Weather(S), T ime(S), T raffic(S));
5: <1 ← predicting(N1);
6: < ← Sum(<0 ×Θ,<1 × (1−Θ))
7: AddRelationship(N0

⋃
N1,<)

8: Ξ← Ξ ∪ {<};
9: end if

10: return <;

The traffic of the ith road is the arithmetic mean of sensor conditions at its
both ends shown in Formula (3.1).

Υ[i] = avg(Σ[i],Σ[i+ 1]) (3.1)

Verification Our prediction model updates the traffic of the entire trans-
portation system immediately when sensors collect and report the real-time traf-
fic data. Meanwhile, the real-time data also verifies the previous predictions:
if a prediction passed the verification, the knowledge items which generated
the prediction will get a bonus; otherwise they will get a penalty. The bonus
or penalty will affect the confidence of the corresponding knowledge items. A
knowledge item will be removed from the knowledge set if its confidence is less
than a certain threshold. The prediction model will stabilize after a certain time
based on the assigned bonuses and penalties.

3.3.3 Predicting with Selected and Weighted Features

The original predicting algorithm is given in Algorithm 1, in order to reuse it for
predicting with selected and weighted features, we simply integrate the weight
information into the data instances in the preprocessing phase.

Predicting with Selected and Weighted Features consists of the follow-
ing steps:

1. Discretization It is often difficult to compute the integral in the
continuous space based on a limited number of instances, when mu-
tual information is being estimated. Thus, those continuous features
were discretized into nominal ones using the CAIM discretization
algorithm [24].
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2. Normalization As the k-NN algorithm assumes that all features are
of equal importance, each feature is normalized independently.

3. Feature Selection and Weighting MIFS, mRMR, or RELIEF is
employed for feature selection and weighting.

4. Integrating Weights The values of the selected features are up-
dated by multiplying with their corresponding weight values.

5. Prediction The predicting algorithm given in Algorithm 1 is em-
ployed for prediction.

It is easy to notice that with Steps 3-4, it performs predicting with selected
and weighted features, without them it degrades as the original predicting al-
gorithm in Section 3.3.2.

3.3.4 Travel-Time Estimation

When a travel-time request occurs, our model uses the real-time traffic state for
estimation shown in Formula (3.2).

travel time(A,B) =
∑

r∈Roads

r.distance

r.state.speed
, (3.2)

where r is a road between site A and site B, r.distance is the length of the road
r, and r.state.speed is the predicted traffic speed of the road r.

Firstly, the model identifies the starting and ending sites from the request.
Secondly, the two sites are mapped into several adjacent roads on a highway.
Thirdly, the travel-time of each road is calculated according to the real-time
traffic of that road. Finally, the overall travel-time is the sum of all travel-time
on every road.

3.4 Visualization

This project displays the traffic of the entire transportation system as geograph-
ical objects on a map, then changes the color, size, and displays meaningful
markers and curves based on the real-time traffic prediction, to allow users to
quickly grasp the traffic of the entire system or some particular location.

As we mentioned in our prediction model in Section 3.3.1, a highway is di-
vided into n − 1 adjacent roads by n sensors. We can get the real-time traffic
from the model, and then display on a map in a user-friendly form of visualiza-
tion. There are two important algorithms for the visualization of our system:
Initialization (shown in Algorithm 2) and Updating (Algorithm 3).

The Initialization algorithm is invoked when a user launches or refreshes
the visualization web portal. Its main function is to create and initialize the
essential objects, and then display them on the map. For each sensor in Σ, the
algorithm creates a marker to represent the sensor. In Step 2, according to the
prediction of the model, it chooses a color C to represent the traffic state at that
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Algorithm 2 Initialization
Require:

Set A = Σ; ξ = CongestionThreshold; Markers = {∅}; Roads = {∅};
Ensure:
1: for (I ← 0; I < A.size(); I ← I + 1) do
2: C ←Model.predict(A[I]) ≥ ξ ? COLORFree : COLORCongested;
3: V isible←Model.predict(A[I]) ≥ ξ ? False : True;
4: Markers←Markers ∪ newMarker(A[I], C, V isible);
5: if I > 0 then
6: S ←Model.predict(A[I]) +Model.predict(A[I − 1]);
7: C ← S/2 ≥ ξ ? COLORFree : COLORCongested

8: Roads← Roads ∪ newRoad(A[I − 1], A[I], C);
9: end if

10: end for

Algorithm 3 Updating
Require:

Set ξ = CongestionThreshold; M = Markers; R = Roads;
Ensure:
1: for (I ← 0; I < M.size(); I ← I + 1) do
2: C ←Model.predict(M [I]) ≥ ξ ? COLORFree : COLORCongested;
3: if C 6= M [I].getColor() then
4: M [I].setColor(C);
5: M [I].setV isible(!M [I].getV isible());
6: end if
7: if I > 0 then
8: S ←Model.predict(M [I]) +Model.predict(M [I − 1]);
9: C ← S/2 ≥ ξ ? COLORFree : COLORCongested;

10: R[I − 1].setColor(C);
11: end if
12: end for

site. In Steps 3 and 4, a new Marker is created, in order to make important
information more eye-catching, V isible = True only when the traffic at that
site is congested. From Steps 5 to 9, a Road is created and assigned a color C
according to the traffic prediction of the model to represent its traffic state.

The Updating algorithm is automatically invoked to update the traffic at
regular intervals. Therefore, it is very important and effective to optimize this
algorithm. This algorithm is very similar to Algorithm 2, and there are only
two differences: a) this algorithm does not create any new object, and it just
reuses the Marks and Roads created by Algorithm 2. b) this algorithm only
updates those markers and roads which need to be updated. With a), it does
not consume any additional memory, with b) it tries to do as little as possible.
By a) and b), the Updating algorithm has been well optimized.
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We have also designed a Zoom Change function and a Click Event monitor.
The Zoom Change deals with some details when the zoom size of the map
is changing, and the Click Event monitors the click events and shows more
detailed information about a particular site where the marker is clicked.
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Chapter 4

Experimental Results

4.1 Experiments

4.1.1 Experimental Setting

To validate performance fairly, the traffic data collected by the RITIS system
[25] (https://www.ritis.org/) and the weather data collected by the Clarus sys-
tem [13] (https://www.clarus-system.com/) were adopted in our experiments.
We selected 10 different sites and downloaded 30000 traffic data instances and
the corresponding weather data instances from the RITIS system and the Clarus
system, respectively. Then, using the data fusion strategy mentioned in Section
3.2, we built the original dataset. The original dataset was used to build a
smaller training dataset with 10000 instances and a testing dataset with 20000
instances. All instances were chosen randomly without replacement such that
the two sets are disjoint.

Feast [26] is a feature selection toolbox for C and Matlab, which provides
implementations of common mutual information based feature selection algo-
rithms, and an implementation of RELIEF. Spider [27] is an object orientated
environment for machine learning in Matlab, which provides implementations of
NaiveBayes [28], k-NN [23], C45 [29] and RandomForest [30]. In this report, the
implementations in the Feast toolbox were employed for feature selection and
weighting, and the comparison prediction algorithms were the implementations
in the Spider environment.

The experiments were conducted on a computer with Windows 7, 3.33 GHz
dual-core CPU, and 2GB memory.

4.1.2 Experimental Results

As Algorithm 1 shows, there are two user-specified parameters k and θ in our
predicting algorithm, where k is the number of neighbors for the k-NN algo-
rithm, and θ is the weight of the result of the first k-NN algorithm, and obvi-
ously, the weight of the result of the second one is 1− θ.
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Figure 4.1: Accuracies of Our Predicting Algorithm Using Different k Values

To illustrate the performances of our predicting algorithm with different k
values, we performed a set of experiments by varying the value of the parameter
k from 1 to 10 for traffic prediction in the next 5 minutes. The experiments
were based on the raw dataset and the datasets selected and weighted by MIFS,
mRMR and RELIEF. The accuracies of the predicting algorithm using different
k values are shown in Fig. 4.1. Due to space limitations, only a part of the
experimental results are presented.

Several observations can be drawn from the results of Fig. 4.1. First, the
accuracies of almost all k values on all datasets increase with the number of
training instances. Second, the performances on the raw datasets are the worst,
while the performances on the datasets selected and weighted by RELIEF are
the best. This indicates feature selection and weighting can improve the per-
formances of the predicting algorithm efficiently, in other words, the predicting
with selected and weighted features algorithm in Section 3.3.3 is better than the
original predicting algorithm in Section 3.3.2. Third, k = 3 or k = 5 archives
better performance than others.

To illustrate the performances of our predicting algorithm with different
θ values, we also performed a set of experiments by varying the value of the
parameter θ from 0.1 to 1 in increments of 0.1 for traffic prediction in the next
5 minutes. Similar to the exploring of the parameter k, the raw dataset and the
datasets selected and weighted by MIFS, mRMR and RELIEF were employed.
The accuracies of the predicting algorithm using different θ values are shown
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Figure 4.2: Accuracies of Our Predicting Algorithm Using Different θ Values

in Fig. 4.2. For demonstration purposes, Fig. 4.2 only outlines a part of the
experimental results. From Fig. 4.2, it is easy to notice that θ = 0.6 achieves
the best performance. One can also observe that the accuracies increase with
the number of training instances and the accuracies on the datasets selected and
weighted by RELIEF are the best, which is consistent with the results of Fig.
4.1.

In our experiments, four popular classifiers, namely, NaiveBayes [28], k-NN
[23], C4.5 [29], and RandomForest [30], were chosen to compare with our k-NN
based predicting algorithm to predict the traffic in the next 5 minutes, and the
results are shown in Fig. 4.3. It is easy to notice that the predicting algorithm,
with higher accuracies on the four datasets, clearly surpasses other comparison
algorithms. One can also easily observe that the accuracies increase with the
number of training instances and the accuracies on the datasets selected and
weighted by RELIEF are the best, which is consistent with the results of Figs.
4.1 and 4.2.

The experimental results about prediction accuracies (%) of different pre-
diction time-lengths (from 10 to 30 minutes in increments of 5 minutes) using 5
prediction algorithms are presented in Table 4.1. In the experiments, the entire
training set was employed for training. Predicting (raw) is the original pre-
dicting algorithm (Algorithm 1) using the raw dataset without feature selection
and weighting. For the other prediction algorithms, the RELIEF algorithm is
employed for feature selection and weighting as one can notice its performances
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Figure 4.3: Accuracies of Different Prediction Algorithms

Table 4.1: A Comparison of Accuracies (%) of Different Prediction Time-
Lengths

Predicting Predicting(raw) k-NN NaiveBayes C4.5 RandomForest

P
re

di
ct

io
n

T
im

e-
L

en
gt

h 10 90.32 70.16 87.91 84.19 81.52 84.02
15 86.52 66.12 82.31 76.44 77.19 75.20
20 78.13 60.72 78.13 63.18 62.11 61.09
25 71.29 52.54 64.59 51.12 55.12 54.98
30 62.18 46.14 55.14 40.59 47.02 42.19

WTL 4/1/0 0/0/5 0/1/4 0/0/5 0/0/5 0/0/5

are the best from Figs. 4.1, 4.2 and 4.3. In addition, the bold value in entries
means that it is the best one among these 6 prediction algorithms. The “WTL”
(win/tie/loss) represents that the number of runs where the corresponding al-
gorithm has higher (or equal to, lower) accuracy than others.

The results in Table 4.1 show that the accuracies of the predicting algorithm
are better than others in most cases. One can easily observe that the accuracies
of all algorithms decrease with the growth of the prediction time-length, and
the predictions of the comparison algorithms are useless when the prediction
time-length is approaching to 30 minutes as their accuracies are too low.
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4.2 Visualization

Figure 4.4: Visualization Demonstration

Fig. 4.4 is a run-time screenshot. The real-time traffic prediction is displayed
over the highway as color-coded lines. The colors indicate the traffic on the road
(green: free, red: congested), and the small pink circles (which come from Step
3 of Algorithm 2) indicate the traffic at a particular sensor site is congested.

By simply clicking on a pink circle, users can get an info window to show
more information in detail. Users can zoom in to have a more specific vision
with more details or zoom out to get a broader perspective with less details.
The list on the right shows the travel information from A to B (also marked in
the left map), which is estimated by our model in Section 3.3.4.

4.2.1 Incident Management

The running time screenshots of the incident management are given in Figure
4.5 and Figure 4.6. An incident is shown on the map by a red circle, and
by a simple clicking on that red circle, an info window pops up to show more
information in details.
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Figure 4.5: Incident Management I

Figure 4.6: Incident Management II

4.2.2 Weather Information

The running time screenshots of the Weather Information are given in Figure
4.7 and Figure 4.8. A weather reporting location is shown on the map by a red
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circle, and by a simple clicking on that red circle, an info window pops up to
show more information in details.

Figure 4.7: Weather Information I

Figure 4.8: Weather Information II
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4.2.3 Bridge Structural Health Monitoring

The running time screenshots of the Bridge Information are given in Figure 4.9
and Figure 4.10. A bridge is shown on the map by a marker, and by a simple
clicking on that marker, an info window pops up to show more information in
details.

Figure 4.9: Bridge Structural Health Monitoring I

Figure 4.10: Bridge Structural Health Monitoring II
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4.2.4 Traffic Prediction

Figure 4.11: Traffic Prediction I

Figure 4.12: Traffic Prediction II

The running time screenshots of the traffic prediction are given in Figure 4.11
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and Figure 4.12. The real-time traffic prediction is displayed over the highway
as color-coded lines. The colors indicate the traffic on the road (green: free, red:
congested), and the small pink circles indicate the traffic at a particular sensor
site is congested.

By simply clicking on a pink circle, users can get an info window to show
more information in detail. Users can zoom in to have a more specific vision
with more details or zoom out to get a broader perspective with less details.

4.2.5 Route Planning

The running time screenshot of the route planning is given in Figure 4.13. The
list on the left shows the travel information from A to B (also marked in the
right map).

Figure 4.13: Route Planning
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Chapter 5

Discussion & Conclusion

5.1 Discussion

In this section, we further analyze our algorithms. Firstly, as we described in
Algorithm 1 in Section 3.3.2, the predicting algorithm is based on the famous
k-NN algorithm. Therefore, the same as the k-NN algorithm, Algorithm 1’s
performance associates with the user-specified parameter k. A suitable value
for parameter k can greatly improve the performance (Fig. 4.1). Meanwhile,
the parameter θ determines the weight of the first k-NN algorithm’s result, and
as Fig. 4.2 shows, θ = 0.6 archives the best performance, which indicates the
result of the first k-NN algorithm should be slightly more important than the
second. Furthermore, Figure 4.2 suggests that, for traffic prediction at a site,
the data instances from the same site are more valuable than these from other
sites.

Secondly, with selected and weighted features, the predicting algorithm can
achieve a better performance. As discussed in Section 2.3, feature selection
removes irrelevant, noisy and redundant features, while feature weighting iden-
tifies the important features and assigns them high weight values. Obviously,
this just makes up the drawback of the k-NN algorithm, which assumes all
features are of equal importance. Since the predicting algorithm is based on
the k-NN algorithm, feature selection and weighting improves its performance
greatly (Figs. 4.1, 4.2 and 4.3).

Thirdly, the prediction performance with selected and weighted features is
better than the comparison algorithms. From Fig. 4.3 and Table 4.1, one
can easily observe that the performance of the k-NN algorithm is better than
the other comparison algorithms, which indicates that the k-NN algorithm is
more suitable for our problem. The predicting algorithm is based on the k-NN
algorithm (Algorithm 1 in Section 3.3.2), which splits the data instances into
two disjoint sets according to the site where the data instance comes from, and
treats them differently with the parameter θ. Therefore, it can identify valuable
instances more accurately and achieves a better performance.
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Overall, the proposed predicting algorithm is suitable for our traffic predic-
tion problem. Furthermore, with selected and weighted features, the perfor-
mance can be improved greatly. The prediction accuracy of the predicting with
selected and weighted features algorithm is about 5 percent higher than the
comparison algorithms, and it performs well for traffic prediction.

5.2 Conclusions

This project developed a suite of state of the art modeling tools that provides
real-time congestion monitoring, facilitates incident management and accurate
network state estimation. This is achieved by using advanced data gathering,
processing and mining tools to estimate the current and future transportation
system performance. In order to make a full use of all available data, we built
a data fusion strategy to integrate data from heterogeneous data sources. To
maximize the quality of the prediction, a dynamic prediction model was imple-
mented. The predictions will be automatically verified by real-time data, and
the model will be refined dynamically. A web portal was also built for visual-
ization, using it users can easily observer the traffic and get useful guidance.
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