Vermont Agency of Transportation (VTrans) Materials and Research Section

Evaluation of SPT Hammer Energy Variability

Windsor, VT

Vermont Agency of Transportation Mr. Christopher C. Benda, P.E. One National Life Drive Montpelier, VT 05633-5001 802-828-2561

> EA Number: RSCH012-703 Contract Number 0984735

June 16, 2009 (updated October 15, 2009 and December 22, 2009)

54 Main Street, P.O. Box 699, Windsor, Vermont 05089 (T) 802.674.2033, (F) 802.674.5943 Geo**Design** Project Number: 750-05.7 "The information contained in this report was compiled for the use of the Vermont Agency of Transportation. Conclusions and recommendations contained herein are based upon the research data obtained and the expertise of the researchers, and are not necessarily to be construed as Agency policy. This report does not constitute a standard, specification, or regulation. The Vermont Agency of Transportation assumes no liability for its contents or the use thereof."

1. Report No.	2. Governmen	t Accessi	ion No.	3. Recipier	nt's Catalog N	No.	
2010-3							
4. Title and Subtitle	•			5. Report D	Date		
Evaluation o	of SPT Hamme Windsor		gy Variability		January 2010		
		, , ,		6. Performi	ng Organiza [.]	tion Code	
7. Author(s)				8. Performi	ng Organiza	tion Report No.	
9. Performing Orga	nization Name a	and Addr	ess	10. Work U	nit No.		
54 Ma	eodesign Inc ain Street, i indsor, Verm	Р.О. Вс	ox 699,				
				11. Contra	ct or Grant N	lo.	
12. Sponsoring Age	ency Name and	Address		13. Type of	Report and	Period Covered	
Mater	t Agency of ials and Res ational Life	earch	Section		Final Re (2008-20		
Mor	ntpelier, VT	05633-	-5001	14. Sponso	14. Sponsoring Agency Code		
15. Supplementary	Notes			1			
hammer energy measured energy for the State Method for Sta Soils." The va energy transfe on recommended equipment. Nine different included hamme operator, and variables in o measured SPT H groundwater co any one variab 17. Key Words Standard Pe Hamme	delivered t gy values of of Vermont andard Penet ariability o er ratios ar d frequency c SPT hammer er type, dri drilling me order to qua hammer energ ondition) be	o the s SPT had during ration f the t e prove of SPT config 11 rods thod. f ntify f y. A nut came ev possib	ion of the Stand SPT samplers fro ammers from dril the performance Test (SPT) and measurements was ided. This repor hammer energy m gurations were t s, rig type, soi This study atten the contribution mber of variabl vident as potent le. 18. Distribution State	om VTrans e ling compa e of ASTM I Split-Barn a assessed rt also sup neasurement cested in t il type and npted to is n of each es (e.g., tial causes	equipment anies that D1586, "Si rel Sampl: and a sur oplies sor t on VTran this study d conditions solate the variable of rod type,	as well as t do work tandard Test ing of mmary of the me guidance ns y. Variables on, ese on the soil type,	
19. Security Classif.	(of this report)	20. Sec	urity Classif. (of this pa	age)	21. No. Pages	22. Price	

TABLE OF CONTENTS

TABL	E OF C	ONTENTS		i
LIST (OF FIGU	JRES		iv
LIST (OF TAB	LES		vi
LIST (OF SYM	BOLS		vii
1	INTRO	DUCTION		1
	1.1	Obiecti	ve	2
	1.1		ire Review	
	1.2		zation of Report	
	1.5	orguin		
2	SPT TI	EST EQUIP	MENT	3
	2.1	Drill R	igs	4
	2.2		ods	
	2.3		poon Sampler	
	2.4		g Method	
			ow Stem Auger	
			h Mounted Casing	
	2.5		ammer	
			ty Hammer	
			vn-Hole Safety Hammer	
			omatic Hammer	
	2.6		Measurement System	
			rumented Rods	
			Analyzer	
3	SPT H.		NERGY MEASUREMENT PROCEDURE	
	3.1	Genera	1 Operation	17
	3.2		Connections	
	3.3	Data Co	ollection	
	3.4		eview	
	3.5		Measurement Methods	
			ential and Kinetic Energies	
			e-Velocity Method	

		3.5.3 Force-Squared Method	
4	LITER	ATURE REVIEW	24
	4.1	Overview	24
	4.2	SPT Hammer Energy Literature Values	
	4.3	SPT Hammer Energy and Influence from Soil Types	
5	TEST S	SITE DESCRIPTION	
	5.1	Location	
	5.2	Geology	29
	5.3	Subsurface Description	
		5.3.1 General	
		5.3.2 Upper Silty Fine Sand	
		5.3.3 Fine to Medium Sand and Gravel	
		5.3.4 Silt and Sand	
		5.3.5 Lower Silty Fine Sand	
		5.3.6 Groundwater	
6	PRESE	ENTATION OF RESULTS	
	6.1	Data Quality Assessment	
	6.2	SPT Hammer Energy Transfer Ratios	
	6.3	SPT Hammer Energy Adjustment Factor	
	6.4	SPT N_{60} Values	
7	DISCU	SSION OF RESULTS	
	7.1	Data Quality Assessment	
	7.2	SPT Hammer Energy Transfer Ratios	
		7.2.1 Data Distribution	
		7.2.2 Rod comparison	
		7.2.3 Hammer Comparison	
	7.3	SPT Hammer Energy Adjustment Factor	
	7.4	SPT N_{60} Values	
	7.5	Comparison to ETR Literature Values	
	7.6	Calibration Interval	
8	CONC	LUSIONS AND RECOMMENDATIONS	42
	8.1	SPT Hammer Energy Transfer Ratio	42
	8.2	SPT Hammer Energy Adjustment Factor	
	8.3	Calibration Interval	
	8.4	Future Work	

9	ACKNOWLEDGEMENTS	45
10	REFERENCES	46
11	APPENDICES	50
	APPENDIX 1 – SITE LOCATION	1
	APPENDIX 2 – CROSS SECTIONS	5
	APPENDIX 3 – BORING LOGS	9
	APPENDIX 4 – GRAIN-SIZE ANALYSES (BY BORING)	
	APPENDIX 5 – GRAIN-SIZE ANALYSES (BY SOIL LAYER)	
	APPENDIX 6 - EXAMPLE OF SPT ANALYZER FIELD DATA (FORCE -	
	VELOCITY PLOTS)	12
	APPENDIX 7 – SPT HAMMER ENERGY SUMMARY SHEETS	15
	APPENDIX 8 – PDI PLOT OUTPUT DATA AND PLOTS	16
	APPENDIX 9 - NORMAL DISTRIBUTION PLOTS OF ETR(%) VALUES	17
	APPENDIX 10 – SPT N VALUE AND N ₆₀ VALUE PLOTS	18
	APPENDIX 11 – SPT HAMMER ENERGY LITERAURE VALUES	21
	APPENDIX 12 - SPT INSTRUMENTED ROD CALIBRATION SHEETS	22

LIST OF FIGURES

<u>Figure</u> Pag	<u>3e</u>
Figure 1 VTrans CME 55 used on Boreholes GD-1 and GD-3	ł
Figure 2 VTrans CME 45C Skid Rig on Trailer used on Boreholes GD-2 and GD-4	5
Figure 3 VTrans CME45C on Track Rig used for Boreholes GD-7 and GD-8	5
Figure 4 TransTech CME 75 on Track Rig used for Boreholes GD-5 and GD-6)
Figure 5 SDI Simco Drill Rig used for Borehole GD-9	7
Figure 6 Drill Rigs using HSA and Washed Bore Drilling Techniques	}
Figure 7 Photograph of Safety Hammer with Driller "Throwing the Rope" at GD-4 10)
Figure 8 Photograph of Down-Hole Safety Hammer (leaning on right hand side of rig) 11	
Figure 9 Placing Automatic Hammer on top of Drill String)
Figure 10 AWJ instrumented Drill Rod	;
Figure 11 NWJ Instrumented Drill Rod with Driller Holding Wires During Driving 14	ł
Figure 12 Photograph of the SPT Analyzer Data Acquisition Box)
Figure 13 Depictions of the Potential and Kinetic Energies during the SPT Procedure (from Kovacs et al. 1983)	
Figure 14 Photo of the Test Site at Borehole GD-8	;
Figure 15 Photo of Test Site while Drilling Boreholes GD-8 and GD-9)
Figure 16 Site Location	2
Figure 17 Miller Construction, Inc. Site Plan	;
Figure 18 Exploration Location Plan	ł
Figure 19 Subsurface Profile A-A'	Ĵ

Evaluation of SPT Hammer Energy Variability Windsor, VT Geo**Design** Project No. 750-05.7 June 16, 2009 – updated October 15, 2009 and December 22, 2009

Figure 20 Subsurface Profile B-B'	A-2-7
Figure 21 Subsurface Profile C-C'	A-2-8

LIST OF TABLES

<u>Table</u> <u>Page</u>	2
Table 1 List of SPT Hammer Energy Variations used in this Study. 3	
Table 2 Dimensions of Common Taper-Thread Drill Rods 7	
Table 3 List of Average ETR and C _n published in the Reviewed Literature	
Table 4 Summary Table of Average SPT Hammer Energy Transfer Ratios from Literature. 27	
Table 5 List of Measured SPT Hammer Efficiencies from this Study. 33	
Table 6 List of Measured SPT Hammer Correction Factors from this Study. 35	
Table 7 Recommended ETR Values for the Tested SPT Hammer Configurations	
Table 8 Recommended Adjustment Factors for the SPT Hammer Configurations Tested 43	

LIST OF SYMBOLS

<u>Symbol</u>	Definition
А	cross sectional area of the steel
BPM	the operating rate of the SPT hammer in blows per minute
C _n	adjustment factor by which the N-value should be multiplied in order to
	obtain N ₆₀ (ETR/60)
Е	elastic modulus of the steel
Ei	Energy in Drill Rod
Ev	Kinetic Energy
EA/c	rod impedance
EF2	the energy transmitted to the drill rod from the hammer during the impact event determined by the F2 method
EFV (EMX)	the energy transmitted to the drill rod from the hammer during the impact event determined by the F-V method
ETR (EFV/PE)	ratio of the measured energy transferred to the drill rods to the theoretical potential energy
F	force at time
FMX	the force delivered by the SPT hammer
H, h	Hammer fall height
K ₁	Correction factor for the distance between the anvil and the measurement
	device (F ² method)
K ₂	Correction factor for short rods of less than 30 ft (F ² method)
K _c	Correction factor for the ratio of the actual to the theoretical time at which the force at the rod top becomes equal to zero (F^2 method)
L	length between the location of transducers on the instrumented rod and the bottom of the penetrometer
N-value	the number of hammer blows required to advance the sampler from 6 in. to 18 in. driven during the SPT test
N ₆₀	the N-value adjusted to a hammer efficiency of 60 percent (N-value $x C_n$)
PE (ER)	the theoretical potential energy of the hammer positioned at the specified
	height above the impact surface (350 ft-lbs per the ASTM standard)
V	velocity at time
c	speed of wave propagation in steel (16,810 feet/sec)
g	acceleration due to gravity
m	hammer mass
t	time
V	theoretical free fall velocity
W	weight of SPT hammer
2L/c	the time required for the stress wave (traveling at a known wave speed, c, in steel) to travel from the measurement location to the bottom of the penetrometer and return to the measurement location

1 INTRODUCTION

This report presents an evaluation of the Standard Penetration Test (SPT) hammer energy delivered to the SPT sampler during the performance of ASTM D1586. The technical literature has shown that variations in test equipment used to perform ASTM D1586 leads to different values of kinetic energy delivered to the SPT sampler (although the potential energy of 350 ft-lbs is standardized by ASTM). In turn, this difference in energy delivered to the sampler can affect the measured penetration resistance in the soil (i.e., the N-value). This variation in N-value (defined as the cumulative hammer blow counts needed to penetrate the sampler through the second and third 6-inch increment while performing ASTM D1586) may lead to conservative engineering designs (when the hammer system used is highly efficient) or non-conservative engineering designs (when the hammer system has high frictional losses) when appropriate energy correction factors are not applied to the field measured N-values.

Many engineering relationships from SPT N-values to soil design parameters such as relative density, angle of internal friction, shear strength, soil liquefaction potential, and bearing pressure of shallow foundations are found in the literature (USACE 1988, ASTM D4633-05). Therefore, accurately measuring the N-value and correcting this value with the appropriate energy correction factor is extremely important in engineering design. Factors affecting the applied energy include the mechanism of the drill rig, the fall height of the hammer, the efficiency of the energy transfer at the impact from hammer to anvil, the drill rod, the length and type of drill rod, and for safety and donut hammers, the number of turns of the rope around the cathead, the age of the rope, and the operator (USACE 1988). As stated in ASTM D1586-08 under the Precision and Bias section, the use of faulty equipment, such as extremely massive or damaged anvil, a rusty cathead, a low speed cathead, an old, oily rope, or a massive of poorly lubricated rope sheaves can significantly contribute to differences in N-values obtained between operator-drill rig systems. Knowing the applied energy to the sampler and correcting for this delivered energy would help to account for some of these factors.

ASTM D1586-08 also states in the Precision and Bias section that variations in N-values of 100% or more have been observed when using different Standard Penetration Test apparatus and drillers for adjacent boreholes in the same soil formation. When the same apparatus and driller are used, N-values in the same soil can be reproduced with a coefficient of variation of about 10%. Having knowledge of the applied energy by the SPT hammer to the sampler would allow for better comparisons between drill rigs and provide better precision to measured N-values.

Included in this report are comparisons of nine different SPT test configurations using standard SPT hammers, drill rods, and drill rigs configurations. Data were measured from five different drill rigs using seven different SPT Hammers (Safety Hammers and Automatic Hammers). The drill rigs used included three VTrans drill rigs and two private company drill rigs. Each drill rig was equipped with different SPT hammers and drill rods and this equipment was used to create a total of nine different SPT hammer configurations. These configurations were used to compare the different applied SPT Hammer energies to the SPT sampler.

1.1 Objective

The objective of this report is to provide measured energy values of SPT hammers from VTrans equipment as well as measured energy values of SPT hammers from drilling companies that do work for the State of Vermont. The variability of the measurements will be assessed and a summary of the energy transfer ratios will be given. This report also provides some guidance on recommended frequency of SPT hammer energy measurement on VTrans equipment.

1.2 Literature Review

A review of the SPT hammer energy research literature was completed for this study and a summary is presented in this report. As stated in the literature, SPT hammer energies vary depending on the SPT hammer type used to conduct ASTM 1586. As stated in the test standard, the SPT hammer must be 140 pounds and the hammer must free fall for a distance of 30 inches on to the drill string providing an energy of 350 ft-lbs. The method of raising and free falling the SPT hammer varies per hammer type and manufacturer. This difference results in different SPT hammer energy efficiencies because of frictional losses within each hammer system.

As hammer technology has progressed over the years (i.e., initially pin-weight and donut hammers were used in the 1950s then safety hammers became popular in the 1960s to 1980s, and now automatic hammers are common), so has the efficiency in SPT hammer systems. As stated in Akbas and Kulhawy (2008), hammer energy ratios have increased from 40% efficiency in the 1950s to 90% efficiency in the 1990s. Finno (1989) demonstrated in a uniform sand deposit that the N-values from one SPT hammer type (rope and cathead with safety hammer) were 2 to 3 times higher than those of a second SPT hammer of a different type (automatic hammer). This observation provides factual information that even though the SPT is a standardized test, the diversity of equipment allowed to perform SPT can have a significant influence on the resulting SPT N-value.

1.3 Organization of Report

This report is divided into eleven chapters including an appendix chapter. Chapter 1 is an introductory chapter; Chapter 2 presents the test equipment used to perform the field test evaluation of this project. Chapter 3 presents the SPT hammer energy measurement procedure and Chapter 4 is a literature review. Chapter 5 presents information about the test site used to perform this study. Chapter 6 and 7 provides the presentation and discussion of results, respectively. Chapter 8 presents the conclusions of the project and Chapter 9 acknowledges the entities involved in this project. Chapter 10 lists the references used in this report and Chapter 11 includes the appendices for the report.

2 SPT TEST EQUIPMENT

The equipment used to conduct the SPT and to measure the applied energy is described herein. There were seven different hammers employed in this study using five different drill rigs resulting in nine different SPT hammer configurations. All configurations were employed using standard drilling techniques. Table 1 presents a list of all of the variations tested for this study.

The hammer energy measurement equipment used in this study was developed by Pile Dynamics, Inc. (PDI). It is designed to measure energy delivered to the SPT sampler by a SPT hammer using standard drill rod connections.

			T		noigy vui	lations a		study.	· · · · · · · · · · · · · · · · · · ·
Boring ID	Date	Ham- mer Type	Ham- mer drop system	Drill Rig (year of manufacture)	Vehicle #	Comp- any	Hammer Operator	Drill Rods	Drilling Technique
GD-1	9/23/08	CME Auto- matic	Auto- matic	CME 55 – Track (2007)	356675	VTrans	Glenn Porter	AWJ	4 inch HW Casing, spin and wash with roller bit ahead of casing to advance
GD-2	9/23/08	CME Auto- matic	Auto- matic	CME 45C Skid-rig on trailer (1996)	277564	VTrans	Howard Garrow	AWJ	3 1/4" HSA with auger plug – no water
GD-3	9/24/08	CME Auto- matic	Auto- matic	CME 55 – Track (2007)	356675	VTrans	Glenn Porter	NWJ	4 inch HW Casing, spin and wash with roller bit ahead of casing to advance
GD-4	9/24/08	Safety	Rope and Cathea d	CME 45C Skid-rig on trailer (1996)	277564	VTrans	Howard Garrow	AWJ	3 1/4" HSA with auger plug – no water
GD-5	9/25/08	CME Auto- matic	Auto- matic	CME 75 – Track (1988)	200587	Trans- Tech	John Leonhardt	AWJ	4 1/4" HSA with auger plug – no water
GD-6	9/25/08	Safety	Rope and Cathea d	CME 75 – Track (1988)	200587	Trans- Tech	John Leonhardt	AWJ	3 1/4" HSA with auger plug – no water
GD-7	9/26/08	CME Autom atic	Autom atic	CME 45C Track (2001)	306614	VTrans	Glenn Porter	AWJ	3 1/4" HSA with auger plug – no water
GD-8	9/26/08	CME Autom atic	Autom atic	CME 45C Track (2001)	306614	VTrans	Glenn Porter	NWJ	3 1/4" HSA with auger plug – no water

Table 1 List of SPT Hammer Energy Variations used in this Study.

Boring ID	Date	Ham- mer Type	Ham- mer drop system	Drill Rig (year of manufacture)	Vehicle #	Comp- any	Hammer Operator	Drill Rods	Drilling Technique
GD-9	9/29/08	Down- hole Safety Hamm er	Mobil e Safe- T Driver	Simco 2800 (1997)	n/a	SDI	Chris Aldrich	AWJ	4 1/4" HSA with auger plug – no water

Table 1 (continued) List of SPT Hammer Energy Variations used in this Study.

2.1 Drill Rigs

This study used 5 different drill rigs from 3 different agencies/companies as summarized in Table 1. VTrans rigs used in this study were a CME 55 on a track rig, CME 45C on a skid rig, and a CME 45C on a track rig. TransTech Drilling Services (TransTech) from Schenectady, NY used a CME 75 on a track rig. Specialty Drilling and Investigation (SDI) from Burlington, VT used a Simco 2800 HS HT on a truck. The following figures present the photos of each drill rig used in this study.

Figure 1 VTrans CME 55 used on Boreholes GD-1 and GD-3.

Figure 2 VTrans CME 45C Skid Rig on Trailer used on Boreholes GD-2 and GD-4.

Figure 3 VTrans CME45C on Track Rig used for Boreholes GD-7 and GD-8.

Figure 4 TransTech CME 75 on Track Rig used for Boreholes GD-5 and GD-6.

Figure 5 SDI Simco Drill Rig used for Borehole GD-9.

2.2 **Drill Rods**

This study used two different types of drill rods, AWJ and NWJ rods. The AWJ rods are 1 3/4 inch diameter with a 1/4 inch rod wall thickness. The NWJ rods are 2 5/8 inch diameter with a 3/16 inch rod wall thickness. The "J" designation indicates that the drill rods have a tapered thread. Table 2 presents dimensions of these two types of drill rods.

Table 2 Dimensions of Common Taper-Thread Drill Rods							
SIZE OF DRILL ROD	AWJ	NWJ					
Outside Diameter	1 3/4"	2 5/8"					
Inside Diameter	1 1/4"	2 1/4"					
Bore of Coupling	5/8"	1 3/8"					
No. Threads Per Inch	5	4					
Weight	4.2 lbs/ft	5.8 lbs/ft					

2.3 Spilt-Spoon Sampler

The split-spoon samplers used in this study were standard 2-inch split spoons. Each split-spoon had drive shoes that were not worn (i.e., shoe tips were not sharpened, blunt, or rounded off). Plastic split-spoon catchers were used for this study and any that were observed to be worn (i.e., plastic teeth bent over or broken off) were replaced with new catchers. All SPTs in this study were performed without split spoon liners.

2.4 Drilling Method

Two drilling methods were used in this study and are described herein. There methods meet the intent of the ASTM D1586 SPT procedure.

Figure 6 Drill Rigs using HSA and Washed Bore Drilling Techniques.

2.4.1 Hollow Stem Auger

This study used two different types of hollow stem augers (HSA). 3 ¹/₄ inch and 4 ¹/₄ inch (inside diameter) HSA were used to drill 7 boreholes. Water was not used when drilling with the HSA for this study (i.e., boreholes were drilled in the dry). The CME 45C on a skid rig (see Figure 6) and the CME 45C on a track rig by VTrans used 3 ¹/₄ inch HSA. The CME 75 on a track rig by TransTech drilled two boreholes with one borehole using 3 ¹/₄ inch and the other using 4 ¹/₄ inch HSA. The Simco 2800 HS HT by SDI used 4 ¹/₄ inch HSA. All boreholes used a HSA pilot plug attached to the drill rods during augering to prevent soil from going up into augers.

2.4.2 Flush Mounted Casing

Two boreholes were drilled using HW drill casing (4 inch ID). The CME 55 on a track rig by VTrans used the 4-inch casing and water was used to flush out the cuttings from the inside of the casing (see Figure 6). The water was pumped down the center of the casing and came to the surface along the outside annular space around the casing. An attempt to keep the water at the top of the casing was made during SPT sampling. A tricone roller bit with water was used to clean out casing prior to sampling.

2.5 SPT Hammer

This study employed three standard hammer energy systems in order to measure the variations of hammer energy delivered to the sampler.

2.5.1 Safety Hammer

The safety hammers used in this study were manufactured by Mobile Drilling Company, Inc. (Mobile) and Central Mine Equipment Company (CME). The VTrans rigs used the Mobile safety hammers and TransTech used the CME safety hammer.

The CME 45C on a skid rig by VTrans used a rope and cathead to raise and lower the safety hammer onto the drill string. The rope used by VTrans was fairly new and the cathead was reportedly not used often.

The CME 75 on a track rig by TranTech used a rope and cathead to raise and lower the safety hammer onto the drill string. The rope used by TransTech was worn and the cathead was freshly painted upon arrival. The driller scraped off fresh paint on the cathead surface prior to starting boring.

As can be seen in Figure 7, the drill rig operator followed the recommended number of rope turns $(2 \frac{1}{2})$ around the cathead as described in Figure 1 of ASTM D1586-08. The 30 inch drop height was observed during the operation of this hammer.

Figure 7 Photograph of Safety Hammer with Driller "Throwing the Rope" at GD-4.

2.5.2 Down-Hole Safety Hammer

A down-hole safety hammer was used by SDI. The hammer was raised and lowered by a Mobile Safe-T-Driver (see Figure 8). This system uses a wire-line attached to a "frictionless" hydraulic winch which raises and lowers the down-hole safety hammer on to the drill string. The 30 inch drop height mark was observed during the operation of this hammer.

Figure 8 Photograph of Down-Hole Safety Hammer (leaning on right hand side of rig).

2.5.3 Automatic Hammer

The automatic hammers used in this study were manufactured by CME. The CME 55 on a track rig, CME 45C on a skid rig, and the CME 45C on a track rig by VTrans used automatic hammers manufactured by CME. Each rig had its own designated automatic hammer. The CME 75 on a

track rig by TransTech used an automatic hammer. All automatic hammers used in this study had sight tubes on the side of the hammer casing to assure hammer drop height. The bottom of the hammer was observed in the sight tube during performance of these hammers.

Figure 9 Placing Automatic Hammer on top of Drill String.

2.6 Energy Measurement System

The SPT procedure as defined by ASTM D1586 employs a SPT hammer, drill rods, and a splitspoon sampler. The installation of the sampler into the ground is governed by stress wave propagation. One-dimensional wave mechanics can be used to analyze the delivered stress wave through the steel drill rods from the SPT hammer to the sampler. This analysis in turn can be used to evaluate the energy transfer from the hammer system to the sampler. ASTM D1586 requires that the SPT hammer weigh 140 pounds and the hammer must be dropped from a height of 30 inches above the drill string but the standard does not specify the delivery system (i.e., how the hammer is raised and lowered on the drill string). Since there is no specification, many delivery systems have been developed over the years and in turn the amount of energy applied to the sampler has historically varied.

To calculate the applied hammer energy, the force delivered to the drill rods and acceleration of the drill rods during each hammer blow are measured using an instrumented drill rod and data acquisition system. The data are collected and analyzed to provide an applied energy value to the sampler. This study used an energy measurement system design and manufactured by PDI and it is called the SPT Analyzer.

2.6.1 Instrumented Rods

Sensor systems to measure both force and velocity are attached to a 2 foot long instrumented drill rod. Figure 10 and Figure 11 present the two styles of instrumented drill rods used in this study, an AWJ rod and a NWJ rod, respectively.

Figure 10 AWJ instrumented Drill Rod.

Figure 11 NWJ Instrumented Drill Rod with Driller Holding Wires During Driving.

In order to measure force, the SPT Analyzer requires the measurement of strain, which is converted to force using the cross sectional area of the rod and the elastic modulus of the steel. Foil strain gages (350 ohm) are glued directly on to the instrumented rod in a full Wheatstone bridge configuration and a short cable with a quick connect is attached. There are two opposing force transducers on each instrumented rod so that an average force measurement is recorded. This is to account for the potential of the instrumented rod bending during driving (Pile Dynamics, Inc. 1999). The calibration sheets for the force transducer are presented in Appendix 12.

The measurement of acceleration is directly measured by an attached accelerometer. The accelerometer (piezoresistive) is attached to a rigid aluminum block which is bolted on to the instrumented rod. The accelerometer has a quick connect plug to attach the instrumentation cable to the SPT Analyzer. The calibration sheet for the accelerometer is presented in Appendix 12.

The measured acceleration is integrated to velocity. Both the force and velocity measurements are required for the calculation of energy transferred to the drill rod from the SPT hammer during each hammer impact.

2.6.2 SPT Analyzer

The SPT Analyzer signal conditioning and processing unit records strain and acceleration during each hammer blow, converts the strain and acceleration to force and velocity, records and displays the velocity and force waveforms, records the number of hammer blows, records the frequency of hammer blows, and calculates the energy values using both the F^2 and FV methods.

A short cable connects the instrumented rod to the data acquisition system. The signal conditioner includes an analog to digital (A/D) converter and microprocessors with an on-board 12-volt DC battery for remote operation. A power supply connected to 120 AC may also be used for power.

The unit has an LCD touch-screen used to enter the rod area and length, description of each test hole, name of operator, and operator comments. The user can also initiate data recording with the touch-screen by pressing the record button on the screen. The data is recorded after each hammer blow when the hand-held unit is in record mode. For each hammer blow, the unit records force, velocity, number of hammer blows, and time between hammer blows. The user interface allows for data control and review during and after testing (Pile Dynamics, Inc. 1999).

Figure 12 Photograph of the SPT Analyzer Data Acquisition Box.

3 SPT HAMMER ENERGY MEASUREMENT PROCEDURE

The procedure used to measure SPT hammer energy is described herein. The SPT analyzer is used to collect and process the data measured by the instrumented rod. This section also discusses some of the theory behind the current ASTM D4633-05 energy measurements (i.e., the F-V (EFV) method) and discusses some of the historical aspects of the F^2 (EF2) method used to calculate energy.

The original ASTM D4633-86 Energy Measurement for Dynamic Penetrometers was first adopted by ASTM in 1986 but was then withdrawn in 1995. 10 years passed before the standard was re-instated on November 2005 as ASTM D4633-05 (Krusinski 2007). The old standard considered the normal proportionality between force and velocity and therefore only required measurement of force. The hammer energy was then obtained from the integral of the force squared (divided by rod impedance). This EF2 method also required the use of correction factors, K₁, K₂, and K_c. Common errors that were not properly corrected using this method were non-uniform rod sections and loose rod connections. It was also determined in the old standard that the correction factor for short rod connections was incorrect as stated ASTM D4633-05.

For the EF2 method to be valid, the first tension wave reflection time needed to be equal to the theoretical 2L/c time. A modification to the standard to accommodate this requirement was that the time ratio (defined as the actual first tension return time divided by the theoretical time, 2L/c) had to be within 90% to 120%. If this was not observed, then EF2 method could not be used. To avoid the complexity and possible errors using the EF2 method (since it is highly unlikely that true one-directional wave propagation exists in any dynamic penetrometer system, Pile Dynamics, Inc. 2004), the Force-Velocity (EFV) method was created and is now the recommended method in ASTM D4633-05 standard.

The EFV method is the only fundamentally correct method of measuring energy content. It integrates force and velocity over the complete wave event to measure the total energy content of the event. Correction factors are not necessary for the EFV method.

3.1 General Operation

The procedure to measure the SPT hammer energy involves threading an instrumented rod on to the drill string and measuring the strain and acceleration in the drill string while performing ASTM D1586. Measuring the SPT hammer energy does not detract from the SPT procedure or the measured N-values.

The instrumented rod is attached at the top of the drill string and tightened. The hammer anvil is then attached to the drill string, maintaining the required distance between the top of the transducers and the hammer striking surface per the ASTM standard D4633-05. The sensors are connected to the SPT Analyzer and just prior to hammer operation, the SPT analyzer is activated. The hammer is operated in a normal manner while the analyzer is recording, processing, and

displaying data on the readout unit. The number of hammer blows is recorded by the data acquisition system as well. The sampler penetration into the ground is recorded by the user by pressing a hand-held remote connected to the analyzer. After sampler penetration is complete, the instrumented rod is then disconnected, the soil sample is brought to the surface, and the borehole is then advanced to the next sampling depth. The process is repeated for each sampling interval that SPT energy measurements are desired.

In this study, all equipment was operated by the drill rig operators in the manner typically used on a daily basis by the operators. The SPT automatic hammers were not pre-lubricated, the sheaves and cathead for the rope and cathead operation were not pre-greased for this study. It is assumed that all rigs were lubricated and greased on their typical schedule of standard maintenance per the manufacturer's recommendations.

3.2 Sensor Connections

After the sensors are connected to the SPT Analyzer via quick connect plugs, the connection is verified by the data acquisition system. The SPT Analyzer is capable of sensing the status of each sensor and the operator must assure that all sensors are functional prior to starting the test.

During the drive, the sensor cables are supported and carefully observed to assure no damage to the cables occurs during driving (see Figure 11 showing the driller holding the communication cables). After each drive, the sensor main cable is disconnected from the instrumented rod and the instrumented rod is threaded off of the drill string. The rods are removed from the ground, the sampler brought to the surface, the borehole advanced to the next sampling depth to repeat the process.

3.3 Data Collection

Prior to beginning the test, the user must enter the appropriate data into the unit. These data include, sample depth interval, rod area and length, project information, and calibration factors for the force transducers and accelerometer. After entering all project information and sampling interval information, the SPT Analyzer is initialized to collect new data. A record button on the touch-screen of the data acquisition system is pressed to initialize the unit. This initiates the hand-held unit to record each hammer blow when the hammer strikes the anvil. The data acquisition system records the data from each blow by monitoring a user designated sensor, typically one of the force transducers is selected. Once force is sensed by the data acquisition system, data are recorded at 20 kHz for a period of 100 milliseconds.

A remote control button attached to the data acquisition system is pressed during the test as the sampler penetrates into the ground in order to advance the recorded depth interval on the touch-screen. The analog data from the gauges are digitized at 20 kHz. These data are continuously displayed on the touch-screen as the force wave (from the strain gauges) and the velocity wave (from the integral of the acceleration measurement). The trace of the velocity wave is scaled

such that it is proportional to the force wave. This allows the user to see if the force and velocity traces are reasonable during testing as will be discussed in Section 3.4.

3.4 Data Review

During the test, the operator checks the quality of the data. Data checks include good wave matching for both force transducers (only one accelerometer was used in this study, therefore the accelerometer data could not be matched). The force and velocity measurements should be proportional to the rod impedance (EA/c, where E = Modulus of Elasticity for steel, A = cross sectional area of the steel, and c = speed of wave propagation in steel) during the first 2L/c time, where L is defined as the length of rod below the measurement point and c as defined above, after the initial hammer impact and through out driving. After 2L/c time goes by, the force and velocity records should go to near zero at the end of each record. Successive force and velocity records should be generally similar as well.

After field testing was complete, the data were downloaded to a computer from the PCMCIA data storage card that is on-board in the data acquisition system. These data are reviewed and evaluated using PDA-W[®] software developed by PDI for proper response from the transducers. If any wave traces did not behave appropriately (per the previously described behavior), the computed energy was not included in the summary tables. Example responses plots from PDA-W[®] are presented in Appendix 6. PDI plot[®] software is used after the data have been interpreted in PDA-W[®] in order to present the data in graphical form. A summary table of measured hammer energies is presented in Appendix 7. The output files from PDI plot[®] are presented in Appendix 8.

3.5 Energy Measurement Methods

The SPT analyzer measures the maximum transferred energy applied to the sampler from the hammer system. If no friction losses occur in the hammer systems, the theoretical amount of delivered energy available to the sampler is equal to the potential energy of the hammer system (350 ft-lbs), as first discussed in Section 1. It has been shown in the literature that every hammer system has some frictional losses and the SPT analyzer is able to measure this delivered energy.

There are two methods used to calculate the maximum transferred energy to the sampler from the SPT hammer through the drill rods. The first method is described in ASTM D4633-05 as the Force-Velocity method. This method integrates the product of the force and velocity record over time for each hammer blow. This method is also referred to as the EFV method (and referred to as the EMX method per the PDA-W[®] manual by PDI). The second method was described in ASTM D4633-86 as the Force Squared method (F^2). This method uses the theoretical proportionality of force and velocity to substitute force divided by rod impedance for the velocity. The energy is calculated by integrating the force squared over time and multiplying the result by the inverse of the rod impedance.

3.5.1 Potential and Kinetic Energies

The potential energy (PE) delivered to the sampler by the SPT hammer is calculated by multiplying the fall height of the hammer by the weight of the hammer. Using the quantities listed in ASTM D1586-08, the potential energy by the SPT hammer is equal to 350 ft-lbs.

The derivation of the potential energy comes from the definition of the theoretical free fall energy, i.e., kinetic energy of the system and inserting the value for the theoretical free fall velocity of the hammer as described by the following equation;

$$E_{\nu} = \frac{1}{2} \cdot m\nu^2 \tag{1}$$

where $E_v = kinetic energy$

m = mass of hammer = $\frac{w}{g}$

where; w = weight of hammer

g = acceleration due to gravity

v = theoretical free fall velocity = $\sqrt{2gh}$

Inserting the definition of v and m into Equation (1) yields a result of potential energy being equal to hammer weight multiplied by fall height (350 ft-lbs).

Figure 13 presents an illustration from Kovacs et al. (1983) in which the location of the energies applied to the drill string is depicted. Point A is the location of the potential energy before the 140 lb SPT hammer is dropped 30 inches on to the drill string anvil. If a frictionless system was possible, the kinetic energy delivered to the drill string would be equal to the potential energy but because friction exists, Point B represents the reduction of the potential energy. A further reduction of energy passing through the anvil occurs at Point B'.

The resulting kinetic energy, E_{v_i} produces a compression stress wave in the drill rods and is measured by the instrumented rod as stress wave energy, E_i also referred to the maximum transferred energy (Point C in Figure 13). The E_i value is calculated using one of two methods by the SPT Analyzer. EFV method uses the measured force and velocity applied to the instrumented rod and the EF2 method using the square of the measured force to calculate E_i .

The Energy Transfer Ratio (ETR) is defined at the measured maximum transferred energy divided by the potential energy of the SPT hammer system as presented in Equation 2.

$$ETR = \frac{EFV}{PE}$$
(2)

This equation is then used to calculate the "standard energy ratio" adjustment factor as defined by Equation 3.

$$C_n = \frac{ETR}{60}$$
(3)

This C_n value is multiplied by all field measured N-values to calculate N_{60} . N_{60} values are used in engineering property correlations for site evaluations as discussed in Section 1.

It should be noted that there are other correction factors that can be applied to field measured N-values (e.g., overburden, rod correction, anvil correction, borehole diameter, etc.) but presentation of those values is beyond the scope of work for this project. The reader is referred to Skempton (1986) and Aggour and Radding (2001) for a summary of correction factors found in the literature as well as ASTM D 6066-96 (2004) for a discussion on the overburden correction.

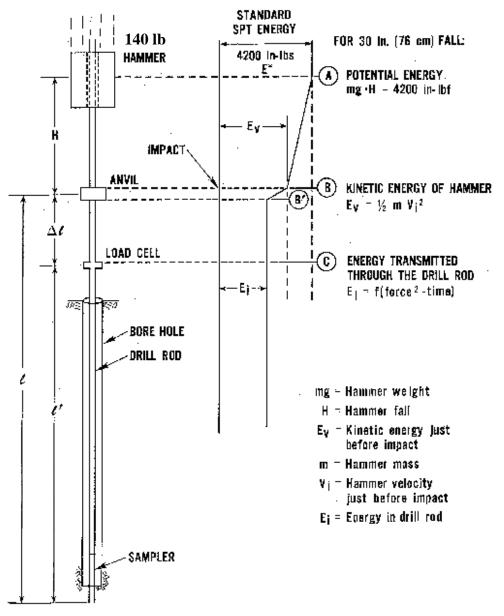


Figure 13 Depictions of the Potential and Kinetic Energies during the SPT Procedure (from Kovacs et al. 1983).

3.5.2 Force-Velocity Method

The force-velocity method is determined by:

$$EFV = \int F(t)V(t)dt \tag{4}$$

where: EFV = the energy transmitted to the drill rod from the hammer during the impact event determined by the F-V method, F = force at time, t

V = velocity at time, t.

The integration begins at impact by the SPT hammer and ends at the time at which energy transferred to the rod reaches a maximum value (i.e., the integration over the entire force and velocity record). This method requires the measurement of force and velocity which are obtained by the strain measurements from the force transducers and the acceleration measurements from the accelerometer. No correction factors are necessary using this method as it is theoretically correct. It also applies to any drill rod (loose connections or differing cross-sectional area).

3.5.3 Force-Squared Method

The force-squared method was used early on because at the time of development there was not a good method to measure acceleration for steel to steel impacts. Researchers took advantage of wave propagation theory for waves traveling in one (downward) direction. The theory states:

$$V(t) = \frac{F(t)}{EA_{c}}$$
(5)

where: EA/c = rod impedance,

E = elastic modulus of the steel,

A = cross sectional area of the steel,

c = speed of wave propagation in steel (16,810 feet/sec).

Substituting Equation (5) in to Equation (4) leads to

$$E(t) = \frac{c}{EA} \int [F(t)]^2 dt = EF2$$
(6)

where: EF2 = the energy transmitted to the drill rod from the hammer during the impact event determined by the F^2 method

This method integrates the energy content of the first compression pulse traveling down the drill rods, and as such, only measures part of the energy delivered to the sampler. Several correction factors (K_1 , K_2 , and K_c) are recommended in the old standard. It was determined over time that these correction factors were inherently wrong (ASTM D4633-05) and it is recommended that this method not be used. Another issue was that there were many causes of the first wave not

making it down to the sampler due to differences in cross-sectional area; loose rods, etc. therefore further justifying not using this method.

4 LITERATURE REVIEW

4.1 Overview

As part of this project, a number of papers, reports, and articles found in the research literature were reviewed to find previously published values of SPT hammer energies and to evaluate SPT hammer energy testing frequency employed by other agencies.

4.2 SPT Hammer Energy Literature Values

The following table presents a summary of the research literature that was reviewed as part of this study. The superscripts (as defined in the legend at the bottom of the table) in Table 3 depict the energy method used by the referred authors. Appendix 11 presents all data from each reference reviewed for this study. Table 4 presents a summary of the data presented in Table 3. As can be seen, the average energy transfer ratio between EFV and EF2 is within 10% of each other and that is a typical comparison between the two energy calculation methods (ASTM 2005). The majority of the data reviewed in the literature for this study were from other State DOTs.

Test Agency	Hammer Type	AVG ETR (%)	AVG C _n Using EFV energy	Source
	Automatic	80.4 ¹	1.34	
Caltrans	Safety	55.6 ¹	0.93	Caltrans "Drill Rig Hammer Evaluation", File 59-910683, 12/7/2005 & August 2008
Oregon DOT Recommended	Automatic	76.4 4	1.27	"SPT Energy Measurements with the Pile Driving
SPT energy Correction	Safety	67 4	1.12	Analyzer" PowerPoint
Factors, Theoretical	Safe-T-Driver	48 4	0.80	Presentation, Laura Krusinski, P.E., Maine DOT

Table 3 List of Average ETR and C_n published in the Reviewed Literature.

Test Agency	Hammer Type	AVG ETR (%)		AVG C _n Using EFV energy	Source	
	Automatic	81.4 ¹		1.36	"Research Report, SPT	
	Safety Pin	70.2 ¹		1.17	Correction", M. Sherif	
Maryland DOT	Sprauge and Henwood Donut	63.5 ¹		1.06	Aggour and Rose Radding, Department of Civil and Environmental Engineering, University of Maryland, September 2001	
Compiled "In Situ Testing	Automatic	89.8 ³		1.50		
Techniques in	Safety	64.1 ³		1.07		
Geotechnical Engineering" Alan J. Lutenegger, UMASS - Amherst	Donut	55.2 ³		0.92	Multiple sources	
Compiled "Summary of SPT energy	Automatic	87.5 2	77.7 ¹	1.30		
measurement experience"	Safety	61.0 ²	64.6 ¹	1.08		
Jeffrey A. Farrar, U.S. Department of Interior, Bureau of Reclamation (1998)	Safe-T-Driver	37.5 ²	38.0 ¹	0.63	Multiple sources	
Department of	Automatic	61.2 ²	63.2 ¹	1.05		
Civil & Environmental Engineering,	Safety	56.4 ²	58.6 ¹	0.98	Energy Ratio Measurements of SPT equipment", Dong- Soo Kim et al. (2004)	
Korea Advanced Institute of	Donut	37.8 2	39.7 ¹	0.66		
Science and Technology, Daejon, Korea	Donut - hydraulic	51.9 ²	59.1 ¹	0.98		

Table 1 (continued) List of Average ETR and C_n presented in the Literature.

Test Agency	Hammer	Туре	AVG ETR (%)		AVG C Using EFV energ	Source
	Pinweight		72 3		1.20	
	Safety - pulley		85 3		1.42	Typical SPT Energy by country, "Case History of SPT Energy ratio for automatic hammer in northeastern U.S. practice", S.O. Akbas & F.H. Kulhawy
Multiple Safety - ro Testing cathea		•	85 3		1.42	
Agencies	Donut-rope and cathead		64.5 ³		1.08	
	Donut - p	oulley	51.6 ³		0.86	
Utah DOT	Automatic		76.1 ¹		1.27	SPT Energy Measurements
	Safety		66.6 ¹		1.11	
	Safe-T-D	Safe-T-Driver		49.8 ¹		et al.
	Rope and Cathead (Safety?)		74.8 ¹		1.25	
U.S. Department of Interior Bureau of Reclamation, 1999	Automatic		87.8 ²	79.2 ¹	1.32	Multiple sources
Maine DOT	CME Auto	matic 77 ¹		71	1.28	"SPT Energy Measurements with the Pile Driving Analyzer" PowerPoint Presentation, Laura Krusinski, P.E., Maine DOT
		Legend				
		FV			1	
		F^2		2		
			Unspecified Energy Method		3	
					4	

Table 1 (continued) List of Average ETR and C_n presented in the Literature.

Hammer Type	OVERALL AVERAGE F^2	OVERALL AVERAGE F-V	UNSPECIFIED ENERGY METHOD
Automatic	78.8	76.4	83.1
Safety	58.7	65.0	72.0
Donut-rope and cathead	37.8	51.6	59.8
Donut - hydraulic	51.9	59.1	51.6
Safe-T-Driver	37.5	43.9	48.0
Pinweight	n/a	n/a	72
Safety-pulley	n/a	n/a	85

Table 4 Summary Table of Average SPT Hammer Energy Transfer Ratios from Literature.

4.3 SPT Hammer Energy and Influence from Soil Types

Bosscher and Showers (1987) present data that suggests soil type influences the measured SPT hammer energy. Bosscher and Showers (1987) focuses on numerical modeling and the paper concludes that hard soils produce more energy than soft soils given the same hammer blow. But Hall (1982) states that in order to use wave compression theory (and therefore the energy measurement method described herein), it is inherently implied that the first compression wave is independent of soil type. Further study is needed to evaluate if soil type directly influences the measured SPT hammer energy.

5 TEST SITE DESCRIPTION

The test site used for this research project is presented herein. The site was chosen for its expected relatively uniform soil profile nature, anticipated range of in situ SPT N-values matching the recommended ASTM range of N-values for the SPT hammer evaluation, and the readily available location.

VTrans sent out a drill rig crew to "pre-investigate" the proposed research site. Two locations were chosen during this "pre-investigation" phase and the second location was selected by VTrans for its measured N-values and soil stratigraphy.

5.1 Location

The research site is located in Windsor, VT on the property of Miller Construction as seen in the figures presented in Appendix 1. A grassy field on the construction company's land was utilized to perform nine soil borings set in a grid pattern. The site is on a flat terrace adjacent to the Connecticut River at approximate ground elevation of 335 feet. The Connecticut River is at approximate 292 feet elevation along the test site. The coordinates of the test site are 43°25'39" North and 72°23'49" West.

Figure 6, Figure 14, and Figure 15 present general photos of the test site while collecting the research data.

Figure 14 Photo of the Test Site at Borehole GD-8.

Figure 15 Photo of Test Site while Drilling Boreholes GD-8 and GD-9.

As presented in Appendix 1, Figure 16 presents the site location on the Mt. Ascutney quadrangle, which orients the site along the south eastern portion of the Miller Construction property; Figure 17 and Figure 18 present a plan view of the Miller Construction Inc. site and a zoomed-in plan view of the soil boring locations, respectively. Appendix 2 presents Figure 19, Figure 20, and Figure 21 that depicts the subsurface profiles A-A', B-B', and C-C', respectively, at the site.

5.2 Geology

Glacial surficial geology of the test site is a Fluvial Sand deposit as described by Doll (1970). By definition, fluvial deposits are created by river deposition. This deposit is associated with the draining of Glacial Lake Hitchcock approximately 12,000 to 14,000 years ago (Little 2004). The draining of the lake allowed the Connecticut River to flow and create multiple flood plains and river terraces along its banks. The test site is on one of these described river terraces.

5.3 Subsurface Description

5.3.1 General

Four subsurface stratigraphy layers were encountered at the test site down to 50 feet below grade. Silty fine Sand approximately 10 feet thick is underlain by fine to medium Sand and Gravel that is approximately 15 feet thick. A 20-foot thick Sand and Silt layer underlies the Sand and Gravel layer and a lower silty fine Sand layer underlies the Sand and Silt layer. This layer was penetrated about 5 to 8 feet and the assumed underlying bedrock was not encountered. Appendix 2 presents three cross sections showing the stratigraphy across the site.

Encountered soil resistance values (N-values) for this deposit were within the recommended resistance values (5 to 50 blows per foot (bpf)) per ASTM D4633-05 as stated in Note 1 under <u>Significance and Use</u> in the standard. The boring logs are presented in Appendix 3. The depth ranges tested in this study were also within the ASTM acceptable limits (greater than 30 feet) as stated in Note 6 under <u>Procedure</u> in this standard.

5.3.2 Upper Silty Fine Sand

This stratum begins at the ground surface and extends to about 10 feet below grade. The average N_{60} value in this layer was 9 bpf with a range between 4 and 20 bpf. The layer is considered loose using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 74%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on five soil samples in this layer. The average percentage of sand was between 60% and 80% and the average percentage of material less than No. 200 sieve was approximately 20% to 40%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was brown to tannish brown and the soil was moist. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.3 Fine to Medium Sand and Gravel

This stratum begins about 10 feet below grade and extends down to about 25 to 30 feet below grade. The average N_{60} value in this layer was 21 bpf with a range between 6 and 47 bpf. The layer is considered medium dense using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 70%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on ten soil samples in this layer. The average percentage of gravel was between 10% and 20%, the average percentage of sand was between 70% and 85%, and the average percentage of material less than No. 200 sieve was approximately 5% to 10%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was tan to brown and the soil was moist. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.4 Silt and Sand

This stratum begins about 25 to 30 feet below grade and extends down to about 45 feet below grade. The average N_{60} value in this layer was 17 bpf with a range between 4 and 38 bpf. The layer is considered medium dense using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 81%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on fifteen soil samples in this layer. The average percentage of gravel was between 2% and 5%, the average percentage of sand was between 20% and 70%, and the average percentage of material less than No. 200 sieve was approximately 30% to 70%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was grayish brown and the soil became wet around 40 feet below grade. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.5 Lower Silty Fine Sand

This stratum begins about 45 feet below grade and the bottom of the layer was not encountered in this evaluation. The average N_{60} value in this layer was 23 bpf with a range between 8 and 33 bpf. The layer is considered medium dense using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 85%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on nine soil samples in this layer. The average percentage of gravel was between 0% and 2%, the average percentage of sand was between 70% and 85%, and the average percentage of material less than No. 200 sieve was approximately 10% to 20%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was grayish brown and the soil became wet around 40 feet below grade. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.6 Groundwater

Groundwater was encountered in an open borehole (GD-1) that was left open for 5 days at 44 feet below grade (El 291 feet). The borehole, GD-1, was initially drilled to 50 feet and subsequently collapsed to 45 feet below grade after the 4-inch casing was removed. All other groundwater observations were inferred by wet soil samples from the SPT split spoons. These soil sample depths were between 45 feet and 50 feet below grade.

The observed groundwater elevation in GD-1 corresponds to the average river elevation as observed on location topography maps.

6 PRESENTATION OF RESULTS

There were a total of 9 SPT hammer configurations tested using a total of 5 different drill rigs (3 State of Vermont rigs and 2 private contractor rigs), 7 different hammers, 2 different types of drill rods, 2 different drilling techniques, and 2 sizes of hollow stem augers. Each borehole consisted of similar equipment for the entire sounding (e.g., drill rod type from the anvil section to sampler was the same rod type) and each drill string was adjusted for verticality during the testing, when necessary.

A total of 9 boreholes were drilled in order to perform the 9 different SPT hammer configurations. One additional boring (B1-B) was drilled by VTrans during the "pre-investigation" phase to evaluate the research site. The boring logs presented in Appendix 3 provide sampling interval, sample recovery, field measured N-values, and visual soil descriptions. All borings were drilled to 50 feet below grade and sampled using a 5-foot sampling interval except for borings GD-3, and GD-6. These two borings were only sampled to 34 feet and 27 feet, respectively, due to time constraints during drilling.

At the beginning of each day, the drill rig operator performed a preparatory sequence of blows prior to energy measurement per the procedure outlined in ASTM D4633-05. These consisted of at least one SPT sample obtained in the upper 5 feet of the profile prior to SPT hammer energy measurement. Most boreholes had multiple preparatory sequences prior to the first energy measurement (i.e., continuous sampling to 10 feet below grade).

The weather for each testing day was partly cloudy with no precipitation except for September 26, 2008. Rain was observed on September 26, 2008. The automatic hammer on the CME45C track rig was the only hammer used that day.

Table 1 presents the configurations used in this study.

6.1 Data Quality Assessment

Appendix 6 presents sample data from the field. Presented are force and velocity traces during individual hammer blows from borings GD-2 and GD-5. As shown, the force and velocity plots have similar shapes up to a time equal to 2L/c and then the force and velocity plots diverge from each other. This divergence continues until both force and velocity go to zero. The shape and characteristic of these wave traces are indications that the field data for these hammer blows are a good data set. Also, the bottom figure shows the velocity measurements from the two transducers on the instrumented rod and as can be seen, the two strain gages matched (another indication of good data). As previously stated, only one accelerometer was used for this study therefore no comparison of accelerometer data is possible.

6.2 SPT Hammer Energy Transfer Ratios

The energy transfer ratio is the measured hammer energy delivered to the drill string divided by the potential energy of the system (as defined in Section 3.5.1). Once the entire hammer blow record for each depth interval was reviewed, the bad recorded data sets were removed from the group. This process was repeated for all nine boreholes. Only data having reasonable wave traces (as described above) were included in the summary tables. Appendix 7 presents a summary table with the test results from the SPT hammer energy measurements. The table headings in order from the left to right on the table include hammer type, drill rig, drill rig serial number, drill rod, type of drilling, owner, driller, SPT energy measurement operator, location of test with date and time, boring ID, sample depth, energy delivered using EFV and EF2 methods, potential energy, energy transfer ratio, force, hammer blow rate, recorded hammer blows, analyzed hammer blows, N-value, adjustment factor, N_{60} value, average ETR and C_n , depth to water, and soil type for each test.

The average, standard deviation, minimum, and maximum values for SPT energy measurements (EFV and EF2), ETR, FMX, and BPM were calculated. These parameters were determined for each sampling interval, as well as analyzed over the entire borehole. The entire data set, including some graphs with measured SPT energy parameters plotted versus depth, are presented in Appendix 8. Energy Transfer Ratio frequency plots (showing the normal distribution of the ETR data) is presented in Appendix 9.

ETR and C_n were calculated for the each borehole using the energy from the EFV method. The data were averaged and reported using every hammer blow for both; the entire sounding and data obtained below 30 feet deep (as suggested by the ASTM D4633-05). Table 5 presents the ETR minimum, maximum, average, standard deviation, and average from data greater than 30 feet deep and standard deviation from data greater than 30 feet deep. As presented in the table, the automatic hammers had the largest ETR values (between 80 and 90%) and the wire-line safe-t-driver resulted in the lowest ETR value (51%). The average ETR greater than 30 feet using the EF2 method is also presented. As seen in Table 5 the ETR using the EF2 method are significantly higher.

_			eı	ntire bo	rehole	0 0 11		>30) feet deep	
Boring ID	Hammer Type	MIN (%)	MAX (%)	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG EF2 (%)
GD-1	CME Automatic	63.6	94.5	85	4.9	215	87.5	1.3	136	112.9
GD-2	CME Automatic	60.6	86.4	77.4	5	211	79.6	1.4	129	105.4

Table 5 List of Measured SPT Hammer Efficiencies from this Study.(VTrans rigs are highlighted)

				ntire bo		mgninghtee		>30) feet deep	
Boring ID	Hammer Type	MIN (%)	Dev		Std Dev (%)	Dev hammer				
GD-3	CME Automatic	64.4	94.9	87.4	5.4	205	90.5	1.7	85	110.7
GD-4	Safety	40	82.4	66.3	7.7	289	69.2	5.6	179	84.1
GD-5	CME Automatic	60.9	95.4	84	5.3	173	85.6	1.5	120	115.1
GD-6	Safety	34.3	94.6	60.3	10.9	143	n/a	n/a	n/a	69.3
GD-7	CME Automatic	65.6	92.4	80.6	3.9	240	80.2	1.8	129	103.1
GD-8	CME Automatic	58.4	58.4 93.3		5.8	176	84.2	2.3	66	100.9
GD-9	Mobile Safety Driver	32	62.9	48.1	5.7	354	51.0	4.8	124	63.6

Table 5 (cont) List of Measured SPT Hammer Efficiencies from this Study. (VTrans rigs are highlighted)

6.3 SPT Hammer Energy Adjustment Factor

The SPT Hammer Energy Adjustment Factor, C_n , is defined as the ETR divided by 60% energy where 60% energy is also referred to as the standard energy. ETR was presented in Section 3.5.1.

As discussed in Section 6.2, a table in Appendix 7 presents a summary of field measurements made during the SPT hammer energy testing. The minimum, maximum, average, and average greater than 30 feet deep adjustment factor, C_n , are summarized in Table 6. The data in Table 6 were calculated using the EFV energy. Appendix 8 presents the entire field data set measured for this study and plots a number of parameters versus depth for each borehole.

The adjustment factor, C_n , is the factor used to multiply with the field measured N-values to calculate the N₆₀-value (the standard energy applied to the sampler which equals 60% of the potential energy). This "standard" energy is accepted by several authors and publications. This "standard" energy is also recommended by Aggour (2001) to allow reproducible and consistent blow counts among different drill companies at the same site.

The automatic hammers had the highest measured C_n values (1.3 to 1.5) in this study and the wire-line safe-t-driver resulted in the lowest measured C_n value (0.9) in this study.

			gs are highlig	Adjustment Factor, Cn NIN MAX AVG entire borehole AVG>30' .10 1.60 1.40 1.46 .00 1.40 1.30 1.33 .10 1.60 1.50 1.51 .70 1.40 1.10 1.15						
Boring ID	Hammer Type	Date	MIN	МАХ	entire	AVG >30'				
GD-1	CME Automatic	9/23/2008	1.10	1.60	1.40	1.46				
GD-2	CME Automatic	9/23/2008	1.00	1.40	1.30	1.33				
GD-3	CME Automatic	9/24/2008	1.10	1.60	1.50	1.51				
GD-4	Safety	9/24/2008	0.70	1.40	1.10	1.15				
GD-5	CME Automatic	9/25/2008	1.00	1.60	1.40	1.43				
GD-6	Safety	9/25/2008	0.60	1.60	1.00	-				
GD-7	CME Automatic	9/26/2008	1.10	1.50	1.30	1.34				
GD-8	CME Automatic	9/26/2008	1.00	1.60	1.40	1.40				
GD-9	Mobile Safety Driver	9/29/2008	0.50	1.00	0.80	0.85				

Table 6 List of Measured SPT Hammer Correction Factors from this Study.(VTrans rigs are highlighted)

6.4 SPT N₆₀ Values

SPT N_{60} values are defined as the field N-values multiplied by the C_n . Appendix 10 presents the SPT N-values and SPT N_{60} values for all 9 boreholes. The first graph presents all of the N-values together (field measured and corrected). The second graph presents the field measured SPT N-values for each borehole. The third graph presents only the corrected N_{60} values which

were calculated using the average adjustment factor from each borehole (i.e., SPT hammer configuration).

The next nine graphs present the SPT N-value, SPT N_{60} -value, and the SPT $N_{60 \text{ indiv}}$ -value for each borehole. SPT $N_{60 \text{ indiv}}$ -value data were calculated by using the average adjustment factor for each sample interval and not the average for the entire borehole. These graphs were created to evaluate the magnitude of the energy correction for each SPT hammer configuration.

7 DISCUSSION OF RESULTS

The following sections provide a discussion of the data presented in the report. Comparisons of the different configurations are made as well as comparisons to literature values.

The boreholes were placed in a roughly 25-foot grid spacing on a flat site in a relatively uniformly layered sand deposit. As discussed in Section 5.3 and presented in Appendix 2, the site consists of a silty fine sand underlain by a fine to medium sand and gravel layer, underlain by a sand/silt, underlain by a silty fine sand.

The four different sand layers have varying values of silt and gravel content as seen in Appendix 4 and 5. Appendix 4 presents the grain-size data for each borehole and Appendix 5 presents the grain-size for each soil layer. As shown in the appendices, the sieve data analyses indicate that the upper and lower silty fine sand strata and the sand/silt layer are poorly graded. The sand and gravel layer is uniformly graded. The recoveries from each split spoon sample varied from 33% to 100% with the average recovery per soil layer equaling 74%, 70%, 81%, and 85% as presented in the graph shown in Appendix 3. There does not appear to be a trend with recovery versus depth.

As shown in Appendix 2, the four different sand layers have relatively uniform layer thicknesses between borings.

These soil characteristics made this site a good candidate for this SPT hammer energy study, while there are some natural variations in the composition within each layer.

7.1 Data Quality Assessment

Prior to starting any SPT hammer energy measurement, the transducers and the SPT analyzer box were checked for data quality using the manufacturers recommended procedure. As presented in Section 6.1, the force and velocity traces were reviewed prior to summarizing the hammer energy data that is presented in Appendix 7.

As can be seen in the Appendix 6a example plots, both velocity and force traces have similar shapes and when these values returned to zero after the initial hammer impact, at a time equal to 2L/c, the traces diverged from one another indicating that the data is of good quality. The force and velocity records returned to zero at the end of the record and successive force and velocity records were similar, all indicating good data.

Individual pairs of force signals versus time were very similar, providing an additional comparison for good quality data. There was only one accelerometer used in this study and no comparison was made for acceleration.

Any small time shifts between the force and velocity were corrected by shifting one signal versus the other up to 0.1 milliseconds. Any data set requiring larger time shifts was eliminated from the overall average because large time shifts indicate deficiencies in the measurement system.

7.2 SPT Hammer Energy Transfer Ratios

Energy measurements of good quality data (as described in Section 7.1) for at least five sample depths per borehole were recorded while using the SPT system in as nearly a routine manner as practical for all borings, as suggested by ASTM D4366-05. Most of the boreholes were drilled to 50 feet below grade using a 5-foot sample interval and the measured energy results were averaged for each borehole (per ASTM D4633-05 standard).

7.2.1 Data Distribution

As shown in Table 5, the standard deviation of the ETR data for the entire data set averages around 6%. When the data were analyzed by only using the data obtained below 30 feet from the ground surface (per the ASTM standard), the standard deviation average if around 2.5%. Appendix 9 presents the ETR (%) data as a function of occurrence and as can be seen. The plotted data follows typical normal distribution plots with each graph having the bell curve shape.

7.2.2 Rod comparison

Boreholes GD-1 and GD-3 used the same drilling equipment (CME 55 Track Rig with Auto hammer) and drilling technique (wash bore using HW casing) except that AWJ rods were used for GD-1 and the heavier NWJ rods were used for GD-3. As seen in Table 5, the NWJ rods provided a slightly higher ETR value (~3% higher).

Similarly, boreholes GD-7 and GD-8 used the same drilling equipment (CME 45C track rig with Auto hammer) and drilling technique (3 ¹/₄ inch HSA) except that AWJ rods were used for GD-7 and NWJ rods were used for GD-8. As seen in Table 5, the NWJ rods provided a slightly higher ETR value (~4% higher).

NWJ rods are larger than AWJ rods and appear to give a higher efficiency due to the larger mass and cross-sectional area of the rod. Intuitively, this observation makes sense since the larger rod would have a larger moment of inertia thus preventing the larger drill rods from bending more than the smaller drill rods therefore allowing more of the energy to be transferred down to the sampler.

7.2.3 Hammer Comparison

Boreholes GD-2 and GD-4 used the same drill rig (CME 45C on skid rig) and drilling technique (3 ¹/₄-inch HSA), but GD-2 used an auto hammer and GD-4 used a safety hammer. The automatic hammer had an ETR value of 79.6% and the safety hammer had an ETR value of 69.2% as presented in Table 5. These observations are consistent with expected values.

Boreholes GD-5 and GD-6 used the same drill rig (CME 75 track) and similar drilling technique (3 ¹/₄-inch and 4 ¹/₄-inch HSA) but GD-5 used an auto hammer (with 4 ¹/₄-inch HSA) and GD-6 used a safety hammer (with 3 ¹/₄-inch HSA). The automatic hammer had an ETR value of 85.6% and the safety hammer had an ETR value of 60.3% as presented in Table 5. These observations are consistent with expected values.

The Mobile Safe-T-Driver using a down-hole hammer (that was kept above grade for each sample interval) had an ETR value of 51%. This was the lowest value measured in this study. An issue with measuring the hammer energy of the down-hole hammer was that the hammer had to be hoisted high up above the top of the drill string because of the hammer length (in order to have the instrumented rod stay above the ground surface). This created a large amount of rod wobble during the driving, perhaps causing lower efficiencies since there was a large amount of unsupported rod length during the test. As stated in ASTM 4633-05, down-hole hammers should not be tested and perhaps rod wobble is the reason for this recommendation.

7.3 SPT Hammer Energy Adjustment Factor

The C_n values are the ETR values divided by a constant (60% energy) and as such the comparisons made in Section 7.2 apply to these data as well except that the ratios are inversely proportional to the ETR values.

A value of 1 for C_n , by definition, means that the measured energy was 60% and therefore no correction has to be made to these data.

7.4 SPT N₆₀ Values

As can be seen in the first graph presented in Appendix 10a, the uncorrected and corrected N-values have a high amount of variability, ranging from 3 to 52 bpf and 4 to 47 bpf for the uncorrected and corrected N-values, respectively. The second and third graphs present the N₆₀-values and the N-values, respectively on single graphs. As can be seen on these graphs, the plots do not compress on to a single N₆₀ plot, which would be expected when correcting field measured N-values within the same soil deposit when different drill rigs with different hammers were employed. This large amount of variation may be caused by the grain-size distribution of each soil layer within this native sand deposit. Appendix 4 presents the percent fines and the percent gravel versus depth for the samples that were analyzed. No trend in these data is evident when comparing the percent fines and percent gravel to N₆₀ values although only 21 grain size

analyses were performed out of 102 samples, leaving 81 soil samples not analyzed. The literature reviewed for this project is not concise regarding SPT hammer energy measurements and soil type, therefore no conclusion can be made without further obtaining more grain size data.

The graphs in Appendix 10b present the N-values measured for each borehole on individual graphs, comparing the uncorrected N-value (field measured), the corrected N_{60} –value using the average C_n for that borehole, and the corrected N_{60} –value using the individually measured C_n for the corresponding depth interval. As shown on these graphs, correcting to N_{60} –values using the average C_n or using the C_n measured at that soil depth does not drastically change the plotted N-values (i.e., the individually measured C_n values are not that different than the overall average for each borehole).

7.5 Comparison to ETR Literature Values

As seen in Table 7 the five boreholes that used the Automatic hammer had an average energy transfer of 84.6% using the EFV method and 108.0% using the EF2 method. The automatic hammer average ETR in the literature using the EFV method was found to be 76.4% (a difference of 8%) and using the EF2 method was found to be 78.8% (a difference of 29%).

As seen in Table 7 the two boreholes that used the Safety hammer had an average energy of 64.8% using the EFV method and 76.7% using the EF2 method. The safety hammer average ETR in the literature using the EFV method was found to be 65% (a difference of $-\frac{1}{4}$ %) and using the EF2 method was found to be 58.7% (a difference of 18%).

As seen in Table 7 the one borehole that used the down-hole hammer had an average energy of 51% using the EFV method and 63.6% using the EF2 method. The down-hole hammer average ETR in the literature using the EFV method was found to be 43.9% (a difference of 7%) and using the EF2 method was found to be 37.5% (a difference of 26%).

As previously stated in Section 3.5.3, the EF2 method is inherently incorrect and typically is +/-10% to 15% of the EFV method (ASTM D4633-05) which more accurately estimates the actual measured energy to the sampler since a force transducer and an accelerometer are used. This study found the EF2 method to be 15% to 20% higher than the EFV method.

There is a good comparison between this study ETR values using the EFV method to the ETR literature values using the EFV method. The ETR values using the EF2 method do not compare as well, most likely due to reasons previously stated in Section 3.5.3.

7.6 Calibration Interval

Per the ASTM D4633-05, the recommended calibration interval is at a regular time interval (at least yearly), or based on frequency of use as specified in the owner's quality assurance plan, or based on the client's quality assurance requirements. For frequently used hammers, the required calibration interval may be shorter and for infrequently used hammers, it is advisable to calibrate on first use. For rope and cathead systems, calibration is also related to operator changes.

As stated in ASTM D1586-08 under the Precision and Bias section, the use of faulty equipment, such as extremely massive or damaged anvil, a rusty cathead, a low speed cathead, an old, oily rope, or massive or poorly lubricated rope sheaves can significantly contribute to differences in N-values obtained between operator-drill rig systems. The conditions occur over time and will influence the hammer efficiency and in turn affect the measured N-values with these systems.

UDOT, per Sjoblom et al., (2005) states that the Department has had a SPT hammer calibration interval of about 4 years. They observed that the efficiency of the SPT hammers typically went down about 5% with time. They recommend periodic calibration of their hammers and also suggest that keeping hammers well maintained is always good practice.

MaineDOT, per Krusinski (2007) states that the Department has established a policy to calibrate their rigs on an annual basis. They also require all contracted automatic and spooling winches on State Projects to be calibrated annually.

MinnesotaDOT and OregonDOT both have found that calibrating SPT hammers provides value in their engineering designs as it provides standardization to all reported N-values (all converted to N_{60}) and it was estimated that the cost of calibrating was more than offset by the reduction in conservatism when using more efficient hammers (Krusinski 2007).

8 CONCLUSIONS AND RECOMMENDATIONS

Nine different SPT hammer configurations were tested in this study. Variables included hammer type, drill rods, rig type, soil type and condition, operator, and drilling method. This study attempted to isolate these variables in order to quantify the contribution of each variable on the measured SPT hammer energy.

8.1 SPT Hammer Energy Transfer Ratio

The recommended energy transfer ratio for the tested SPT hammer configurations are presented in Table 7. The automatic hammer on the CME 55 – Track rig (VTrans) had the highest efficiency, 90.5% and the Mobile Safety Driver on the Simco 2800 (SDI) had the lowest efficiency, 51%. The safety hammer on the CME 45C skid-rig trailer (VTrans) had an efficiency of 69.2% and the safety hammer on the CME 75 track rig (TransTech) had an efficiency of 60.3%. The other automatic hammers averaged about 83%. All measured hammer energies compared well with literature values. VTrans should use the ETR values presented in Table 7 for their respective drill rigs and equipment configurations. It is recommended that this value be listed on all boring logs with the date of last calibration and recommended date of recalibration. The field N-values (as recorded in the field) should be on the boring logs and the corrected N₆₀ values using the respective ETR value should be listed adjacent to the field value.

The table uses a ^ symbol to indicate the standard equipment used by these drill rigs. These are the typical efficiencies of the hammers operating in the field by these drill rigs.

SPT Test Date	Hammer Type	Drill Rig	Drill Rod	ETR (%)
9/23/2008	CME Automatic	CME 55 - Track	AWJ	87.5^
9/23/2008	CME Automatic	CME 45C Skid-rig on trailer	AWJ	79.6^
9/24/2008	CME Automatic	CME 55 - Track	NWJ	90.5
9/24/2008	Safety	CME 45C Skid-rig on trailer	AWJ	69.2
9/25/2008	CME Automatic	CME 75 - Track	AWJ	85.6^
9/25/2008	Safety	CME 75 - Track	AWJ	60.3*
9/26/2008	CME Automatic	CME 45C Track	AWJ	80.2^
SPT Test Date	CME Automatic	CME 45C Track	NWJ	84.2

Table 7 Recommended ETR Values for the Tested SPT Hammer Configurations.

9/26/2008	Mobile Safety Driver	Simco 2800	AWJ	51.0^

* value calculated from measurements above the recommended 30-foot depth ^ standard equipment used on drill rig on typical projects

8.2 SPT Hammer Energy Adjustment Factor

The recommended adjustment factors for the tested SPT hammer configurations are presented in Table 8. The automatic hammer on the CME 55 – Track rig had the highest adjustment factor, 1.51 and the Mobile Safety Driver on the Simco 2800 had the lowest adjustment factor, 0.85 The safety hammer on the CME 45C skid-rig trailer had an adjustment factor of 1.15. The other automatic hammers averaged about 1.4. All measured adjustment factors compared well with literature values. VTrans should use the C_n values presented in Table 8 for their respective drill rigs and equipment configurations. It is recommended that this value be listed on all boring logs with the date of last calibration and recommended date of recalibration. The field N-values (as recorded in the field) should be on the boring logs and the corrected N_{60} values using the respective C_n value should be listed adjacent to the field value.

The table uses a $^{\circ}$ symbol to indicate the standard equipment used by these drill rigs. These values should be used to correct field N-values to N₆₀-values when N₆₀-values are needed for correlation to engineering properties using N₆₀-value correlations or liquefaction design (per ASTM D6066-96).

SPT Test Date	Hammer Type	Drill Rig	Drill Rod	Cn
9/23/2008	CME Automatic	CME 55 - Track	AWJ	1.46^
9/23/2008	CME Automatic	CME 45C Skid-rig on trailer	AWJ	1.33^
9/24/2008	CME Automatic	CME 55 - Track	NWJ	1.51
9/24/2008	Safety	CME 45C Skid-rig on trailer	AWJ	1.15
9/25/2008	CME Automatic	CME 75 - Track	AWJ	1.43^
9/25/2008	Safety	CME 75 - Track	AWJ	1.00*
9/26/2008	CME Automatic	CME 45C Track	AWJ	1.34^
SPT Test Date	CME Automatic	CME 45C Track	NWJ	1.40
9/26/2008	Mobile Safety Driver	Simco 2800	AWJ	0.85^

Table 8 Recommended Adjustment Factors for the SPT Hammer Configurations Tested.

* value calculated from measurements above the recommended 30-foot depth ^ standard equipment used on drill rig on typical projects

8.3 Calibration Interval

We recommended that the SPT hammers be recalibrated in one year (as recommended in ASTM 4633-05) and then the new SPT hammer energies compared to September 2008 data. If less than 5% change is noted on average, we recommend extending the next calibration date out two years (following the general procedure established by UDOT). Prior to recalibrating, the hammers should be put on a regularly scheduled service/maintenance plan per the manufacturers recommendations.

8.4 Future Work

An attempt was made to determine some of the major causes of measured differences in hammer efficiency (other than hammer type). A number of variables (e.g., rod type, soil type, groundwater condition) became evident as potential causes, but isolation of any one variable was not possible. To further this study, we recommend that additional boreholes be drilled in the same study area and variables be isolated in the additional test locations. These additional borings would provide further data to assist in determining the variable contribution to hammer energy efficiency. This study data could help explain why the corrected SPT N_{60} did not converge on a band of data versus depth in the study site (see Appendix 10). This additional work will significantly contribute to the current research literature as isolation of soil type on SPT hammer energy measurement has not been well documented. The question of the need to adjust the ETR value because of grain size can be evaluated with this additional research.

The completion of the grain-size analyses on the remaining 81 soil samples is also recommended to determine if percent fines, percent gravel, or percent sand have an affect on the measured energies. This will assist in the evaluation of soil type affect on SPT hammer energy measurement.

9 ACKNOWLEDGEMENTS

The author would like to acknowledge all involved in this research project. First the author acknowledges VTrans for the funding for this project and having the insight to recognize the importance of these measurements for geotechnical engineering design work. VTrans also provided three drill rigs to be tested and the personnel to run those rigs over multiple days. This work provided the bulk of the data presented in this report.

The author acknowledges two drilling companies that donated their time, personnel, and equipment for this study. TransTech Drilling Services from Schenectady, NY and Specialty Drilling and Investigation from South Burlington, VT both donated one day of drilling services for this project. The time and effort from these companies is greatly appreciated.

The author acknowledges Professor Alan J. Lutenegger from the University of Massachusetts at Amherst for his expertise in in situ testing, for reviewing drafts of this report, and for providing the testing equipment used in this study.

The author acknowledges Miller Construction Company for allowing us to perform the study on their property in Windsor, VT. The subsurface conditions were ideal for this study and the author is extremely grateful to Miller Construction for the access to their site.

The author acknowledges Geosciences Testing and Research, Inc. (GTR) for their work in reducing and presenting the SPT Analyzer data collected in this study. The data presented in Appendices 6 and 8 were from the PDA-W[®] software used to interpret the field data and PDI plot[®] software used to present the data in graphical form.

10 REFERENCES

Abou-matar, H., and Goble, G.G. (1997). "SPT Dynamic Analysis and Measurements." J. Geotech. Geoenviron. Eng., ASCE, 123(10), 921-928.

Aggour, M.S., and Radding, W.R. (2001). "Standard Penetration Test (SPT) Correction." Maryland Department of Transportation, Maryland.

Akbas, S.O., and Kulhawy, F.H. (2008). "Case History of SPT Energy Ration for an Automatic Hammer in Northeastern U.S. Practice." *Geotechnical and Geophysical Site Characterization,* Taylor and Francis Group, London.

American Society for Testing and Materials (ASTM) (2008). 2008 Annual Book of ASTM Standards, Volume 04.08 Soil and Rock (I): D420-D5876, West Conshohocken, Pennsylvania.

Bosscher, P., and Showers, D. (1987). "Effect of Soil Type on Standard Penetration Test Input Energy." *J. Geotech. Eng.*, ASCE, 113(4), 385-389.

Butler, J.J., Caliendo, J.A., and Goble, G.G. (1998). "Comparison of SPT Energy Measurement Methods." *Proc., Int. Conf. on Site Characterization, ISC '98,* A.A. Balkema, Rotterdam, The Netherlands, 901-906.

Caltrans. (2005-2008). "Drill Rig Hammer Evaluation." *Foundation Testing Branch,* State of California Department of Transportation, California.

Daniel, C., and Howie, J. (2005). "Effect of hammer shape on energy transfer measurement in the Standard Penetration Test." *Soils and Foundations,* Japanese Geotechnical Society, Tainan, Taiwan, 45(5), 121-128.

Diedrich Drill Incorporated. (2004). "Diedrich Automatic Hammer Operation Instructions." LaPorte, IN.

Diedrich Drill Incorporated. (1996). "Diedrich Automatic SPT Hammer System." LaPorte, IN.

Doll, C.G., Stewart, D.P., and MacClintock, P. (1970). "Surficial Geologic Map of Vermont." *Vermont Department of Water Resources*, Map, scale 1:250000.

Drumright, E.E., Pfingsten, C.W., and Lukas, R.G. (1996). "Influence of Hammer Type on SPT Results." *J. Geotech. Eng.*, ASCE, 122(7), 598-599.

Farrar, J.A. (1998). "Summary of Standard Penetration Test (SPT) Energy Measurement Experiment." *Proc., Int. Conf. on Site Characterization, ISC '98,* A.A. Balkema, Rotterdam, The Netherlands, 919-926.

Farrar, J.A., and Chitwood, D. (1999). "CME Automatic Hammer Operations Bulletin." *Earth Sciences and Research Laboratory*, U.S. Department of the Interior Bureau of Reclamation, Denver, CO.

Finno, R.J. (1989). "Subsurface Conditions and Pile Installation Data, Predicted and Observed Behavior of Piles." *Results of a Pile Prediction Symposium*, ASCE Geotechnical Special Publication, No. 23, 1-74.

Frost, D.J. (1992). "Evaluation of the Repeatability and Efficiency of Energy Delivered with a Diedrich Automatic SPT Hammer System." Diedrich Drill Incorporated, LaPorte, IN.

Goble, G.G., and Abou-matar, H. (1992). "Determination of Wave Equation Soil Constants from the Standard Penetration Test." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles,* A.A. Balkema, Rotterdam, The Netherlands, 99-103.

Hall, J.R. (1982). "Drill Rod Energy as a Basis For Correlation for SPT Data." *Proc. of the 2nd Symp. On Penetration Testing.*, A.A. Balkema, Rotterdam, 57-60.

Howie, J., and Campanella R.G. (2008). "Energy Measurement in the Standard Penetration Test (SPT)." Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, <www.civil.ubc.ca/research/geotech/sptenergy/sptenergy.htm> (April 16, 2009).

ISSMFE Technical Committee on Penetration Testing, SPT Working Party. (1988). "Standard Penetration Test (SPT): International Reference Test Procedure." *Proc. of the 1st Int. Symp. On Penetration Testing,* A.A. Balkema, Rotterdam, The Netherlands, 3-26.

Johnsen, L.F., Bemben, S.M., and Jagello, J.J. (2001). "SPT Energy Transfer Measurements for Liquefaction Evaluations in the Northeast." *Proc. of the 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,* San Diego, CA, 4.20, 1-6.

Kim, D.S., Seo, W.S., and Bang, E.S. (2004). "Energy Ratio Measurement of SPT Equipment." *Proc. ISC-2 on Geotechnical and Geophysical Site Characterization,* Millpress, Rotterdam, The Netherlands, 339-344.

Kovacs, W.D., Evans, J.C., and Griffith, A.H. (1975). "A Comparative Investigation of the Mobile Drilling Company's Safe-T-Driver with the Standard Cathead with Manila Rope for the Performance of the Standard Penetration Test." *School of Civil Engineering,* Purdue University, West Lafayette, IN.

Kovacs, W.D., Evans, J.C., and Griffith, A.H. (1977). "Towards a More Standardized SPT." *Proc. of the 9th Int. Conf. on Soil Mechanics and Foundation Engineering*, Tokyo, Japan, 269-276.

Kovacs, W.D., Griffith, A.H., and Evans, J.C. (1978). "Alternative to the Cathead and Rope for the Standard Penetration Test." *Geotech. Testing J.*, 1(2), 72-81.

Kovacs, W.D., Salomone, L.A., and Yokel, F.Y. (1981). "Energy Measurements in the Standard Penetration Test." *Natl. Bureau of Standards Bldg. Sci. Series 135,* U.S. Department of Commerce, Washington, D.C.

Kovacs, W.D., Salomone, L.A., and Yokel, F.Y. (1983). "Comparison of Energy Measurements in the Standard Penetration Test Using the Cathead and Rope Method." *National Bureau of Standards Report to the US Nuclear Regulatory Commission,* Washington, D.C.

Krusinski, L. (2007). "SPT Energy Measurements with the Pile Driving Analyzer." Maine Department of Transportation, 48th Annual Conference of the Northeast States Geotechnical Engineers, October 23-25, 2007, John Hancock Hotel & Conference Center, Boston, MA

Little, R.D. (2004). "Geological History of the Connecticut River Valley." *Earth View LLC*, http://www.earthview.pair.com/ctriver.html (June 9, 2009).

Lutenegger, A.J. (1999). "In Situ Testing Techniques in Geotechnical Engineering." *Department of Civil and Environmental Engineering,* University of Massachusetts, Amherst, MA.

Morgano, C.M., and Liang, R. (1992). "Energy Transfer in SPT - Rod Length Effect." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles,* A.A. Balkema, Rotterdam, The Netherlands, 121-127.

Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P. (2004). "Energy Measurements for Standard Penetration Tests and the Effects of the Length of the Rods." *Proc. ISC-2 on Geotechnical and Geophysical Site Characterization*, Millpress, Rotterdam, The Netherlands, 351-358.

Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P. (2005). "Energy Efficiency for Standard Penetration Tests" *J. Geotech. Geoenviron. Eng.*, ASCE, 131(10), 1252-1263.

Pile Dynamics, Inc. (2004). "Pile Driving Analyzer Manual: PDA-W Manual of Operation." *Pile Dynamics, Inc.*, Cleveland, OH.

Pile Dynamics, Inc. (1999). "SPT Analyzer User's Manual." Pile Dynamics, Inc., Cleveland, OH, 1-30.

Riggs, C.O., Schmidt, N.O., and Rassieur, C.L. (1983). "Reproducible SPT Hammer Impact Force with an Automatic Free Fall SPT Hammer System." *Geotech. Testing J.*, 6(3), 201-209.

Robertson, P.K., Woeller, D.J., and Addo, O. (1992). "Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer." *Can. Geotech. J.*, 29, 551-557.

Schmertmann, J., and Palacios, A. (1979). "Energy Dynamics of SPT." *J. Geotech. Engrg. Div.*, ASCE, 105(8), 909-926.

Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985). "The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations." *J. Geotech. Eng.*, ASCE, 111(12), 1425-1445.

Sjoblom, D., Bischoff, J., and Cox, K. (2002). "SPT Energy Measurements with the PDA." *Proc., of the 2nd Int. Conf. on the Application of Geophysicals and NDT Methodologies to Transportation Facilities and Infrastructure,* Federal Highway Administration, Washington, D.C., 15-19.

Skempton, A.W. (1986). "Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Density, Particle Size, Aging and Overconsolidation." *Geotechnique*, London, 36(3), 425-447.

Steiger, F. (1980). "Experimental Investigation of the Force/Penetration Relationships of Rod Impact." *Geotech. Testing J.*, 3(4), 163-166.

Sy, A., and Campanella, R.G. (1993). "Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer." *Can. Geotech. J.*, 30, 876-882.

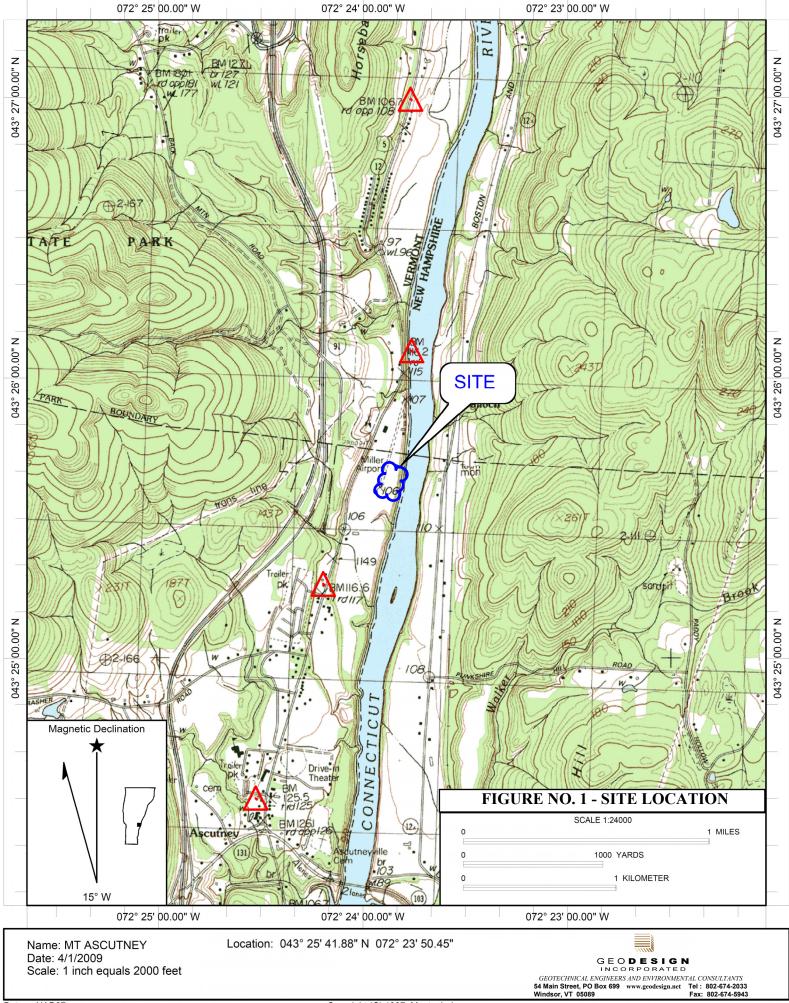
Tsai, J.S., Liou, Y.J., Liu, F.C., and Chen, C.H. (2004). "Effect of Hammer Shape on Energy Transfer Measurement in the Standard Penetration Test." *Soils and Foundations,* Japanese Geotechnical Society, Tainan, Taiwan, 44(3), 103-114.

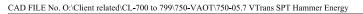
U.S. Army Corps of Engineers. (1988). "Engineering and Design Standard Penetration Test." Department of the Army, Washington, D.C., No. 1110-1-138.

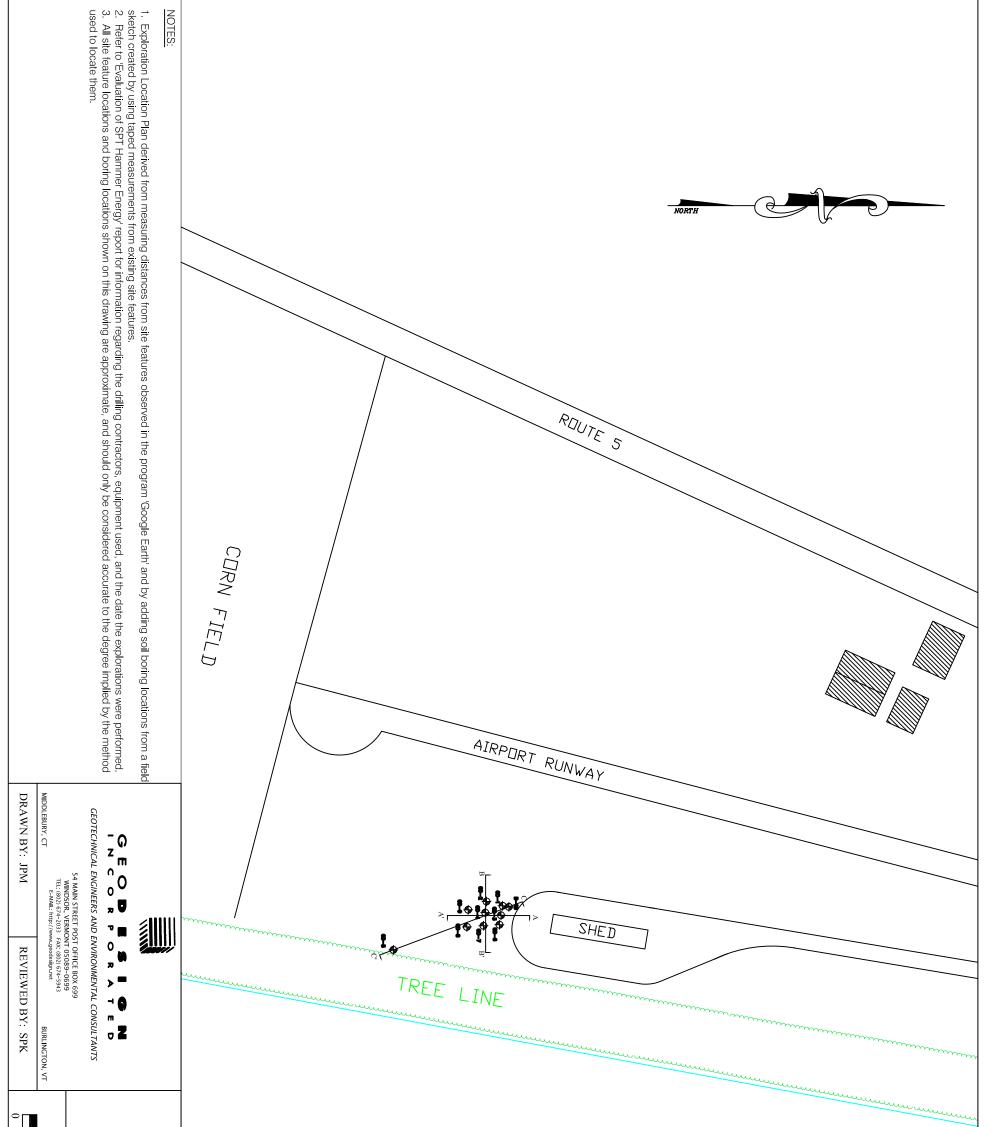
U.S. Patent Office. (2001). "US Patent 6286613-Impact method and the device used in standard penetration test." <www.patents/6286613/description.html> (April 16, 2009).

van der Graaf, H.J., and van den Heuvel, M.H.J.P. (1992). "Determination of the Penetration Energy in the Standard Penetration Test." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles,* A.A. Balkema, Rotterdam, The Netherlands, 253-257.

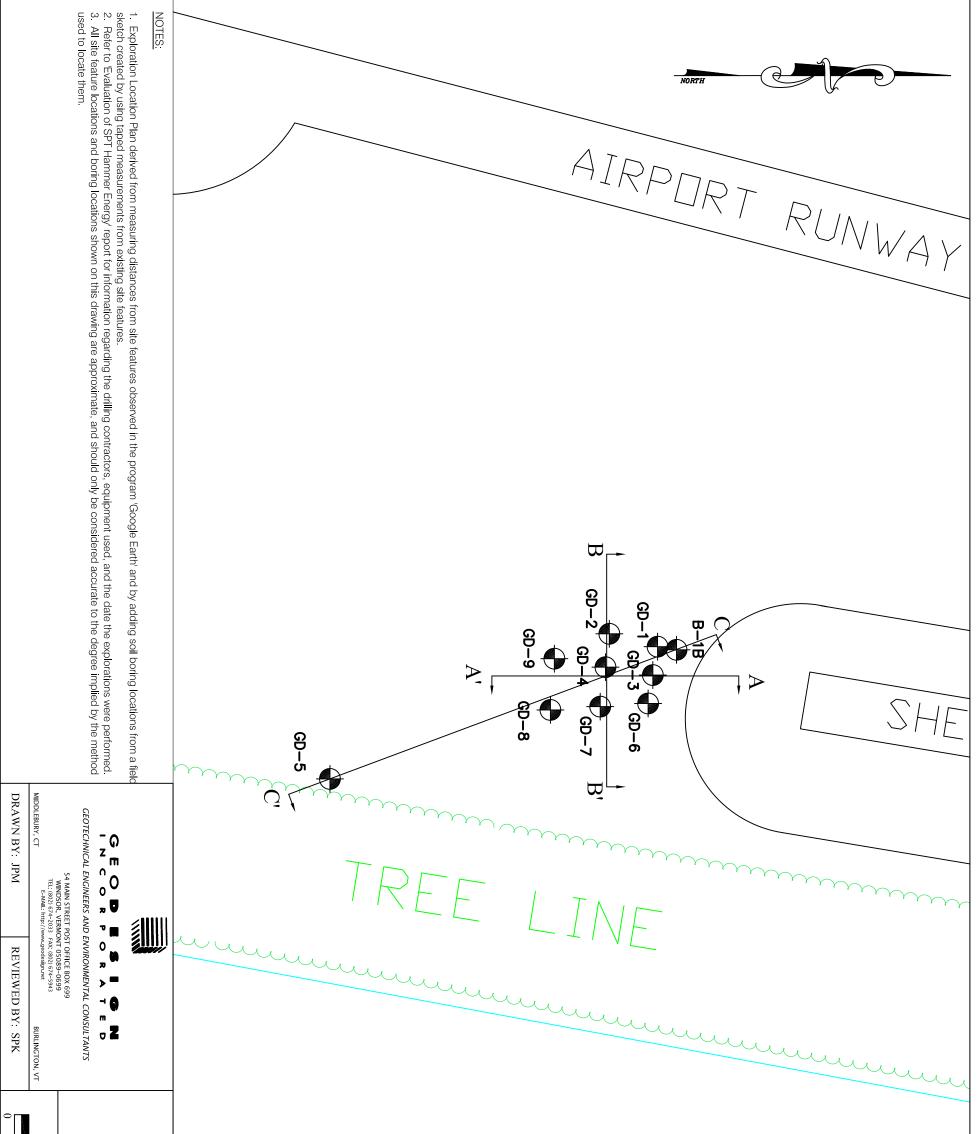
Yokel, F. (1982). "Energy Transfer in Standard Penetration Test." *J. Geotech. Engrg. Div.*, ASCE, 108(9), 1197-1202.


Youd, T.L., Bartholomew, H.W., and Steidl, J.H. (2008). "SPT Hammer Energy Ratio Versus Drop Height." *J. Geotech. Geoenviron. Eng.*, ASCE, 134(3), 397-400.

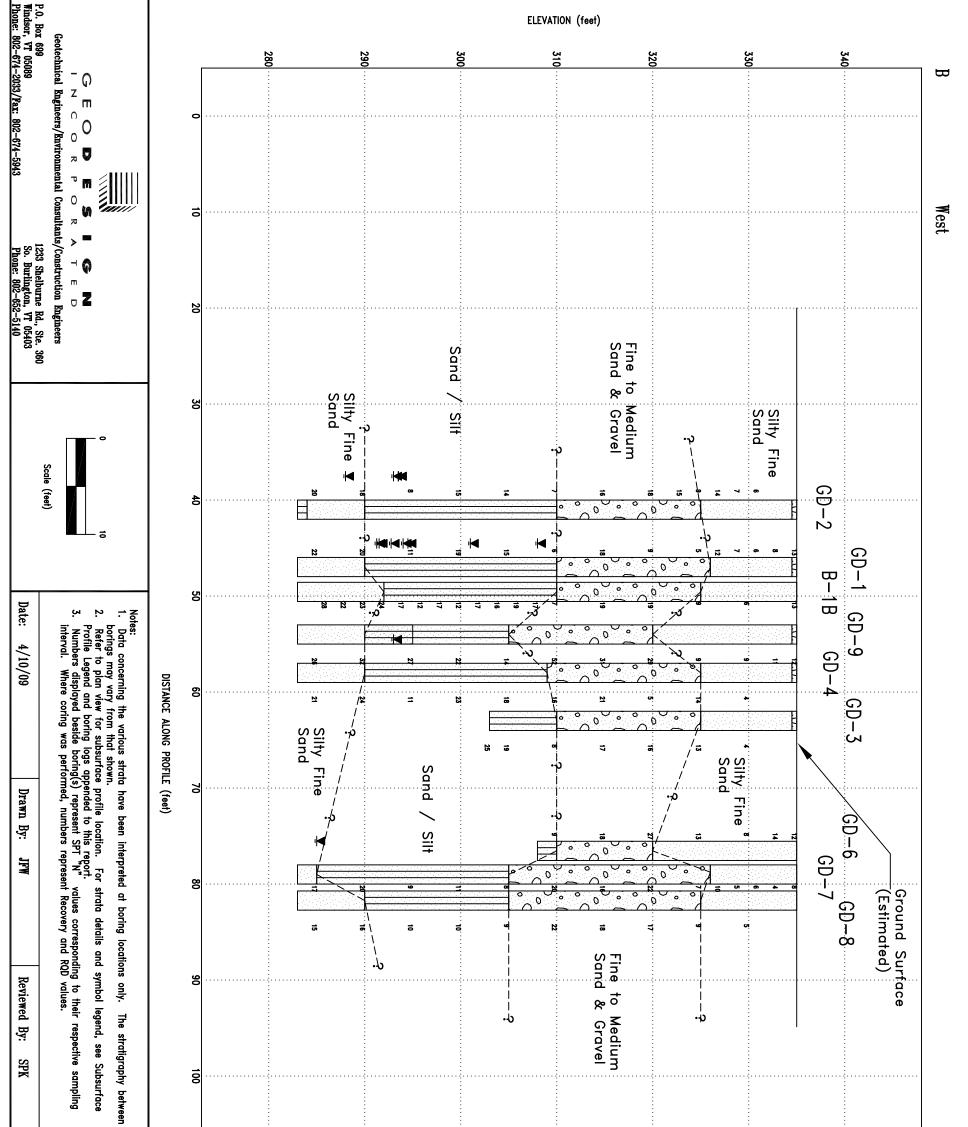

Youd, T.L., et al. (2001). "Liquefaction Resistance of Soils." *J. Geotech. Geoenviron. Eng.*, ASCE, 127(10), 817-833.


Evaluation of SPT Hammer Energy Variability Windsor, VT Geo**Design** Project No. 750-05.7 June 16, 2009 – updated October 15, 2009 and December 22, 2009

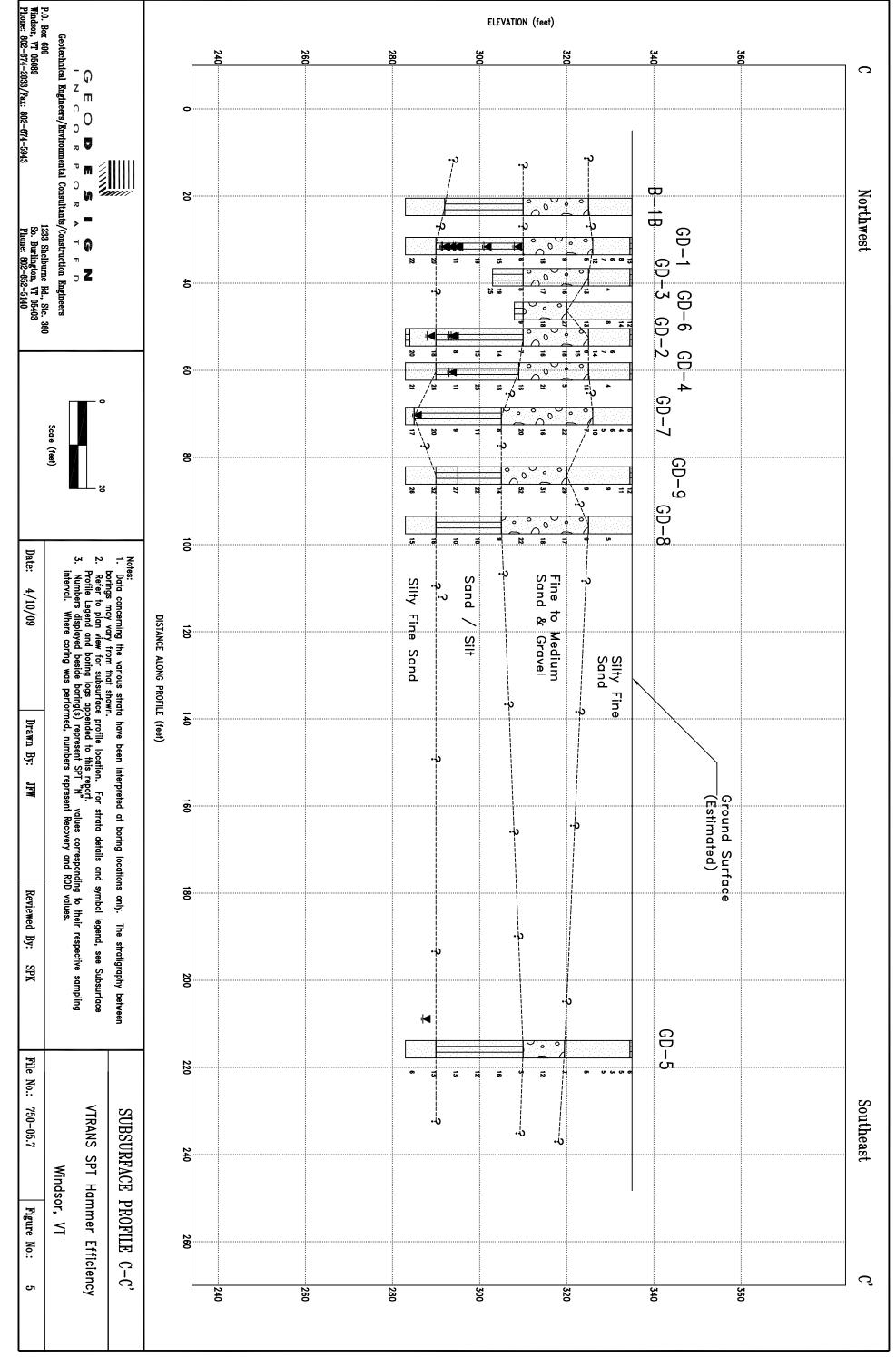
11 APPENDICES


APPENDIX 1 – SITE LOCATION

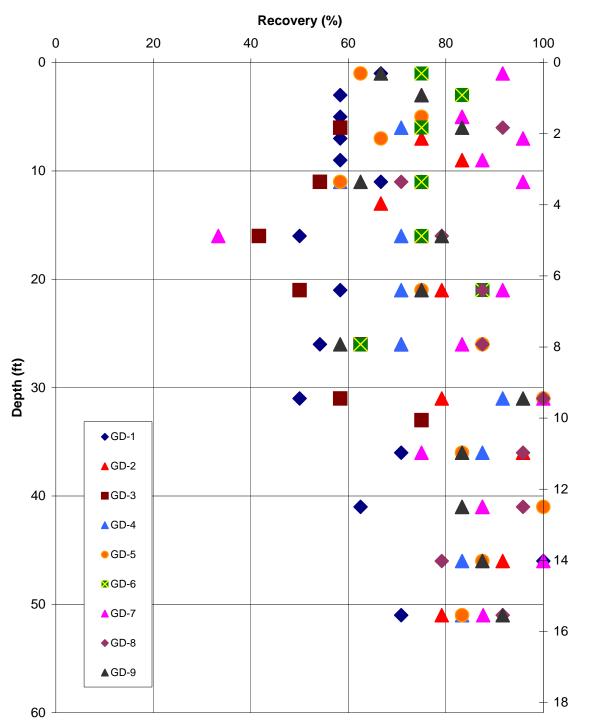
SCALE IN FEET 1" = 150' 125 150 300	NSTRU OF SP DSOR, FILE NO.	CONNECTICUT RIVER
DATE: 04/01/09 FIGURE NO. 2A	ICTION SITE PLAN T HAMMER ENERGY VERMONT 750-05.7	



SCALE IN FEET 1" = 50' 25 50 100	TION L OF SPT DSOR, FILE NO.	CONNECTICUT RIVER
DATE: 04/01/09 FIGURE NO. 2B	OCATION PLAN ' HAMMER ENERGY VERMONT 750-05.7	INTVER


APPENDIX 2 – CROSS SECTIONS

		en						urface d)	
File No.: 750-05.7	VTRANS SPT Win	SUBSURFACE	110 120						South
Figure No.: 3	PT Hammer Efficiency Windsor, VT	E PROFILE A-A'	130		300	310		340	A'


		ien						
File No.: 750-05.7	VTRANS SPT Wi	SUBSURFACE	110 120					 East
Figure No.: 4	PT Hammer Efficiency Windsor, VT	ACE PROFILE B-B'	130	 280 280			7 N 740	B'

APPENDIX 3 – BORING LOGS

GeoDesign, Inc. Windsor, VT Job No. 750-5.7

SPT Hammer Energy Variability Evaluation Windsor, VT

Depth (m)

Γ																	LOG		Bo	ring No.:	В	-1B
				БЕ	- C			8 5 I	G	N				Р	rojec	et Na	me		Pag	ge No.:	1	of 2
	<i>a</i> .	,	I	N	с	OR	PO	R A	Т		г .		VTRAN	IS SP	тн	amr	mer Efficien	су	File	e No.:	750)-05.7
	P.O. Wind	Box lsor.	699 VT	05089)		imental (674-5943	123 Sc	33 Shelb . Burlin	<i>struction</i> urne Rd. gton, VT 2-652-51	, Suite 0540	e 360		W	inds	sor,	VT		Ch	ecked By	:	3PK
	ring C				VTRA		074-374.	, 11	ione. 80	2-032-31	40		<u> </u>	Casing:	San	npler:		Ground	water (Observations		
	eman:			-	Glen F								Туре:	HW		SS	Date	Depth (ft)	Elev. (ft)		Notes	
	oDesig te Star		ep.:	-		DBSERV mber 16	/ED BY G , 2008			Septer	nber 16	6, 2008	I.D.: Hammer Wt.:	4.0 in NA		88 in. 0 lbs	▼ 9/16/08, 0:00			Wet sample	ə.	
	Coord		:	_					oordinate:				Hammer Fall:) in.	₹ 9/16/08, 0:00			Wet sample		
	ound S tion:	Surfa	ce Ele	evation	(feet):	Offset:	335						Rig Type: Hammer/Rod T	CME 5			Y Y					
518	Sample Information													<u>- Avvj</u>)	¥					·	
	4										Strata Descrip		lo		¥ ¥							
(tj)	(1) (1)									Coring Time (min./ft)	Moisture Content (%)			Symbol								
Depth (ft)	Time Table Time Table Ta									Coring	Moist	Depth & Elevation(feet)			Class	Sar sification System: B			iption			
—		S1	SS	24	19	0	5	6	7	7		14	Silty Fir			S1) Medium dens	se, bro		SAND an	d SIL	Τ,
	Sand											tra	ce Gravel, moi	st.								
Ę	5												-			60	Looo brown	CAN			+	
		S2	SS	24	12	5	3	3	3	5		18.3	-) Loose, browr avel, moist.	I SAN	iD, so	ome Siit,	trace	
													-									
-													-									
10	,												10	-								
	,	S3	SS	24	13	10	6	4	5	5		18	Fine to 325.0 S3) Loose, brown SAN medium Sand Silt, wet.					ID. lit	tle Grave	el, trac	æ	
													& Grav		0 (511	l, wel.					
													-		0							
													-		0							
15	5	S4	SS	24	13	45	10	10	9	10		10.8	1		0	S4) Medium dens	se, bro	own S	SAND, lit	tle Gr	avel
		54	55	24	13	15	10	10	9	10		10.8	-		o C	tra	ce Silt, wet.			<i></i>		,
													-		0							
													-									
20)]		0 C							
		S5	SS	24	13	20	11	9	10	11		11.6	-		0) Medium dens avel, trace Silt,		own \$	SAND, so	ome	
													-		b. 1							
													-		o C							
60	-														0 (
5/29/09	5	S6	SS	24	12	25	6	4	3	6		26.1	25 Sand/	310.0	h) Loose, browr	SILT	, sor	ne Sand,	trace	,
.GDT (-				<u> </u>					-	1		Silt				avel, wet.					
	1	S7	SS	24	13	27	6	8	9	12	1	17.3	1			S7) Medium dens	se, bro	own \$	SAND, so	ome S	Silt,
AND														ce Gravel, moi								
LS NO		S8	SS	24	13	29	9	8	11	11		15.3				S8) Medium dens	se, bro	own S	SAND, so	ome S	Silt,
DESIC	1)	Car	not	adva	ance	casing	at 10',	2 gallo	ons of b	entonit	e use	ed.										
J GEOD Remarks	3)	2 g	allor	ns of	bento	onite u	sed adv	vancing	from 1	0' to 15 5' to 20)' dee	ep.										
GPJ Rei		Fro mpl		5' to	49' de	eep, s	ampling	consis	sted of a	a 2' san	nple,	follow	ed by cleanir	ng the h	nole v	with t	he rollercone f	or 2',	follov	wed by ar	nothe	r
750-05.7.GPJ GEODESIGN STANDARD Z Remarks K	5)	Adv 1) Strat	anc ification	Lines Re	present Ap	pproximate H		een Material T	ypes, Transitio	ons May Be Gra												
	tes:	2) Wate A.C.	er Level = After	Readings coring; N	Have Beer .R. = Not I	n Made At T Recorded.	imes And Und	er Conditions	Stated, Fluctua	tions Of Groun	ndwater M		te To Other Factors Than '		At The Ti	me Measu	irements Were Made.					
750-05.7	,	WOR/I	I=Weig	ht of Rod/	Hammer		Driven; G=Gra			spiit Barrel (Sp	an Spoon)	, 51=Shelby	Tube; Geo=GeoProbe V	vane;				[Bor	ing No.:	R-1	R
75(indary between			ay be gradual.									DOL	mg 190	ויט	5

												BORING LOG						Во	ring No.:	B-1B		
												Project Name							ge No.:	2 of 2		
INCORPORATED													VTRANS SPT Hammer Efficiency Windsor, VT						Fil	e No.:	750-05.7	
Geotechnical Engineers-Environmental Consultants-Construction Engineers P.O. Box 699 1233 Shelburne Rd., Suite 360 Windsor, VT 05089 So. Burlington, VT 05403 Phone: 802-674-2033/Fax: 802-674-5943 Phone: 802-652-5140																			Checked By: SPK			
Boring Company: VTRANS												Casing: Sampler:					Groundwater Observations					
								Туре: I.D.:	HW		SS 38 in.	Date	Depth (ft)	Elev. (ft)	1	Notes						
								Hammer Wt.:	NA		0 lbs	▼ 9/16/08, 0:00	10.0	325.0	Wet sample	. <u>.</u>						
									Hammer Fal <u>l:</u> Rig Type:			0 in.	¥ 9/16/08, 0:00 ¥	39.0	296.0	Wet sample	<u>.</u>					
Station: Offset: ft										Hammer/Rod T				¥								
Sample Information									Strat				¥ ¥									
	Casing Blows/ft			ų	Recovery (inches)	Depth (ft)					ime	(%)	Descript	tion	Symbol		Ť					
Depth (ft)	sing B	Number	e	Penetration (inches)			E	Blows / 6 i	nch Interv	val	Coring Time (min./ft)	Moisture Content (%)	Depth & Elevation(feet)		Syı		Sample Description					
Del	Cas	Nu	Type	Per (inc	(inc		0 - 6	6 - 12	12 - 18	18 - 24						Classification System: Burmister						
		S9 SS 24			14	31	5	7	9	11		19.3	Sand/ Silt (Contin			S9) Medium dense, brown SAND, some Silt,						
		39	33	24	14	31	5	/	9			19.5					ce Gravel, mo			<i></i>	ine end,	
		S10	SS	24	14	33	7	8	9	12		16					S10) Medium dense, brown SAND, some Silt, trace Gravel, moist.S11) Medium dense, brown SAND, some Silt, trace Gravel, moist.					
35		S11	SS	24	23	35	7	6	6	7		14.5										
			00	0.1	45	07						40.0				S1	2) Medium de	nse h	nowr	SII T and		
		S12	SS	24	15	37	7	9	8	8		19.9		¥		littl	e Gravel, moi	st.				
40		S13	SS	24	18	39	4	6	6	7		27.6					3) Medium de ce Gravel, we		orowr	i SILT, littl	e Sand,	
		S14	SS	24	12	41	6	7	10	10		21.7	43				4) Medium de t, trace Grave		orowr	i-gray SAI	ND, some	
45		S15	SS	24	14	43	9	11	13	15		18.5		ne 292.0 I)		5) Medium de t, wet.	ense, t	orowr	i-gray SAI	ND, little	
43		S16	SS	24	13	45	8	10	13	16		18.4					6) Medium de t, wet.	ense, b	orowr	i-gray SAI	ND, little	
		S17	SS	24	13	47	9	8	14	16		20.4					7) Medium de t, wet.	ense, b	orowr	n-gray SAI	ND, little	
50		S18	SS	24	15	49	9	12	16	18		19.1					8) Medium de t, wet.	ense, b	orowr	i-gray SAI	ND, little	
													52									
													Bottor of Explora at 51.0	ation)							
55																						
55																						
Remarks	60 60 <td< td=""><td></td></td<>																					
1) Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual. 10 Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual. 2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made. A.C. = After coring: N.R. = Not Recorded. 3) Sample Type Coding: A-Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;																						
	V 4	VOR/H	I=Weig ortions	ht of Rod Used: Tra	Hammer ce = 1-10%	; Little = 10)-20%; Some =	ab; PS=Piston 20-35%; And material types	= 35-50%		spoon);	. 3 1 −3nelby	rabe, Geo=GeoProbe V:	– vane;					Bor	ing No.:	B-1B	

Γ														RIN Projec		LOG		Bo	ring No.:	_0	GD-1
			c	ЗE		D		() S I	G	N				ý				Pag	ge No.:	1	l of 2
	Geot	echr	l ical	N Engir	-	O R Enviror	Р О nmental (R A Consulta	хте ints-Con	E D struction	ı Engi	neers	VTRANS SI	PT H	lamr	ner Efficien	су	File	e No.:	_75	0-05.7
	P.O. Wind	Box lsor,	699 VT	05089)		674-5943	123 So	33 Shelb . Burlin	urne Rd. gton, VT 2-652-51	, Suite 0540	e 360	V	Vind	sor,	VT		Ch	ecked By	:	SPK
Во	ring C	omp	any:	_	VTRA	NS							Casing:	Sar	npler:	(Ground	water (Observations		
	eman: oDesig		en :	-	Glen F		& Joe Kid	d					Type: <u>HW</u> I.D.: 4.0 in.		SS 38 in.	Date	Depth (ft)	Elev. (ft)		Notes	
	te Star		сp	_		mber 23			Finished:	Septer	nber 24	4, 2008	Hammer Wt.: NA		0 lbs	▼ 9/24/08, 0:00	43.5	291.5	In open hol	e	
	Coord				(2)			E. Co	oordinate:				Hammer Fal <u>l: NA</u>		0 in.	▼ 9/24/08, 14:00			-	sed at	45'
	ound S tion:	Surfa	ce Ele	evation	(feet):	Offset:	335 ft						Rig Type: CME Hammer/Rod Type: Aut	<u>55 Trac</u> o - AW		 ¥ 9/24/08, 17:30 ¥ 9/25/08, 9:00 			In open hol	e (colla	apse at 45'
						S	ample l	Informa	ation				Strata			¥ 9/25/08, 16:00	41.0	294.0	In open hol	e (colla	apse at 45'
	Casing Blows/ft			c							ne	9	Description	Symbol		 ✓ 9/26/08, 11:40 ✓ 9/29/08, 13:00 					
Depth (ft)	ng Blo	ber	0	Penetration (inches)	Recovery (inches)	Depth (ft)	В	Blows / 6 i	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)		Syn					iption	0 (0011	4000 ut 40
Dept	Casi	Number	Type	Pene (inch	Recc	Dept	0 - 6	6 - 12	12 - 18	18 - 24	Cori (min	Mois Cont	Depth & Elevation(feet)			ification System: B	-		ipuon		
		S1	SS	24	16	0	2	6	7	6			Topsoil Silty Fine 334	.5	S1 roc) Top 3" - Brow	n fine	e SAI	ND and S	SILT,	trace
		S2	SS	24	14	2	2	3	5	4			Sand			ttom 13" - Tanı	nish t	orowr	fine SA	ND, li	ittle(+)
															S2) Tannish brow	n fine	e SAN	ND, little	Silt, t	race
Ę	5	S3	SS	24	14	4	2	3	3	4					S3) Tannish brow	n fine	e SAN	ND, little	Silt, t	race
		S4	SS	24	14	6	2	3	4	4			S4) Tannish brow	n fine	e SAN	ND, little	Silt, t	race		
	5 S3 S2 24 14 4 2 3 3 4															t.					
10	Image: Second																			AND,	trace
		S6	SS	24	16	10	5	3	2	3) o)	S6) Brown fine S/				ivel, t	trace
	10 10 <th10< th=""> 10 10 <th1< td=""><td></td></th1<></th10<>																				
15	10 See SS 24 16 10 5 3 2 3 Medium Sand and Gravel Silt, trace fine Gravel, moist. See SS 24 16 10 5 3 2 3 Silt, trace fine Gravel, moist. See SS 24 16 10 5 3 2 3 Silt, trace fine Gravel, moist. See SS 24 16 10 5 3 2 3 Silt, moist. See SS 24 16 10 5 3 2 3 Silt, moist. See SS 24 16 10 5 10 10 Silt, moist. See SS 10 10 10 10 10 10 10 15 10 10 10 10 10 10 10 10 15 10 10 10 10 10 10 10 10 15 10 10 10 10 10 10 10 10																				
																ne					
	15 S7 S5 24 12 15 6																				
	-													0 0							
_20)	S8	SS	24	14	20	4	9	9	8) o) Brown fine to avel, trace Silt,		ium S	SAND, tra	ice fi	ne
	-													0 0							
														0 (
2/23/08	5		00		40	65	_						25 Sand/Silt 310		02) Brown fine S/		some	o(+) Silt	trace	clay
GDT		S9	SS	24	13	25	7	3	3	5					sea	am layered, tra	ce mi	ica, w	/et.		, oray
NDARD													-								
A STAN 30)			1																	
750-05.7.GPJ GEODESIGN STANDARD	1) 2) 3)	Use Usi	eḋ w ng v	ash l /ater	bore t in ca	techni sing w	nuously que witl /hile spi of casin	h bento inning i				ound	and wash) 0' to 30'		<u>a</u>						
05.7.GP							Boundary Betw	.	Vnes Transisi	ons May Ba C-	adual										
	tes:	 Wate A.C. Sam 	er Level = After ple Type	Readings coring; N Coding:	Have Bee .R. = Not I A=Auger;	n Made At T Recorded.	imes And Und	er Conditions !	Stated, Fluctua	tions Of Grou	ndwater M		e To Other Factors Than Those Presen Tube; Geo=GeoProbe V=Vane;	nt At The T	ime Measu	rements Were Made.					
750-05.	4	4) Prop	ortions		ce = 1-10%)-20%; Some = indary between			ay be gradual.								Bori	ng No.:	GD)-1

																	LOC	r T		Bo	ring No.:	G	D-1
			c	ЗE	= O	D	\\\ \\	() S I	G	N						ct Na				Pag	e No.:	2	of 2
6	eote	chn	l ical	⊾ Engin	-	O R Environ	р О 1mental (Consulta		struction			VTRA	NS SF	PT F	lamı	mer E	fficien	су	File	e No.:	750	0-05.7
v	Vind	sor.	699 VT	05089) 33/Fax	·· 802-6	674-5943	So	. Burlin	urne Rd. gton, VT 2-652-51	0540			W	/ind	sor,	VT			Che	ecked By	: <u> </u>	<u>PK</u>
Bori				_	VTRA		574-574	<u> </u>	ione: 80	2-032-31	40			Casing:	Sa	mpler:			Ground	water C	Observations		
Fore Geol			n ·	-	Glen P		& Joe Kid						Type:	HW 4.0 in.		SS 38 in.	I	Date	Depth (ft)	Elev. (ft)		Notes	
Date			·P··			nber 23,			Finished:	Septen	nber 24	4, 2008	Hammer Wt.:			40 lbs	₹ 9/24/	/08, 0:00			In open hole		
N. C					(feet):		335	E. Co	ordinate:				Hammer Fal <u>l:</u> Rig Type:			0 in.		/08, 14:00 /08, 17:30		308.0 301.0	Hole collap:	sed at 4	15'
Stati		uiia		svation		Offset:							Hammer/Rod 7				¥ 9/25/	/08, 9:00	40.5		In open hole	e (collaj	pse at 45
	îŕ					S	ample l	Informa	tion				Strat					/08, 16:00 /08, 11:40			In open hole In open hole		
	Casing Blows/ft			uo							ime	(%)	Descrip	otion	Symbol			/08, 11:40			In open hole		
Depth (ft)	sing B	Number	be	Penetration (inches)	Recovery (inches)	Depth (ft)	B	Blows / 6 i	nch Interv	val	Coring Time (min./ft)	Moisture Content (%)	Depth &		Sy			Sar	nple I	Descri	iption		
De		-	Type				0 - 6	6 - 12	12 - 18		(D Co	ŭŭ	Elevation(feet)		- जन्म		sification (-			ND, trac	o(T) c	Silt
		S10	SS	24	12	30	6	7	8	9			(Continu				ce mica				IND, IIAC	e(+) C	JIIL,
														¥		:							
35														Ŧ									
		S11	SS	24	17	35	6	9	10	12							1) Tanr rered (to				ND, little moist.	Silt	
		_																					
																-							
40																							
		S12	SS	24	15	40	5	4	7	10				Ţ			2) Gray ce mica		, laye	red fi	ne SAND	and	SILT,
														Ť									
														¥									
45													45	÷									
		S13	SS	24	24	45	4	9	11	16			Silty Fi Sanc		0						D, trace ND, wet.	Silt, tr	race
		_														<u> </u>	,						
		_																					
50																							
		S14	SS	24	17	50	12	11	11	11						S1	4) Gray	ish tan	fine S	SAND), trace S fine SAN	ilt, tra	ce
													52 Battar	m 283.0			yered),						
\vdash							+						Bottor of Explor at 52.0	ation									
55		_																					
55																							
		_																					
60	5) 9	San	nnle	000	n hole	∣ ∋ 35' to	0.37'	<u> </u>		1			1			I							
arks	6) (Cas	sing	dowi	n to 3	5'.		robolo	compli	ing proc	odur	0.000	sisted of a 2	' oplit or		com	nlo foll	owod b	y adv	oncin	a cosina	20	
Remarks	add	ditic	nal	5' pri	ior to	rollero	coning a	ahead f				e con		shiit-sh	50011	Sam	pie, ion	oweu b	y auv	ancin	y casing	an	
	<u>13)</u>	9/2	24/0	8 Ho	le col		d to 46'	. Warm				6' to 48	3'.										
Note	s: 2) Wate A.C.	r Level = After	Readings coring; N	Have Beer .R. = Not F	n Made At T Recorded.	imes And Und	ler Conditions S	Stated, Fluctua	tions Of Groun	dwater Ma		e To Other Factors Than		At The T	ime Meas	urements Were	Made.					
	v 4	/OR/H) Prope	I=Weigl ortions U	ht of Rod/ Used: Trac	Hammer ce = 1-10%	; Little = 10	0-20%; Some =	20-35%; And material types	= 35-50%		spoon);	5 i –Sileidy	Tube; Geo=GeoProbe V	- • ane,					[Bori	ng No.:	GD	-1

Γ								Ì								LOG		Во	ring No.:GD-2	2
				~ •		_		8	-]	Projec	ct Na	me		Pas	ge No.: <u>1 of 2</u>	2
			I	<u></u> Б Е	с	O R	P O	S I R 4	G T E				VTRANS SP	РТ Н	lamı	mer Efficien	су		e No.: <u>750-05</u> .	
	P.O. Wind	Box isor,	699 VT	05089	¢		nmental (674-594)	12: Sc	33 Shelb b. Burlin	struction ourne Rd. gton, VT 2-652-51	, Suite `0540	e 360	v	Vind	sor,	VT			ecked By: <u>SPK</u>	
	ring C				VTRA		074-394.	5 г.	11011e. 80	2-032-31	40		Casing:	Sai	npler:	(Ground	water (Observations	
For	eman	:	-	_	Howar	d Garro	w						Type: <u>H.S.A.</u>		SS	Date	Depth		Notes	
	oDesig te Star	-	ep.:	-		n Kelley mber 23	2008	Date	Finished:	Septer	nhor 2/	1 2008	I.D.: <u>3.25 in.</u> Hammer Wt.: NA		38 in. 0 lbs	▼ 9/23/08, 0:00	(ft)	(ft)	Wet Sample	
	Coord		::	_	Oepter		, 2000		oordinate:			4, 2000	Hammer Fall: NA		0 in.	¥ 9/23/08, 0:00			See note 3.	
		Surfa	ce Ele	evation	(feet):		335						Rig Type: CME			₹ 9/24/08, 0:00			Hole collapsed	
Sta	tion:					Offset:							Hammer/Rod Type: Auto	<u>o - AW.</u>	J	¥ 9/24/08, 17:30 ¥	41.5	293.5	See note 4.	
	s/ft					S	ample	Informa	ation				Strata Description	_		¥				
(£	Casing Blows/ft			ion	<u>ک</u>	(J)		Down / 6	inch Interv		Coring Time (min./ft)	Moisture Content (%)	Description	Symbol		Ţ				
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)		lows701			oring in./ft	oistur	Depth &	S		San	nple I	Descr	iption	
Ă	Ü	ź	£	Ξ. Έ	R.	ă	0 - 6	6 - 12	12 - 18	18 - 24	ŬĒ	ΣŬ	Elevation(feet)	1.4 1%.	Class	sification System: B	urmiste	r		
_													Silty Fine 334							
													Sand							
-																				
5	:	S1	SS	24	20	4	3	3	3	2					S1) Tan fine SAN	D, litt	le(-)	Silt, trace mica, dry	y.
	,																			
		S2	SS	24	18	6	3	4	3	4							ne SA	ND,	trace(+) Silt, trace	
															m	ca, dry.				
		S3	SS	24	20	8	4	5	9	7) Tan-brown fir avel, dry.	ne SA	ND,	trace Silt, trace fine	Э
10													10							
		S4	SS	24	18	10	4	5	4	7			Fine to 325. Medium Sand and Gravel	.0 0 () Tan-brown fir ce mica, dry.	ne to d	cours	se SAND, trace Silt	.,
		S5	SS	24	16	12	7	8	7	13			-	Ø) Tan-brown fir t, trace mica, tr			um SAND, trace iravel, dry.	
15														0						
	, 	S6	SS	24	18	15	5	9	9	9				\mathcal{O}					um SAND, little fine	e
														, C		avel, trace Silt,	trace	mic	a, dry.	
														0						
														20						
20														° C) Tan kuawa fir				
		S7	SS	24	19	20	3	6	10	12				° () Tan-brown fir t, trace mica, tr			um SAND, trace iravel, dry.	
														0						
														0						
2/53/08	;										<u> </u>		25	0 (~		
	-	S8	SS	24	17	25	2	3	4	5	-		Sand/Silt 310.	.U) Top 10" - Bro ca, moist.	wn fir	ne S/	AND and SILT, trac	:e
0.GDT	-																ne SA	AND,	little Silt, trace	Г
IDARI	-	-			-								1			ca, dry.				_/
STAN	-	-			-															
750-05.7.GPJ GEODESIGN STANDARD	1)					of GD boreh		A were	e advan	ced to t	top of	f samp	l ling interval immec	liately	/ prio	r to sampling.				
750-05.7. N		2) Wat	er Level	Readings	Have Beer	n Made At T				ons May Be Gra ations Of Groun		ay Occur Du	te To Other Factors Than Those Presen	it At The T	ime Meas	urements Were Made.				
750-05.7 7		3) Sam WOR/I 4) Prop	ple Typ I=Weig ortions	e Coding: ht of Rod/ Used: Tra	Hammer ce = 1-10%	C=Core; D=)-20%; Some =	20-35%; And	= 35-50%		lit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;				ſ	Bor	ing No.: GD-2	
32		5) Stra	ificatior	n lines rep	resent appr	oximate bou	undary between	n material type	s, transitions m	ay be gradual.									5 2 4	

														-		NG ct Na	LOG		Bo	ring No.:	GD-2
			C	G E	с	D O R	P O	SI RA	G T E				VTRA		v		mer Efficien	су		ge No.: e No.:	<u>2 of 2</u> 750-05.7
P V	.O. I Vind	3ox sor,	699 VT	05089)		1820 (1921) 1921 (1922) 1921 (1923) 1921 (123 So	nts-Cons 33 Shelbo Burling hone: 802	urne Rd. gton, VT	, Suite 0540	360		W	/ind	sor,	VT			ecked By:	
	ng Co			_	VTRA		571 5716			2 052 51	10			Casing:	Sa	mpler:		Ground	water (Observations	
	man: Desig	n D.		-		d Garrov Kelley	w						Туре: I.D.:	H.S.A. 3.25 in.		SS 38 in.	Date	Depth (ft)	Elev. (ft)	Ν	Notes
	Start		гр	-		nber 23,	<u>, 200</u> 8	Date	Finished:	Septen	nber 24	4, 2008	Hammer Wt.:			40 lbs	▼ 9/23/08, 0:00	47.0	288.0	Wet Sample	
	oordi			_				E. Co	ordinate:				Hammer Fal <u>l:</u>			0 in.	₹ 9/23/08, 0:00			See note 3.	
Grou Stati		urfac	ce Ele	evation	(feet):	Offset:	<u>335</u> ft						Rig Type: Hammer/Rod '				 ¥ 9/24/08, 0:00 ¥ 9/24/08, 17:30 			Hole collaps See note 4.	ed
							ample I	[nform2	ition				Strat				¥				
	ws/ft			_							Je		Descrip		lod		¥ ¥				
Depth (ft)	Casing Blows/ft	ber		Penetration (inches)	very es)	h (ft)	В	slows / 6 i	nch Interv	/al	Coring Time (min./ft)	Moisture Content (%)			Symbol		<u></u>				
Dept	Casir	Number	Type	Penet (inch	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Corir (min.	Mois Conti	Depth & Elevation(feet))		Class	Sal sification System: E	-		iption	
		S9	SS	24	19	30	5	7	7	9			Sand/S) Tan fine SAN			ilt, trace fi	ne
													(Contain	ucu)		G	avel, trace mic	a, ury	•		
							<u> </u>		ļ												
35	35 S10 SS 24 23 35 5 8 7 7 S10 SS 24 23 35 5 8 7 7 S10 SS 24 23 35 5 8 7 7 S10 SS 24 23 35 5 8 7 7 S10 SS 24 23 35 5 8 7 7 S10 SS S10 Top 12" - Fine to medium SAND, trace Silt, trace mica, dry. Bottom 12" - Fine SAND, little Silt, trace mica, moist.) trace					
	Silt, trace mica, dry. Bottom 12" - Fine SAND, little Silt, trace mica,																				
	Bottom 12" - Fine SAND, little Silt, trace mica, moist.															ice mica,					
	Bottom 12" - Fine SAND, little Silt, trace mica, moist. 40 1																				
40	40 511 SS 24 21 40 3 3 5 13																				
	40 S11 SS 24 21 40 3 3 5 13 S11) Brown fine SAND, some(+) Silt, trace mica trace fine Gravel - layered															trace					
	S11 SS 24 21 40 3 3 5 13 S11) Brown fine SAND, some(+) Silt, trace																				
		_																			
45		\$12	SS	24	22	45	4	9	9	12			45 Silty F	ine 290.0	0	S1	2) Tan-brown	fine S	AND	little (+) \$	Silt, trace
		512	00	27	~~~					12			Sano	d			cá, trace fine C				,
														Ţ							
50																					
		S13	SS	24	19	50	25	10	10	10			<u>51</u>				 Brown fine Bottom 2" fine 				
							<u> </u>		ļ				52 Botto	Silt 284.0							,
		_					<u> </u>						of Explor at 52.0	ration							
	_						<u> </u>						at 52.0	<i></i>							
55																					
60																					
Remarks							er HSA d in bor		al.												
Ren																					
Note	s: 2	Wate A.C.	er Level = After	Readings coring; N	Have Beer .R. = Not F	n Made At T Recorded.		ler Conditions S	Stated, Fluctuat	tions Of Groun	dwater Ma		e To Other Factors Thar		At The 7	Time Meas	urements Were Made.				
	W 4]	/OR/H) Prope	I=Weig ortions	ht of Rod/ Used: Trac	Hammer ce = 1-10%	; Little = 10	Driven; G=Gra)-20%; Some = indary between	20-35%; And	= 35-50%		nt Spoon);	51=Shelby	Tube; Geo=GeoProbe V	v=vane;					Bori	ng No.:	GD-2

																LOG		Borir	ng No.:	GD-3	
			I	Э Е N	с	D O R	P O	SI R 4	G T E				VTRANS SP	rojec T H			су	Page File I		<u>1 of 2</u>	
H V	P.O. 1 Wind	Box lsor,	699 VT	05089)		nmental (674-5943	12: Se	33 Shelb . Burlin	struction urne Rd. gton, VT 2-652-51	., Suite 7 0540	e 360	w	'inds	sor,	VT				SPK	<u>/</u>
	ing Co			_	VTRA								Casing:	San	npler:	(Groundw	ater Obs	servations		
	eman:			-		d Garro	w						Type: <u>HW</u>		SS	Date	Depth I (ft)	Elev. (ft)	1	Notes	
	Desig e Star	-	ep.:	_		n Kelley mber 24	2008	Date	Finished [.]	Septer	mber 24	4 2008	I.D.: <u>4.0 in.</u> Hammer Wt.: NA		88 in. 0 lbs	▼ 9/24/08, 0:00	(11)		ollapse to	30'	
	Coord		:	_					oordinate:			.,	Hammer Fal <u>l: NA</u>) in.	¥				00	
		urfa	ce Ele	evation	(feet):		335						Rig Type: CME 5			¥ ¥					
Stat	ion:					Offset:			<i></i>				Hammer/Rod Type: Auto	- NW.	J	¥					
	s/ft					S	ample 1	Informa	ation				Strata Description	1		¥					_
(tj	Casing Blows/ft			tion	2	(j)		lows / 6	inch Interv	vol	Coring Time (min./ft)	Moisture Content (%)		Symbol		Ť					
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)		lows / 0			oring in./ft	oistur	Depth &	s			ple D	-	tion		
Ď	Ű	Ñ	£	Ρ. Έ	R. R.	ă	0 - 6	6 - 12	12 - 18	18 - 24	ŭΞ	ΣŬ	Elevation(feet)	<u>, 14.</u>	Clas	sification System: Bu	ırmister				
													Silty Fine 334.5								
													Sand								
-											-										
5		S1	SS	24	14	5	2	2	2	2					S1) Brown fine SA	AND, t	race(+	+) Silt, tr	ace mica,	,
							-		-	-					dry	<i>.</i>					
10													10								
		S2	SS	24	13	10	4	6	7	6			Fine to 325.0 Medium Sand	0		2) Brown fine to				e fine	
													and Gravel	o (Gr	avel, trace Silt,	trace	mica,	wet.		
) Ø							
														° C							
15														o (00						
		S3	SS	24	10	15	7	8	8	10				0	Gr	Brown fine to avel, trace Silt,	trace	e SAN mica,	ND, trace wet.	e (+) fine	
														° C							
														o (
														0							
20		S4	SS	24	12	20	5	8	9	12	-			° C	S4) Fine to mediu	m SAI	ND. tr	ace Silt	trace fine	
		34	33	24	12	20	5	0	9	12	-			o (avel, trace mica				,	-
														0							
														° C							
3 05					-						+		25	o (
25		S5	SS	24	15	25	7	4	4	7			Sand/Silt 310.0	ħĦ		i) Top 1" - Gray					-
																ottom 14" - Fine ice mica, moist.) and	SILT lay	yered,	
																					~
30																					
arks	1) /	٨d	anc	e ca	sing t	o the t	top of e	ach sa	mpling	interval	imm	ediate	ly prior to sampling.								
ADD-09-1.0FJ GEODESIGN STANDARD																					
Note	es: 2	2) Wate A.C.	er Level = After	Readings coring; N	Have Beer .R. = Not I	n Made At T Recorded.		er Conditions	Stated, Fluctua	tions Of Grou	ndwater M		e To Other Factors Than Those Present .	At The Ti	me Meas	urements Were Made.					
	V 4	3) Sam WOR/F 4) Prop	ple Type I=Weig ortions	e Coding: ht of Rod/ Used: Trac	A=Auger; Hammer ce = 1-10%	C=Core; D=	=Driven; G=Gr)-20%; Some = indary between	20-35%; And	= 35-50%		olit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;				Γ	Boring	g No.:	GD-3	
×۲	5) strat	meation	mes repi	csent appr	oxiniate bou	muai y between	material type	s, uaisitions m	ay oe gradual.											

													BC			I G at Na	LOG		Borin	g No.:	GD-3
			I	⊳ N Engin		OR	P O	S I R A Consulta 123	nts-Cons	N <i>D</i> <i>struction</i> urne Rd.	<i>Engir</i> . Suite	neers 260		PT	H	amı	ner Efficien	су	Page I File N	lo.:	2 of 2 750-05.7
v	Vind	sor,	VT	05089) 33/Fax	:: 802-6	574-5943	Sc	. Burling	gton, VT 2-652-51	0540					sor,	1				SPK
	ng Co man:	-	any:		VTRAN Howard	NS d Garrov	w						<u>Casing:</u> Type: HW			<u>ipler:</u> SS	Date	1	water Obso		Votes
Geo	Desig	n Re	ep.:	_	Shawn	Kelley							I.D.: 4.0 in.		1.3	8 in.		(ft)	(ft)		
	Start oordi		:	-	Septen	nber 24,	2008		Finished: ordinate:	Septen	nber 24	1, 2008	Hammer Wt <u>.: NA</u> Hammer Fall: NA) lbs) in.	▼ 9/24/08, 0:00 ▼		Co	llapse to	30'
		urfac	ce Ele	evation	(feet):		335						Rig Type: CME				¥ ¥				
Stati	on:					Offset:		Informa	tion				Hammer/Rod Type: Au	uto - I	NWJ		¥				
	ws/ft			_		6					ы	~	Strata Description		pol		¥ ¥				
Depth (ft)	Casing Blows/ft	ber		Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)			Symbol			anla I	Descript	ion	
Dept	Casi	Number	Type	Pene (inch	Recc (inch	Dept	0 - 6	6 - 12	12 - 18	18 - 24	Cori) (min	Mois Cont	Depth & Elevation(feet)				sification System: B	urmiste	r		
		S6	SS	24	14	30	8	9	10	14			Sand/Silt (Continued)			S6 fine) Tannish gray e Gravel, trace	fine \$ mica	SAND, I , dry.	little Sil	t, trace
		S7	SS	24	18	32	12	12	13	14			32 30	3.0		S7) Tan fine SAN	D, tra	ace(+) S	Silt, trac	e fine
																Gr	avel, trace mic	a, dry	•		
35													Bottom of Exploration								
													at 34.0 ft								
40																					
	40																				
45																					
50																					
55																					
60																					
Remarks																					
Ren																					
Net										ns May Be Gra											
Note	s: 2) Wate A.C.	er Level = After	Readings coring; N.	Have Been R. = Not R	Made At Ti ecorded.	imes And Und	er Conditions !	Stated, Fluctuat	tions Of Groun	dwater Ma		e To Other Factors Than Those Pres Tube; Geo=GeoProbe V=Vane;	ent At 7	The Tir	me Meas	arements Were Made.				
	V 4	VOR/H) Prop	I=Weigl ortions U	ht of Rod/I Used: Trac	Hammer e = 1-10%	; Little = 10	-20%; Some =	20-35%; And material types	= 35-50%										Boring	g No.:	GD-3

Γ								Ì					BO	RIN	IG	LOG		Bo	ring No.:	GD)-4
				ЗЕ	- C				G				ŀ	Projec	et Na	ime			ge No.:	1 of	
	~		I	N	с	OR	P O	B R 4					VTRANS SF	тΗ	lam	mer Efficien	су		e No.:	750-0	05.7
]	P.O. 1 Wind	Box lsor,	699 VT	05089)		1894-594	12: Se	33 Shelb 5. Burlin	struction ourne Rd. gton, VT 2-652-51	., Suite 0540	e 360	W	/inds	sor,	VT			ecked By		
	ing C			_	VTRA					2 002 0			Casing:	San	npler:	(Ground	water (Observations		
	eman: Desig			-		nd Garron NKelley	w						Type: <u>H.S.A.</u> I.D.: 3.25 in.		SS 38 in.	Date	Depth (ft)	Elev. (ft)		Notes	
	e Star		сp			mber 24	<u>, 200</u> 8	Date	Finished:	Septer	mber 24	4, 2008			0 lbs	▼ 9/24/08, 0:00	42.0	293.0	Wet Sampl	e	
	Coord				(feet):		335	E. Co	oordinate:				Hammer Fal <u>l: NA</u> Rig Type: CME 4	·) in.	¥ ¥					
	tion:	l	ee Ek	vation	(leet).	Offset:							Hammer/Rod Type: Safe			¥					
	IJ					S	ample	Informa	ation				Strata			¥ ¥					
t)	Casing Blows/ft			ion	Y	£.					Time	(%)	Description	Symbol		¥					
Depth (ft)	tsing E	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6	inch Inter	val	Coring Time (min./ft)	Moisture Content (%)	Depth &	S		San	nple I	Descr	iption		
ă	Ű	ź	T,	Pe Ü	Re	Ă	0 - 6	6 - 12	12 - 18	18 - 24	ŭΞ	ΣŬ	Elevation(feet)	<u>, 17.</u>	Clas	sification System: B	urmiste	r			
											-		Silty Fine 334.	5							
5	Image: Second system Image: Second system <td>2 976</td> <td>ilt trace</td> <td>mica di</td> <td>rv</td>															2 976	ilt trace	mica di	rv		
	Image: Second system Image: Second system <td< td=""><td></td><td>D, 110</td><td></td><td></td><td>mea, u</td><td>ıy.</td></td<>																D, 110			mea, u	ıy.
	Image: Section of the section of th																				
10															0) Tan fina ta m	a alia			0:14 4=4	
	S2 SS 24 14 10 4 7 7 7 Fine to Medium25.0 S2) S2) S2) S2) Tan fine S3 SS 24 17 15 2 3 2 2 S2) S3) S3) S3 S5 24 17 15 2 3 2 2 S2) S3) S3) Tan-brow																ealun	n SAI	ND, trace	Siit, tra	асе
														P 1							
											-			0							
15	S2 SS 24 14 10 4 7 7 7 Fine to Medium25.0 & S2) Tan fine to mediu mica, dry. 5																			!	
	S2 SS 24 14 10 4 7 7 7 Fine to Medium250 or Sand and Gravel S2) Tan fine to medium SAND, mica, dry. I I I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																				
) o)							
20														° °							
		S4	SS	24	17	20	3	6	15	16				° (54) Same as S-3	•				
														O.							
														0							
60/67/G		S5	SS	24	17	25	7	9	7	7				5	S5	5) Top 5" - Sam	e as :	S3.			
- GDI 5	-			2-7		20	-			, 			26 Sand/Silt 309.	φ. 0.	Bc	ottom 12" - Brov ca.			ND little(-) Silt, tr	race
ARD.																<i></i>					
TAND																					
00 30							<u> </u>														
ODES	1) /	Ad۱	/anc	e HS	SA to	the top	p of ead	ch sam	pling in	terval ir	nmed	liately	prior to sampling.								
J GEOD Remarks																					
750-05.7.GPJ GEODESIGN STANDARD Z Remarks &																					
	es: 2	2) Wate A.C.	er Level = After	Readings coring; N	Have Bee .R. = Not	n Made At T Recorded.	imes And Und	ler Conditions	Stated, Fluctua		ndwater M		e To Other Factors Than Those Present	At The Ti	ime Meas	surements Were Made.					
750-05.7	2	WOR/I 4) Prop	I=Weigl ortions	ht of Rod/ Used: Trac	Hammer ce = 1-10%	6; Little = 10	0-20%; Some =	20-35%; And	l = 35-50%		olit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;					Bori	ng No.:	GD-4	1
75	4	5) Strat	ification	lines repr	esent appr	oximate bou	indary between	n material type	s, transitions m	nay be gradual.								2011			

															NG ct Na	LOG			0	GD-4
P	.O. I	Зox	ical 699	N Engin	ieers-E	OR	P O mental (123	nts-Con 33 Shelb	<i>struction</i> urne Rd.	, Suite	360	VTRANS SP				су	File	ge No.: e No.:	2 of 2 750-05.7
P	hone	e: 80	02-6		33/Fax		574-5943	So 3 Pł	o. Burling none: 80	gton, VT 2-652-51	0540. 40	3			sor,	1				SPK
Bori: Fore	-	ompa	any:	-	VTRAN Howar	NS d Garrov	N						Casing: Type: H.S.A.		<u>mpler:</u> SS	Date		Elev.	Dbservations	Notes
Geol			ep.:	_		Kelley	0000	D (F ² · 1 · 1	0			I.D.: <u>3.25 in.</u>		38 in.	T 0/04/00 0.00	(ft)	(ft)		
Date N. C			::	_	Septer	nber 24,	2008		ordinate:	Septen	nber 24	i, 2008	Hammer Wt <u>.: NA</u> Hammer Fal <u>l: NA</u>		0 lbs 0 in.	▼ 9/24/08, 0:00 ▼	42.0	293.0	Wet Sample	
Grou Stati		urfa	ce Ele	evation	(feet):	Offset:	335 ft						Rig Type: <u>CME 45</u> Hammer/Rod Type: Safet			¥ ¥				
Stati								Informa	tion				Strata			¥				
	ows/ft			-							ne	()	Description	Symbol		¥ ¥				
Depth (ft)	Casing Blows/ft	Number	e	Penetration (inches)	Recovery (inches)	Depth (ft)	В	Blows / 6 i	nch Interv	/al	Coring Time (min./ft)	Moisture Content (%)		Syn		San	nple I	Descri	iption	
Dep	Cas	Nur	Type	Pen (inc	Rec (inc	Dep	0 - 6	6 - 12	12 - 18	18 - 24	Cor (min	Moi Con	Depth & Elevation(feet)	1.11		sification System: B	urmiste	r	-	
		S6	SS	24	22	30	5	8	10	11			Sand/Silt (Continued)			i) Tan fine SAN avel, trace mica			ilt, trace f	ine
35	5 .																			
	\$7 \$5 24 21 35 5 13 10 9 \$7 \$5 24 21 35 5 13 10 9 \$7 \$7 \$7 \$7 Tannish brown fine SAND, little fine Gravel, trace mica, moist. 5" la medium SAND, trace Silt, dry (samedium SAND															st. 5" laye	er fine to			
	S7 SS 24 21 35 5 13 10 9 S7 SS 24 21 35 5 13 10 9 S7 S7 Tannish brown fine SAND, little Silt, trace fine Gravel, trace mica, moist. 5" layer fine to medium SAND, trace Silt, dry (same as S-3). 0 <td>as 5-3).</td>															as 5-3).				
	0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1																			
40	Image: Second															mica				
	s8 s5 24 20 40 3 5 6 11 S8) Brown fine SAND and SILT, trace mica,															e mica,				
	S8 SS 24 20 40 3 5 6 11 S8) Brown fine SAND and SILT, trace mica, wet. (Layered)																			
45		60	SS	24	20	45	6	11	13	14			45 Silty Fine Sanø90.0		59) Tan fine SAN	D. tra	ace Si	ilt. trace r	nica, drv.
		29	55	24	20	40	0		13	14					2"	layer (middle o t, moist.	f spo	on) fir	ne SAND	, some
50		S10	SS	24	20	50	8	11	10	9					S1	0) Brown fine S	SAND), trac	e(+) Silt,	trace
					20								52		mi	cá, wet. •ttom 5" - Fine \$				
													Bottom 283.0 of Exploration				., 11 1 L		5.21, idy	
													at 52.0 ft							
55																				
60																				
arks																				
Remarks																				
	1) Strat	ificatior	Lines Re	present Ap	proximate B	oundary Betw	een Material T	ypes, Transitio	ns May Be Gra	idual.									
Note	s: 2) Wate A.C.	er Level = After	Readings coring; N	Have Been .R. = Not R	n Made At Ti Recorded.	imes And Und	er Conditions S	Stated, Fluctua	tions Of Groun	dwater Ma		e To Other Factors Than Those Present A Tube; Geo=GeoProbe V=Vane;	At The T	ime Meas	urements Were Made.				
	v 4	/OR/H) Prop	I=Weig ortions	ht of Rod/ Used: Trac	Hammer ce = 1-10%	; Little = 10	-20%; Some =	20-35%; And material types	= 35-50%		- //	,	·					Bori	ng No.:	GD-4

																	LOG		Bor	ring No.:	GD	-5
				~ F	- 0			() 6	G	N					Projec	t Na	me		Pag	e No.:	<u>1 ot</u>	f 2
	~ .	,	ļ	, м 	c		PO		. Т е		. .		VTRA	NS SF	РТ Н	amr	mer Efficien	су	File	e No.:	750-0	05.7
F	P.O. I Vind	Box sor,	699 VT	05089	9		nmental 674-594	123 Se	33 Shelb . Burlin	struction urne Rd gton, VT 2-652-5	., Suite 0540	e 360		W	Vinds	sor,	VT		Che	ecked By:	: <u>SP</u>	'K
	ng Co			_	Trans			-						Casing:	San	npler:	(Ground	water C	Observations		-
	eman:			-			dt						1	H.S.A.		SS In in	Date	Depth (ft)	Elev. (ft)	I	Notes	
	Desig Start		ер.:	-		n Kelley mber 25	, 2008	Date	Finished:	Septer	mber 2	5, 2008	1 —	4.25 in. NA		88 in. 0 lbs	▼ 9/25/08, 0:00			Wet Sample	Э	
	Coordi			-				E. Co	oordinate:				Hammer Fall:) in.	¥					
Grou Stati		urfa	e Ele	evation	(feet):	Offset:	<u>335</u> ft						Rig Type: Hammer/Rod T		75 Trac		¥ ¥					
							Sample	Inform	ation				Strat				¥					
	ws/ft					~					g	<u> </u>	Descrip		Pol		¥ ▼					
ı (ft)	Casing Blows/ft	er		Penetration (inches)	very es)	(ft)	E	Blows / 6 i	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)			Symbol			-				Incl
Depth (ft)	Casin	Number	Type	Penet (inche	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Corin.	Moist Conte	Depth & Elevation(feet)			Class	Sample sification System: B		-	on		L
]	-	S1	SS	24	15	0	2	3	3	2			Topso	oil _	<u>11/</u>	S1) Tan fine SAN			Silt, top 2	2"	A
													Silty Fine	Sand ^{34.}	.ə	top	soil, dry.					
		S2	SS	24	20	2	2	2	3	3			1			S2) Same as S1,	exce	pt wit	h trace m	nica.	Ä
]									Ŕ
5		S3	SS	24	18	4	2	1	2	1						S3 dry) Tan fine SAN	D an	d SIL	T, trace r	nica,	NXV/XHONONONONONONON/X/X/X/X/X/X/X/X/X/X/X/X/X
													-			,				0.111		
		S4	SS	24	16	6	2	2	3	3			-)Tan fine SAN ca, dry.	D, tra	ce (+)) Silt, trac	ce	
													-									
													-									Ø
10		S5	SS	24	14	10	1	2	3	4						S5) Grayish tan fi	ne S/	AND,	little(-) S	ilt,	
		00	00	24				-					-				ce mica, moist			()		×
													-									X
													-									
15																						Ň
		S6	SS	24	18	15	1	3	4	7			15.5 Fine t	o 319.	50	S6 we) Top 9" - Sam t	e as	S5 ex	cept moi	st to	Ř
													Medium Sa Grave		0	Bo	ttom 9" - Brow			arse SAN	ND, _	
													-			\tra	ce Silt, trace m	ica, r	noist.		/	Ň
													1		° C							Ř
20		S7	SS	24	18	20	4	7	5	4			-		o (S7) Brown fine to	coar	se SA	ND. trac	e	\mathbb{R}
		01	00	24		20	-						-		$\left \right\rangle _{O}$	Silt	t, trace fine Gra	avel, t	trace	mica.		Ň
													-		° C							X
															o (Ø
25													25) Ø							
		S8	SS	24	21	25	1	1	2	2			Sand/S	Silt 310.	.0	S8 tra) Grayish brow ce mica layere	n fine d. 1"	SAN	ID and S	ILT, Clav	
													-				pist.	а, т	Jun	Si giay (,	\mathbb{X}
													-									
													-									
30								L														X
ks	2) <i>I</i>	Auc	er t	o 4' a	ands	ample	m grou d twice															
Remarks	3) I	Bet	wee	n 10	and	bottor	n of the	boreh	ole aug	ers wer	e adv	/ance	d to the top o	of the s	ampli	ng in	terval immedia	tely p	orior to	o samplir	ng.	
R																						
Note							Boundary Betw															
	2	A.C.	= After	coring; N	.R. = Not I	Recorded.							e To Other Factors Than Tube; Geo=GeoProbe V		t At The Ti	me Meası	arements Were Made.					
	V 4	VOR/H	I=Weigl ortions U	nt of Rod/ Jsed: Tra	Hammer ce = 1-10%	6; Little = 10)-20%; Some =	20-35%; And	= 35-50%					-					Bori	ng No.:	GD-5	;
	5) Strat	fication	lines rep	resent appr	oximate bou	undary betweer	material type	s, transitions m	ay be gradual.									_ 0.1	0-10.		

								Ì									LOG		Bo	ring No.:	G	D-5
			Ċ	БE	= 0	D	\\\ \\	() S I	G	N				F	Projec	ct Na	me		Pag	ge No.:	2 (of 2
0	Geote	chn	l ical	• •	-	O R Environ	р О nmental		TE ents-Con	E D struction	Engir	neers	VTRA	NS SF	ΡTΗ	lamı	mer Efficien	су	File	e No.:	750-	-05.7
V		sor,	VT	05089 74-20		k: 802-0	674-5943	Sc	. Burling	urne Rd. gton, VT 2-652-51	0540			V	/ind	sor,	VT		Ch	ecked By	r: <u>S</u> I	PK
	ng Co	-	any:	-	TransT									Casing:		npler:		1		Observation		
	man: Desig		ep.:	-		eonharc Kelley	1						Type:	H.S.A. 4.25 in.		SS 38 in.	_ Date	Depth (ft)	Elev. (ft)		Notes	
	Start			-	Septer	nber 25,	<u>, 200</u> 8			Septer	nber 25	5, 2008	Hammer Wt.:			0 lbs	¥ 9/25/08, 0:00 ¥	48.0	287.0	Wet Samp	e	
				evation	(feet):		335	Е. СС	ordinate:				Hammer Fal <u>l:</u> Rig Type:			0 in. :k	Ť					
Stati	on:					Offset:							Hammer/Rod	Type: Auto	<u>- AW.</u>	J I	¥ ¥					
	s/ft					S	ample	Informa	tion				Strat Descrip		_		¥					
(ft)	Casing Blows/ft	L.		, ution	h.	£	Б	Blows / 6 i	nch Interv	val	Coring Time (min./ft)	Moisture Content (%)	Deserri		Symbol		Ţ					
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18		Coring min./f	Aoistu Conten	Depth & Elevation(feet	\ \	01	Class	Sampl sification System: B		-	on		Inclino. Log
I	0	2 S9	SS	24	24	30	6	8	8	18 - 24		A O	Sand/s	Silt		S9) Gray tan fine	SAN	D, so			88
													. (Contini	uea)		lay dry	vered, trace find /.	e Gra	vel, ti	race mica	а,	
35		S10	SS	24	20	35	4	6	6	8						S1	0) Grayish bro	wn fir	ne SA	ND, som	ne(-)	
																	t, trace mica, 2 h trace Silt, mo		er of f	ine SANI	D	
40		C11	SS	24	24	40	2	5	8	11						S1	1) Top 12" - Sa	ame a	as S1	0.		-88
		511	55	24	24	40	2	5	0							Во	ttom 12" - Gra	yish ta	an fin			
																tra	ce Silt, trace m	nica, c	ary.			
45													45 Silty Fine	Sand00		Q1	2) Top 10" - G	ravieł	brow	wn fing S		-88
		S12	SS	24	21	45	4	6	7	8				Gang 70.		so	me (+) Silt, trad	ce mic	ca, m	oist.		
														-			ttom 11" - Gra ce Silt, trace m			e SAND	' /	
														L								
50																01	0) To a 441 D					
		S13	SS	24	20	50	1	3	3	4						SI	3) Top 14" - Bi _T, trace mica,	wet.			a	
													52 Botto		0		ttom 6" - Gray Ind, trace mica		little	(+) fine	/	
													of Explor at 52.0								/	
55																						
60																						
s							g of cer h 2.5' s		/2 - 501	b bag o	fben	tonite	powder, 40	gallons	of w	ater}	grout mix x4 b	atche	s			
Remarks	A0/	A1	1 08	N-S				•	/08 on	outeide	ofin	clinon	neter pipe.									
R	Fill	wit	h gr	out c	n 9/2	9/08.																
Note	1) Strat	ificatior	1 Lines Re	present Ap	proximate B	oundary Betw	een Material T	ypes, Transitio	illed wit ons May Be Gra ttions Of Groun	ndual.		e To Other Factors Thar	n Those Present	At The T	ime Meas	urements Were Made.					
	3	A.C.) Samp	= After ole Type	coring; N	.R. = Not F A=Auger;	Recorded.							Tube; Geo=GeoProbe V					1				
	4) Prop	ortions	Used: Tra	e = 1-10%			20-35%; And material types		ay be gradual.									Bori	ing No.:	GD-	5

															IG at Nat	LOG		Bo	ring No.	: _ G	D-6
			Ċ	ЭE		D	E	N S I	G	N				rojec	ct Mai	me		Pag	ge No.:	1	of 1
	Gent	achr	l ioal	N			P O	R A		struction	Engi	noors	VTRANS SP	ТΗ	lamr	ner Efficien	су	File	e No.:	_75	0-05.7
	P.O. I Wind	Box sor,	699 VT	05089)		674-5943	123 Sc	33 Shelb . Burlin	urne Rd. gton, VT 2-652-51	, Suite 0540	e 360	W	inds	sor,	VT		Che	ecked B	y:	SPK
	ing Co			_	Trans ⁻		071 071	, 11	lione. oo	2 052 51	10		Casing:	Sar	npler:		Ground	water (Observatior	18	
	eman:			-			dt and Mik	e Blakely					Type: <u>H.S.A.</u>		SS	Date	Depth (ft)	Elev. (ft)		Notes	
	Desig e Start		ep.:	-		n Kelley mber 25	, 2008	Date	Finished:	Septen	nber 2	5, 2008	I.D.: <u>3.25 in.</u> Hammer Wt.: NA		38 in. 0 lbs	▼ 9/25/08, 0:00	(11)	(11)	None		
	Coordi		:	_					oordinate:				Hammer Fall: NA) in.	¥					
	und S ion:	urfa	ce Ele	evation	(feet):	Offset:	335						Rig Type: <u>CME 75</u> Hammer/Rod Type: Safet			¥ ¥					
Sta							ample	Inform	ation					<u>y - Av</u>	vJ	¥					
	vs/ft										0		Strata Description	lo		¥ ¥					
(£j)	Casing Blows/ft	er		Penetration (inches)	ery s)	(tj)	E	Blows / 6 i	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)		Symbol							
Depth (ft)	Casing	Number	Type	Penetr	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Coring	Moistu Conter	Depth & Elevation(feet)		Class	Sar ification System: B	-		iption		
-		21 S1	SS	24	18	0	6	6	6	6		20	Silty Fine Sand.		S1) Tannish brov			ND, little	Silt, ti	race
													1		mic	ca, dry.					
		S2	SS	24	20	2	5	7	7	8			•		S2 tra) Tannish brov ce mica, dry.	n fine	e SAN	ND, trac	e (+)	Silt,
5		S3	SS	24	18	5	3	3	5	5) Tan fine SAN	ID, tra	ace(+) Silt, tra	ace mi	.ca,
															dry	'.					
10															64) Tan fina ta m	o di un				+***
		S4	SS	24	18	10	5	6	7	7) Tan fine to m ca, dry.	eaiun	n Sai	ND, trac	e Slit,	trace
45													15								
15		S5	SS	24	18	15	11	13	14	12			Fine to 320.0 Medium Sand and	0) Tan brown fir				D, tra	ce(+)
													Gravel) • (IIII	e Gravel, trace	mica	, ary.			
														0							
														0							
_20		S6	SS	24	21	20	5	8	10	9) o	S6) Tan brown fir	ne to i	mediu	um SAN	D, tra	ace (+)
		00	00	24		20	0		10					0 (e Gravel, trace					()
														0							
														þ. `							
25													25	<i></i> 							
		S7	SS	24	15	25	6	4	5	8			Sand/Silt 310.0		S7 tra) Tannish brov ce mica, moist	/n fine . (Lay	e SAN rered)	ND, little	(+) Sil	t,
י אר אר													Bottom 308.0								
													of Exploration at 27.0 ft								
20 20 20																					
S							ound su rehole.		ere adv	vanced	to to	p of sa	ampling interval imm	edia	telv r	prior to samplin	na.				
J GEOE Remarks		0		.5 0	5				515 40		.0 .0	0 00		Jaid			·9·				
.GPJ R(
750-05.7.GPJ GEODESIGN STANDARD Z Remarks $ert B$		2) Wate	r Level	Readings	Have Bee	n Made At T				ons May Be Gra ations Of Groun		ay Occur Du	te To Other Factors Than Those Present A	At The T	ime Measu	rements Were Made.					
750-05.7 7	v	8) Samp WOR/F	ole Type I=Weigl	Coding: ht of Rod/	Hammer	C=Core; D=	Driven; G=Gr			Split Barrel (Sp	lit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;				I	Bor	ng No.:	60	-6
75(indary between			ay be gradual.								DOU	ng no.:	JUD	,-U

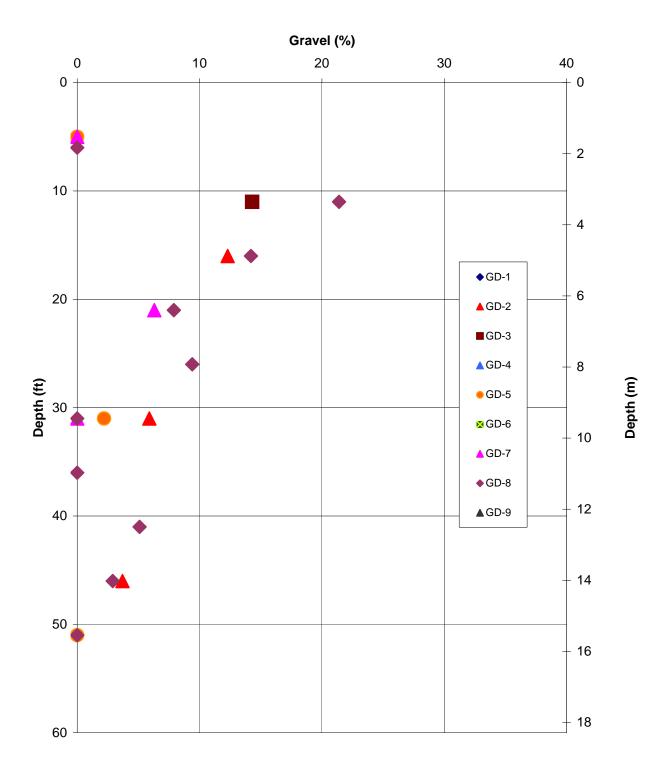
Γ																	LOG		Bor	ring No.:	GD-7
			c	GE	= 0	D		() Si	G	N					rojec				Pag	ge No.:	1 of 2
0	Geote	chn	l ical	N Engir	-	O R Environ	р О mental	R A Consulta		: D struction	Engi	ieers	VTRA	NS SF	тн	am	mer Efficien	су	File	e No.:	750-05.7
F V	P.O. I Vind	3ox sor,	699 VT	05089)		574-5943	123 Sc	33 Shelb . Burlin	urne Rd. gton, VT 2-652-51	, Suite 0540	360		W	/inds	sor,	VT		Che	ecked By:	SPK
Bori	ng Co	mpa	any:	_	VTRAN	NS								Casing:	San	npler:		Ground	water C	Observations	
	eman: Desig	n Re	en.:	-	Glen P Shawn		& Joe Kid	d						H.S.A. 3.25 in.		3S 18 in.	Date	Depth (ft)	Elev. (ft)	1	Notes
Date	e Start	ed:	-	_		mber 26,		Date		Septer	nber 26	6, 2008	Hammer Wt .:	NA		0 lbs	₹ 9/26/08, 0:00	50.0	285.0	Wet Sample	
	loordi and S			- evation	(feet):		335	E. Co	oordinate:				Hammer Fal <u>l:</u> Rig Type:	NA CME 45) in. ck	¥ 9/26/08, 0:00 ¥			Hole collaps	ed 15.5'
Stati	on:					Offset:	ft						Hammer/Rod 1	Гуре: Auto	- AWJ	J	¥				
	J.					S	ample	Informa	ation				Strat Descrip				¥ ¥				
(tt)	Casing Blows/ft	r		tion	Σ.	(tj	F	Blows / 6 i	nch Interv	/al	Time)	re t (%)	Descrip	non	Symbol		Ť				
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)					Coring Time (min./ft)	Moisture Content (%)	Depth &		01	Class		-		iption	
Г		Z S1	ь SS	24	22	0	0 - 6 2	6 - 12 4	12 - 18 4	18 - 24 3	00	20	Elevation(feet) Silty Fine			S1	sification System: B) Loose, browr	n fine		D, little(+)	Silt, trace
																	ca, slightly moi				
		S2	SS	24	18	2	3	2	2	3							 Very loose, b ice mica, slight 			SAND, litt	le(+) Silt,
5		S3	SS	24	20	4	2	3	3	3						S3 drv) Loose, tan fir	ne SA	ND, li	ittle Silt, t	race mica,
																	, 	6 m m m		1:441.0 (.) (
		S4	SS	24	23	6	2	2	3	3) Top 8" - Tan ca, dry.	fine S	SAND	, little(+) \$	Silt, trace
		S5	SS	24	21	8	3	3	7	10			0			_ Bo ∖tra	ottom 15" - Loos ice mica, dry.	se, ta	n fine	SAND, t	race Silt,
10															0	S5	i) Medium dens				
	10 S6 S5 24 23 10 3 4 3 4 56 S5 S5 Medium dense: S5 Medium dense: S5 S5 Medium dense: S5 S5 Medium dense: S5 S																				
	10 10 <td< td=""></td<>																				
	10 S6 S5 24 23 10 3 4 3 4 Gravel Gravel S5A - Top 12": Tannish brown fine SAND, little S5A - Top 12": Tannish brown fine SAND, little Sit, trace mica, moist. S5B - Bottom 9": Tannish brown fine to coarse S5B - Bottom 9": Tannish brown fine to coarse SAND, little fine Gravel, trace Silt. S6 Loose, tannish brown fine to medium SAND, trace Silt, trace fine Gravel, dry.																				
15	S6 S5 24 23 10 3 4 3 5 5 5 5 5 5 5 3 5 3 5 3 5 5 3 5 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 5 3 3 5 3 3																				
		S7	SS	24	8	15	5	9	13	14					° (со	arse SAND, tra ahtlv moist.				
) o	SII	gnuy moist.				
															Ø						
20															0 0 (58	B) Medium dens		nich	brown fin	e to
		S8	SS	24	22	20	6	7	9	11					0	со	arse SAND, tra ghtly moist.				
															0						
25		S9	SS	24	20	25	4	9	11	9					° °	S9) Tannish brow	n fine	e to co	oarse SA	ND, trace
															o (tin	e Gravel, trace	Silt, I	moist.		
															0						
													20		¢ (
30	1) /	- \dv	anc	ed H	SA to		f samn	l lina inte	erval im	mediate	elv nr	ior to	30 sampling.		<u> o </u>						
Remarks	.,,		2.10		2	5p 0	. cump			·····	7 PI										
Rem																					
Note	es: 2	Wate A.C.	er Level = After	Readings coring; N	Have Beer .R. = Not F	n Made At T Recorded.	imes And Und	er Conditions	Stated, Fluctua		dwater Ma		e To Other Factors Than		At The Ti	me Meas	urements Were Made.				
	V 4) Samp /OR/H) Prope	ple Type I=Weig ortions	e Coding: ht of Rod/ Used: Tra	A=Auger; Hammer ce = 1-10%	C=Core; D=	-20%; Some =	20-35%; And	-		lit Spoon);	ST=Shelby	Tube; Geo=GeoProbe V	=Vane;					Bori	ng No.:	GD-7
	2			p		2.54		-9 P.C.	11												

750-05.7 750-05.7.GPJ GEODESIGN STANDARD .GDT 5/29/09

													BORING LOG							ring No.:	GD-7		
				~ -					~					P	rojec	t Na	me		Page No.: 2 of 2				
	~ .	,	I		с	O R	P O				. .		VTRAI	NS SP	ТΗ	amr	mer Efficien	су		e No.:	750-05.7		
F V	P.O. 1 Wind	Box sor,	699 VT	05089)			So	33 Shelb Burling	urne Rd. gton, VT	, Suite 0540	360	Windsor, VT						Checked By: <u>SPK</u>				
	hone			_	VTRAN		674-594	3 Pr	ione: 80.	2-652-51	40		Casing: Sampler: Gro					Ground	dwater Observations				
Fore	eman:	-	-	-	Glen P	Porter												Depth (ft)	Elev. (ft)		Notes		
	Desig Star		ep.:			n Kelley mber 26,	& Joe Kid . 2008		Finished:	Septen	nber 26	6. 2008	I.D.: Hammer Wt.:	3.25 in. NA	-	88 in. 0 lbs	▼ 9/26/08, 0:00			Wet Sample			
N. Coordinate: E. Coordinate:												Hammer Fall:	3(Hole collapsed 15.5'								
Ground Surface Elevation (feet): <u>335</u> Station: Offset: ft												Rig Type:											
Sample Information														- AVV.	,	¥							
	4 L										-	Strat Descrip		loc		¥ ¥							
(ft)	Casing Blows/ft	er		Penetration (inches)	ery s)	(ft)	E	Blows / 6 i	nch Interv	al	g Tim ft)	ure nt (%)			Symbol								
Depth (ft)	Casin	Number	Type	Peneti (inche	Pretentation Pretentation Pretentation Pretentation Recovery Blows / 9 incl / 10 incles) Recovery Depth Recovery Recovery Rec						Depth & Elevation(feet)			Class	Sar sification System: B	-		iption					
			SS	24	24	30	3	4	4	5				Silt 305.0			0) Tan fine SA			silt, trace	mica, dry.		
35															S 1	1) Tan fine SA		race(⊥) Silt_tra	ace mica			
		S11 SS 24 18 35 4 5 6 6														dry	2" seam of b	prown	fine	SAND, lit	tle(+) Silt,		
																tra	ce mica.						
40																							
		S12	SS	24	21	40	3	5	4	6						S1 mi	2) Brownish gr ca, trace fine G	ay fin Tavel	e SA Iave	ND and S	SILT, trace		
																			ayc				
45		S13	SS	24	24	45	6	9	11	10						S1	3) Tan fine SA	ND, ti	ace	Silt, trace	mica, dry.		
										-													
50													50 Silty Fine	Sonder 0		61	4A) Top 16"	~	h hr	our fine (
		S14	SS	24	24	50	9	10	7	10			Silty Fille	Sana00.0		tra	4A) Top 16" - 0 ce(+) Silt, trace	e mica	a, we	t.			
													of Explor at 52.0	ation			, a doo mioa,				/		
55																							
]										
60																							
ks																							
Remarks																							
Note) Wate	er Level	Readings	Have Beer	n Made At T		een Material T				ay Occur Du	e To Other Factors Than	Those Present A	At The T	me Meası	arements Were Made.						
) Sam	ple Typ				Driven; G=Gr	ab; PS=Piston :	Sampler; SS=S	plit Barrel (Sp	it Spoon);	ST=Shelby	Tube; Geo=GeoProbe V	'=Vane;									
	4) Prop	ortions	Used: Trad	e = 1-10%			20-35%; And material types		ay be gradual.									Bori	ng No.:	GD-7		

								Ì				BOI	Bor	ing No ·	GD-8							
							//////)					Р		ge No.:	1 of 2						
			I	Ы	-	OR	E PO	SI R A					VTRANS SPT Hammer Efficiency									
F V	P.O. 1 Wind	Box sor,	699 VT	05089	9		nmental (674-5943	12. Se	<i>ints-Con</i> 33 Shelb b. Burling hone: 80	urne Rd. gton, VT	., Suite 7 0540	e 360	Windsor, VT						e No.: ecked By	<u>750-05.7</u> : <u>SPK</u>		
	none				VTRA		674-594.	5 P	none: 80	2-652-5	140		Casing:	npler:	(Ground	oundwater Observations					
Fore	eman:	-	-	_	Glen F	Porter ar	nd Eric						Type: <u>H.S.A.</u>		SS	Date	Depth (ft)	th Elev. Notes				
	GeoDesign Rep.: Shawn Kelley Date Started: September 26, 2008 Date Finished: September 26, 2008											I.D.: <u>3.25 in.</u> Hammer Wt.: NA		38 in. 0 lbs	▼ 9/26/08, 0:00			Wet sample).			
N. C	N. Coordinate: E. Coordinate:											Hammer Fall: NA	30) in.	¥							
Ground Surface Elevation (feet): 335 Station: Offset: ft												Rig Type: <u>CME 45</u> Hammer/Rod Type: Auto			¥ ¥							
	Sample Information											Strata			¥							
	Casing Blows/ft			g							me	(%	Description	Symbol		¥ ¥						
Depth (ft)	ing Bl	Number	e	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)		Syı		Sample Description						
Der	Cas	Νuī	Type	Pen (inc	(inc	Der	0 - 6	6 - 12	12 - 18	18 - 24	D. C	Cor Cor	Depth & Elevation(feet)		Class	sification System: B	-		1			
													Silty Fine Sand									
\vdash																						
5	5																					
	S1 SS 24 22 5 2 2 3 2 10.1									10.1			S1 La) Tan fine SAN yers of fine SA	D, litt ND, li	le Sil ttle S	t, trace m ilt.	nica, dry.				
											-					-						
10													10									
		S2 SS 24 17 10 3 4 5 5 4.0								4.0	Fine to Medium25.0 Sand and Gravel			2) Tan fine to co avel, trace Silt.		SAN	D, some	fine				
) o)			. ,								
														Ø.								
15														0 (
		S3	SS	24	19	15	9	10	7	7		3.7		0		B) Tan fine to co ice Silt, dry.	arse	SAN	D, little fir	ne Gravel,		
														° C								
														0 (
20														0								
20		S4	SS	24	21	20	6	9	9	13		4.3		0) Tan fine to co avel, trace Silt,		SAN	D, trace(-	+) fine		
) ()			ury.					
														0								
05														o (
25		S5	SS	24	21	25	9	11	11	14		4.5		Þ	S5) Tan/brown fir	e to o	coars	e SAND,	trace		
														<i>Ф</i> 0	mi	ca, trace Silt, tr	ace G	Jave	1.			
														o (
											<u> </u>			Ø								
30	1)	 ∧ ~	(200				feam	ling int		modiat		ior to	30 sampling.	<u>la</u> . Y								
urks	2)	Aug	jer g	grindi	ing at	10'.	n samp	ing inte	ərvar im	mediat	eiy pr		samping.									
00 Bemarks																						
	1) Strat	ification	Lines Re	present Ar	oproximate F	Boundary Betw	een Material T	ypes, Transitio	ons May Be Gr	adual.											
	es: 2	2) Wate A.C.	er Level = After	Readings coring; N	Have Bee	n Made At T Recorded.	Times And Und	er Conditions	Stated, Fluctua	tions Of Grou	ndwater M		e To Other Factors Than Those Present a Tube; Geo=GeoProbe V=Vane;	At The Ti	ime Meas	urements Were Made.						
	V 4	WOR/H	I=Weigl ortions	ht of Rod/ Used: Tra	Hammer ce = 1-109	6; Little = 10)-20%; Some = indary between	20-35%; And	= 35-50%									Bori	ng No.:	GD-8		
- L		,al		es rep	app	out			,	, pround.												

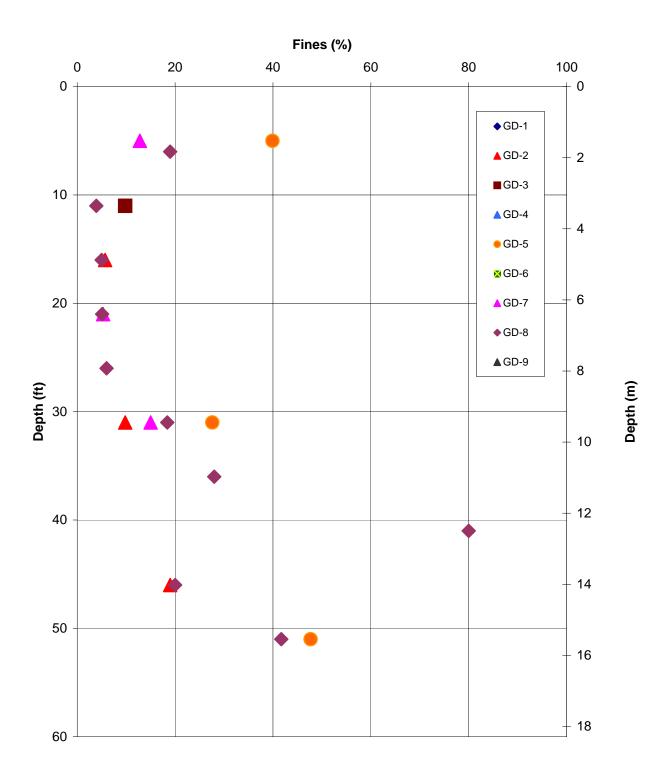
														BORING LOG							GD-8			
				~ -		_			~					Р	roje	ct Na	me			e No.:	2 of 2			
	~		I	• •	с	OR	P O				. .		VTRAI	NS SP	т⊦	lamı	mer Efficien	су	-	No.:	750-05.7			
F	P.O. 1	Box	699			Environ	ımental	123 Sc	33 Shelb Burling	s <i>truction</i> urne Rd. gton, VT	, Suite 0540	360	Windsor, VT								:SPK			
F	hone	e: 80	02-6	74-20			674-5943	3 Pł	10ne: 80	2-652-51	40		Casing: Sampler: Ground							bservations				
	ng Co eman:	-	any:	-		vo Porter an	d Eric						Туре:	SS	Date	1	oth Elev. Notes							
	GeoDesign Rep.: Shawn Kelley Date Started: September 26, 2008 Date Finished: September 26, 2008											1 -	<u> </u>						(ft) 285.0 Wet sample.					
N. Coordinate: E. Coordinate:												Hammer Wt <u>.:</u> Hammer Fal <u>l:</u>	NA NA		0 in.	¥ 9/26/08, 0:00 ¥	50.0	285.0	wet sample					
												Rig Type:				Y Y								
Stati	Station: Onset: It Sample Information											Hammer/Rod]	¥								
	Ψ.										~	Strat Descrip		pol		¥ ¥								
1 (ft)	Casing Blows/ft	ber		Penetration (inches)	very es)	(ft)	E	Blows / 6 i	nch Interv	/al	Coring Time (min./ft)	Moisture Content (%)			Symbol			1 7	 、 .					
Depth (ft)	Casin	Number	Type	Penet (inch	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Corin (min.	Moist Conte	Depth & Elevation(feet))	Class	Sar sification System: B	-	ple Description						
		S6	SS	24	24	30	4	4	5	7		7.4	Sand/S	Silt 305.0		S6) Tan fine SAN	ID, litt	le Sil	t, trace m	nica, wet.			
																<u> </u>								
35		S7	SS	24	23	35	4	4	6	6		12.6) Tannish brow	n fine	SAN	ID, some	e Silt, trace			
																mi	ca, moist.							
																·								
40		S8	SS	24	23	40	5	3	7	9		26.1) Brown SILT,	little f	ine S	and, trac	e fine			
												20.1					avel, trace mic							
45		S9	SS	24	19	45	5	7	9	10		8.2	45 Silty Fine	San@90.0		59) Tan fine SAN	ID. so	me S	ilt. trace	mica.			
		29	33	24	19	40	5	/	9	10		8.2					pist.	,						
50														Ţ		C1	0) Top 15" - Bı	iown f	ino S		oo Silt			
		S10	SS	24	22	50	6	7	8	8		23.8				tra	ce mica, wet.							
													52 Bottor)		ttom 7" - Fine 3 ered, wet.	SAND) and	SILT, tra	ice mica, /			
													of Explor at 52.0								/			
55																								
60																								
Remarks																								
Rei																								
Note										ns May Be Gra														
1.04	3	A.C.) Samp	= After ple Type	coring; N e Coding:	.R. = Not I A=Auger;	Recorded.							e To Other Factors Than Tube; Geo=GeoProbe V		At The T	ime Measi	arements were Made.							
	4) Prop	ortions		e = 1-10%			20-35%; And material types		ay be gradual.									Bori	ng No.:	GD-8			

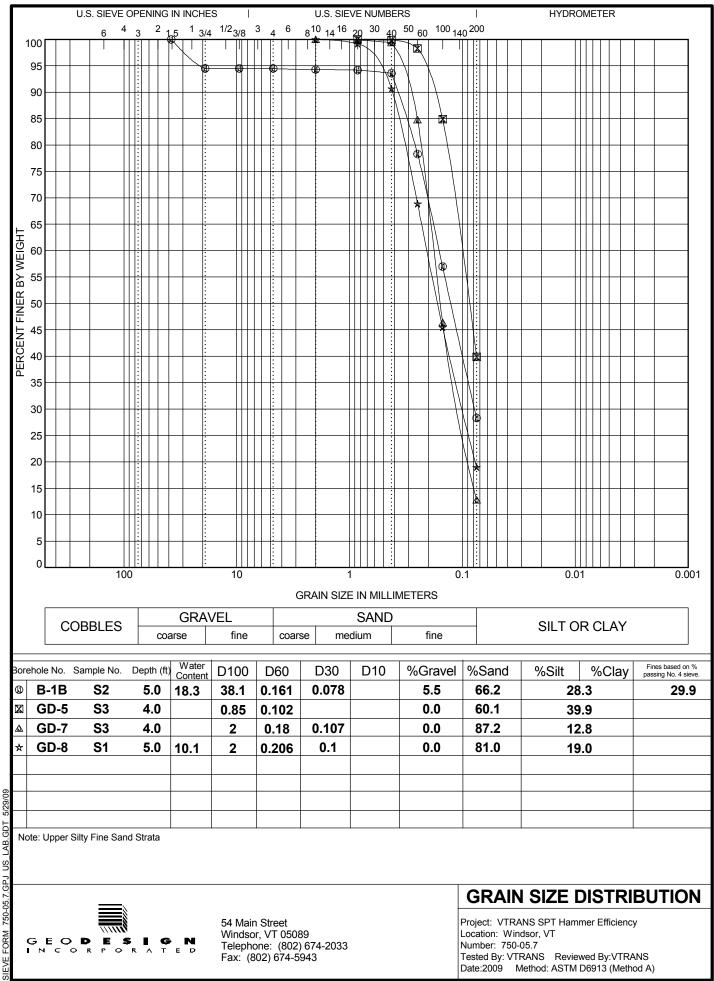

												BOI	Bor	ing No ·	6	iD-9								
							/////						Р	rojec	et Na	me		Boring No.: GD-9						
			C I	Э Е N	с	OR	P O	SI R ∕	G T E		_		VTRANS SP	тн	lamr	mer Efficien	су		Page No.: <u>1 of 2</u> File No.: <u>750-05.7</u>					
l	P.O. I Wind	Box sor,	699 VT	05089	¢			123 Sc	33 Shelb . Burlin	struction urne Rd. gton, VT	, Suite 0540	e 360	Windsor, VT						cked By					
	hone			-			674-5943 ng & Inve		hone: 80	2-652-51	140		Casing:		Ground	water O	bservations	5						
	eman:	-	any.	_			and Matthe						Type: <u>H.S.A.</u>	Date		Depth Elev. Notes								
	Desig		ep.:	_		n Kelley							I.D.: <u>4.25 in.</u>	-	88 in.		(ft)	(ft)						
	e Start			-	Septer	mber 29	<u>, 200</u> 8			Septer	nber 29	9, 2008	Hammer Wt <u>.: NA</u> Hammer Fall: NA		0 lbs) in.	▼ 9/29/08, 0:00 ▼	50.0	285.0	Wet sample	e				
	N. Coordinate: E. Coordinate: Ground Surface Elevation (feet): 335										Rig Type: Simco 28			Ť										
Stat											Hammer/Rod Type: Wire	line - A	AWJ	Ţ										
	t,					S	ample	Informa	ation				Strata			¥ ¥								
	Casing Blows/ft			u							me	Ŷ	Description	Symbol		¥								
Depth (ft)	ng Bl	ber		Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	inch Interv	h Interval		Moisture Content (%)		Syr										
Depi	Casi	Number	Type	Pene (incl	Rece	Depi	0 - 6	6 - 12	12 - 18	18 - 24	Coring Time (min./ft)	Moi	Depth & Elevation(feet)		Sample Description Classification System: Burmister									
		S1	SS	24	16	0	3	6	6	7			Topsoil Silty Fine Sand ^{34.5}	<u>, 1/</u>	0.) Top 6" - Tops					<u></u>			
																ttom 10" - Tan/ pist.	orang	ge tine	e SAND,	, little	Silt,			
		S2	SS	24	18	2	3	4	7	7					S2) Tan/brown fir	ie SA	e SAND, trace(+) Silt, trace						
															mi	ca, moist.								
5											<u> </u>				000) Top fire OAN			14 4	fire -				
	S3 S5 24 20 5 3 5 4 4) Tan fine SAN avel, trace mica			it, trace	fine							
													-											
40																								
10		S4	SS	24	15	10	5	4	5	6) Tan fine San		ce Silt	, trace fi	ine G	ravel,			
															tra	ce mica, moist								
15													15											
		S5	SS	24	19	15	9	13	16	18			Fine to Medium20.0 Sand and Gravel) Tannish brow e Gravel, trace					, trace			
														0 (, .		,		-			
														0										
														0										
20		00	00	04	40				47	40) o)	.56) Tan fine to m	ediun		ID trace	fine				
		S6	SS	24	18	20	7	14	17	18				Ø.		avel, trace mic				,				
														0										
														• • []										
25													•	0										
í 5		S7	SS	24	14	25	18	27	25	15	1		1	0) Tan fine to co		SAN	D, trace	fine G	Favel,			
20.														• ()	tra	ce Silt, trace m	ica.							
														Ø										
														0										
30													30	\o. (
DESIC	1) \$	Sar	nple	d twi	ce fro	om gro	ound su	rface 0	' to 4'.	A 1 -														
J GEOD Remarks	2)	⊢ro	m 5'	to b	ottom	of bo	rehole,	advand	ced HS	A to top	o of sa	amplir	ng interval immediate	ely p	rior to	o sampling.								
Ren																								
750-05.7.GPJ GEODESIGN STANDARD		1.5-	6	147			ound ? ·	aan Mere 1.1.**	Vanas 10	March C	oduc ¹													
	es: 2	2) Wate A.C.	r Level = After	Readings coring; N	Have Beer .R. = Not I	n Made At T Recorded.	imes And Und	er Conditions	Stated, Fluctua		ndwater M		e To Other Factors Than Those Present	At The Ti	ime Meas	arements Were Made.								
/-90-06/	v	WOR/H	I=Weigl	nt of Rod/	Hammer		Driven; G=Gr			Split Barrel (Sp	lit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;				I	Dor	na Na i	<u>C</u> D				
750							-20%; Some = indary between			ay be gradual.								BOLI	ng No.:	GD	-9			

													BO	Bor	ing No.:	GD-9						
				ЭE	= 0	D		() < 1	G	N			F	rojec	ct Na	me		Pag	Page No.: <u>2 of 2</u>			
	7	1	I	Ы	С	O R	PO	R A		D struction	E		VTRANS SF	ΡTΗ	lamr	mer Efficien	су	File	No.:	750-05.7		
F V	P.O. I Vind	Box sor,	699 VT	05089)		574-594	123 Sc	33 Shelb . Burlin	urne Rd. gton, VT 2-652-51	, Suite 0540	360	N N	/inds	sor,	VT		Checked By: <u>SPK</u>				
	ng Co						ng & Inve		ione: oo	2 052 51	10		Casing: Sampler: Gro					water O	bservations			
	eman:			-			nd Matthe	ew Miller					Type: <u>H.S.A.</u> I.D.: 4.25 in.	H.S.A. SS Date 4.25 in. 1.38 in.				Elev. (ft)	I	Notes		
GeoDesign Rep.: Shawn Kelley Date Started: September 29, 2008 Date Finished: September 29, 2008											nber 29	Hammer Wt <u>.: NA</u>		0 lbs	▼ 9/29/08, 0:00	50.0	285.0 Wet sample.					
N. Coordinate: E. Coordinate:												Hammer Fall: NA		0 in.	¥							
Ground Surface Elevation (feet): 335 Station: Offset: ft												Rig Type: Simco 2800 Truck ¥ Hammer/Rod Type: Wireline - AWJ ¥										
Sample Information											Strata			¥ ¥								
	Casing Blows/ft			ų							me	(%	Description	Symbol		Ť						
Depth (ft)	ing B]	Number	e	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 inch Interval Blows / 6 inch Interv					Donth &	Sy		Sample Description						
Del	Cas		Type	$\frac{1}{2}$ $\frac{1}$					Mo Coi	Depth & Elevation(feet) Sand/Silt 305.			sification System: B	urmiste	r	-						
		S8	SS	24	23	30	4	6	8	10)) Tan fine SAN bist.	D, tra	ace SI	it, trace r	nica,		
35																						
		S9	SS	24	20	35	5	9	13	12) Grayish brow ca.	n fine	9 SAN	D, little(-)) Silt, trace		
40																						
		S10	SS	24	20	40	9	12	15	15						0) Grayish tan ca, layered, mo		SAND	, trace Si	lt, trace		
													_									
45																						
		S11	SS	24	21	45	11	16	16	12					S1	1) Tannish gra ca, moist. 2" se	y fine	SAN	D, trace	Silt, trace		
																e(+) Silt.	eann		wit line G	AND,		
													_									
50		S12	SS	24	22	50	10	10	16	17			. <u>¥</u>			2) Brown/dark		fine S	AND and	I SILT,		
													52			ce mica, layere ttom 6" - Fine \$), trac	e Silt, tra	ce mica, _		
													Bottom 283. of Exploration	0	\we					/		
													at 52.0 ft									
55													1									
													-									
60																						
rks																						
Remarks																						
Note	es: 2) Wate A.C.	er Level = After	Readings coring; N	Have Beer .R. = Not F	n Made At T Recorded.	imes And Und	er Conditions !	Stated, Fluctua		dwater Ma		te To Other Factors Than Those Present	At The T	ime Meas	urements Were Made.						
	V 4) Prop	I=Weigl ortions	ht of Rod/ Used: Trac	Hammer ce = 1-10%	; Little = 10	-20%; Some =	20-35%; And	= 35-50%		lit Spoon);	ST=Shelby	Tube; Geo=GeoProbe V=Vane;				[Borii	ng No.:	GD-9		
								material types		ay be gradual.								2011				

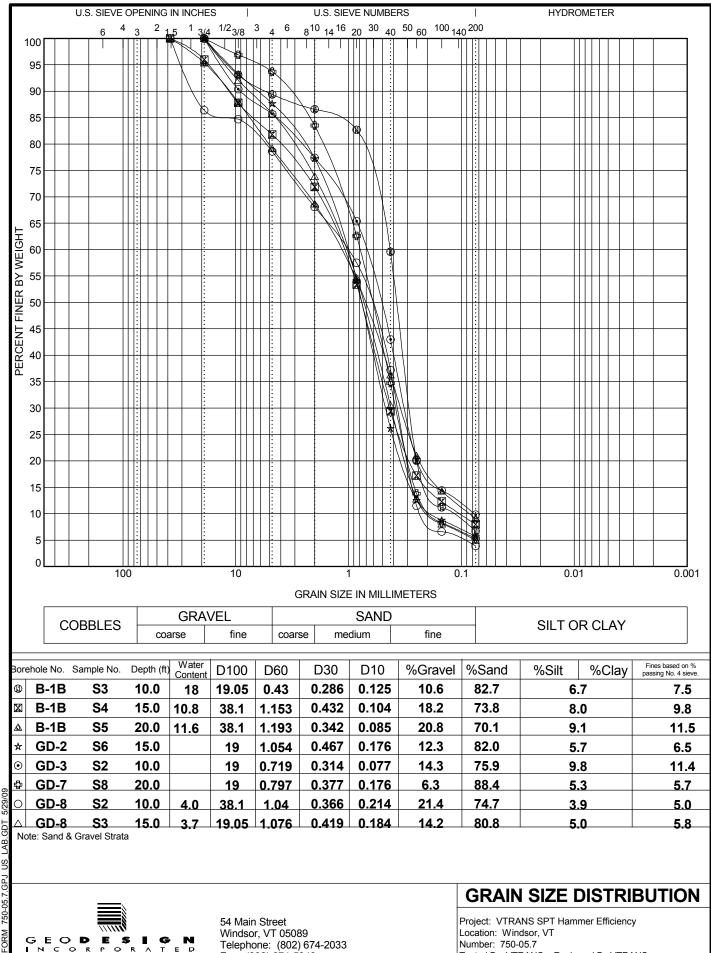
APPENDIX 4 – GRAIN-SIZE ANALYSES (BY BORING)

GeoDesign, Inc. Windsor, VT Job No. 750-5.7

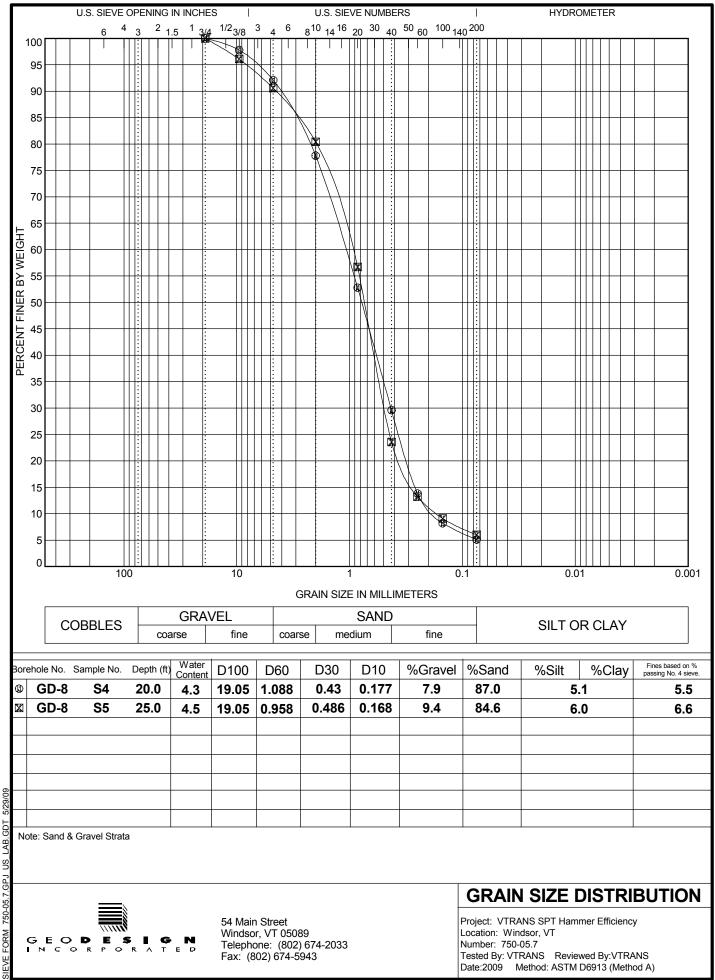

SPT Hammer Energy Variability Evaluation Windsor, VT

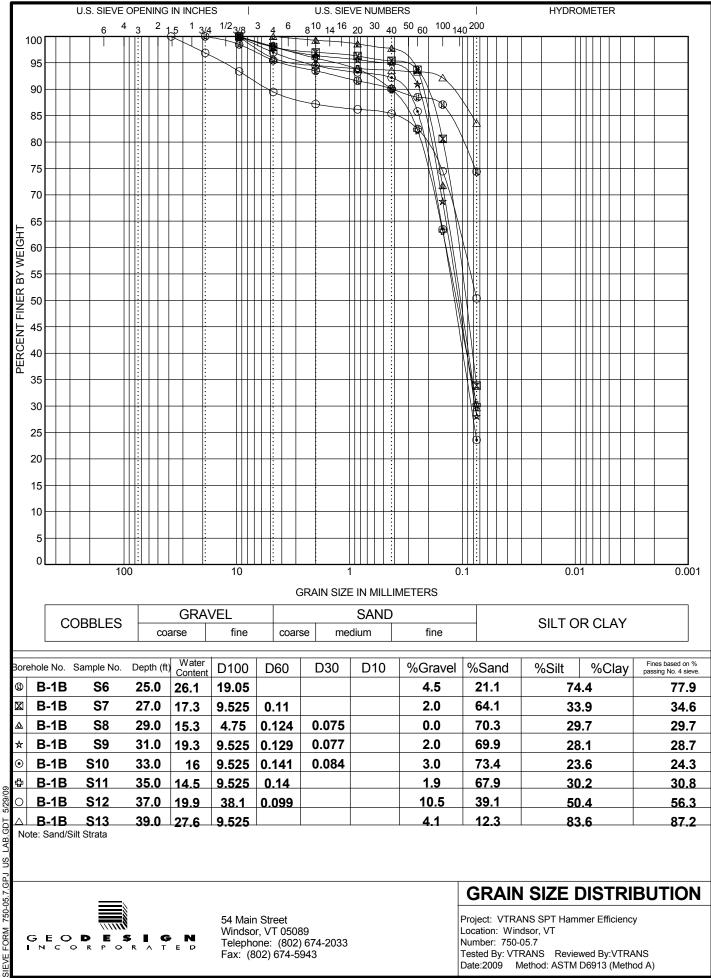


Vtrans # RSCH012-703


GeoDesign, Inc. Windsor, VT Job No. 750-5.7

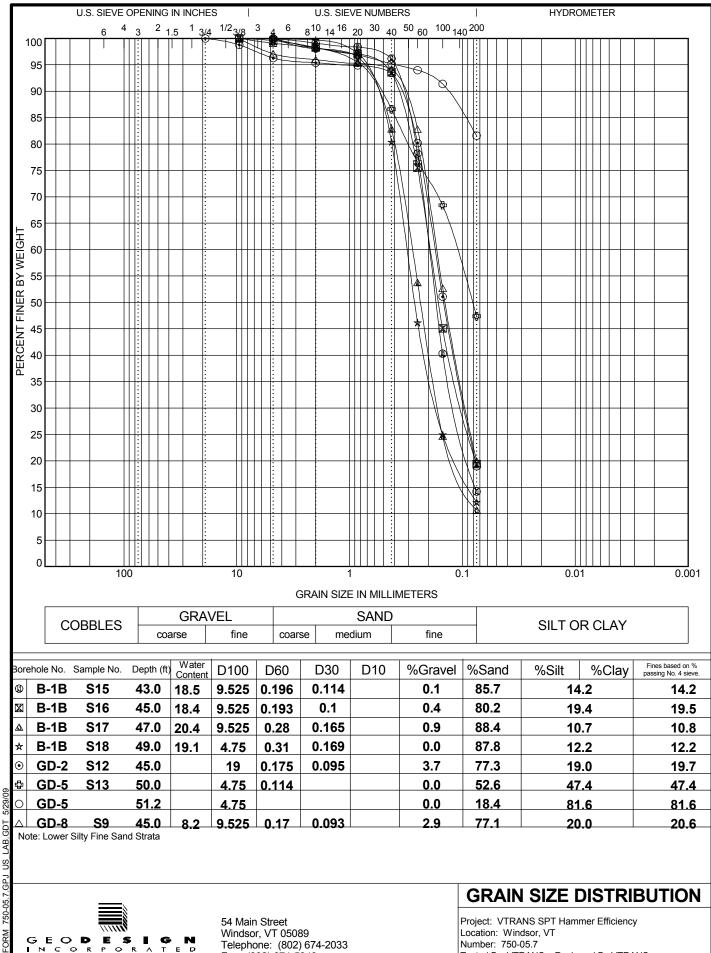
SPT Hammer Energy Variability Evaluation Windsor, VT


LAB.GDT 750-05.7.GPJ US FORM


GDT LAB. 750-05.7.GPJ US FORM SIEVE

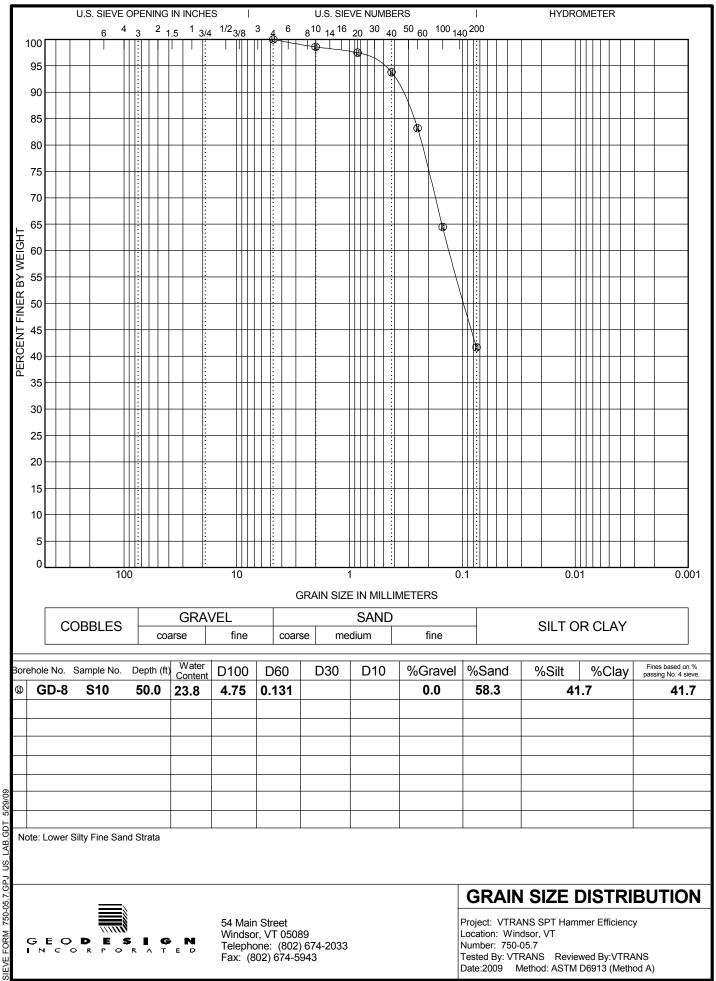
Fax: (802) 674-5943


Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

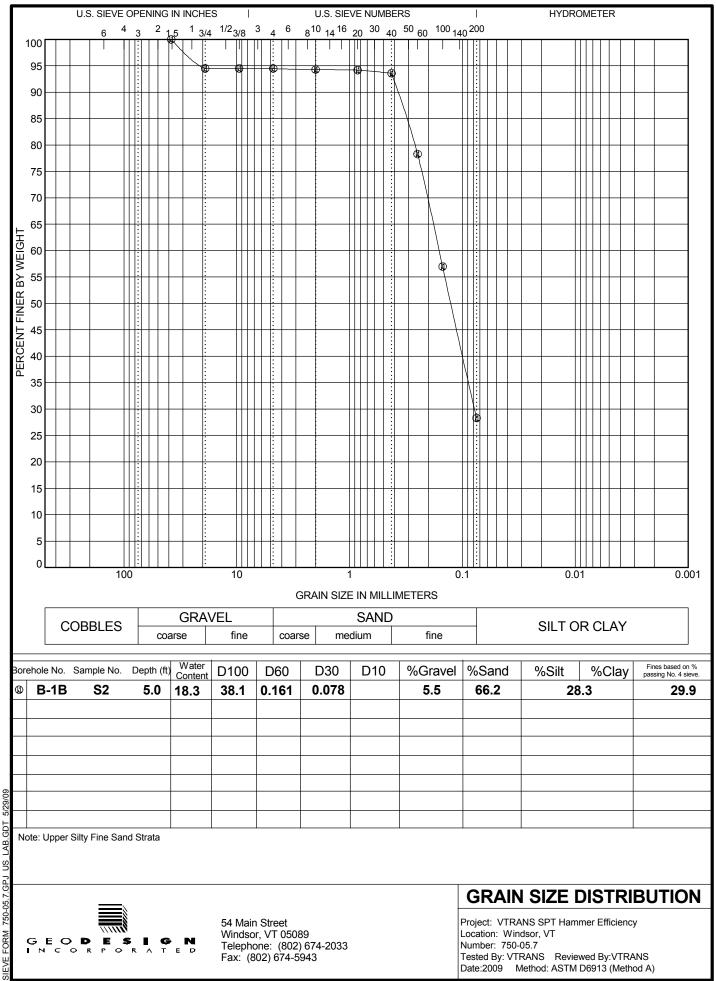

LAB.GDT 750-05.7.GPJ US FORM

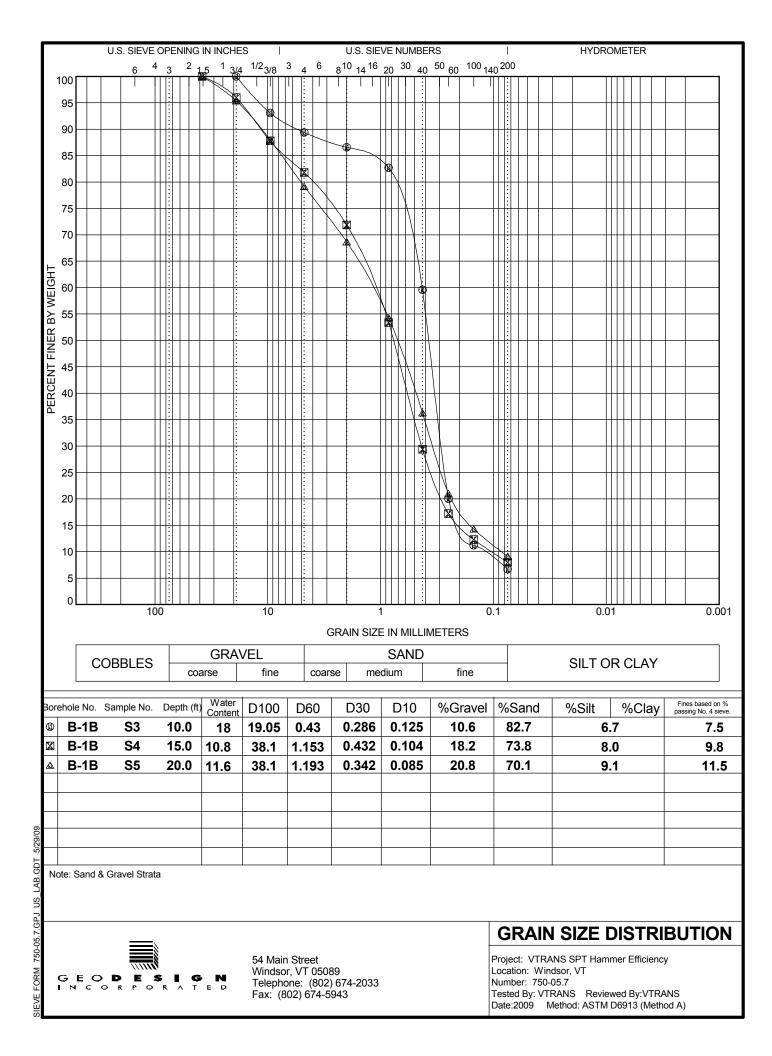
GDT LAB. 750-05.7.GPJ US FORM

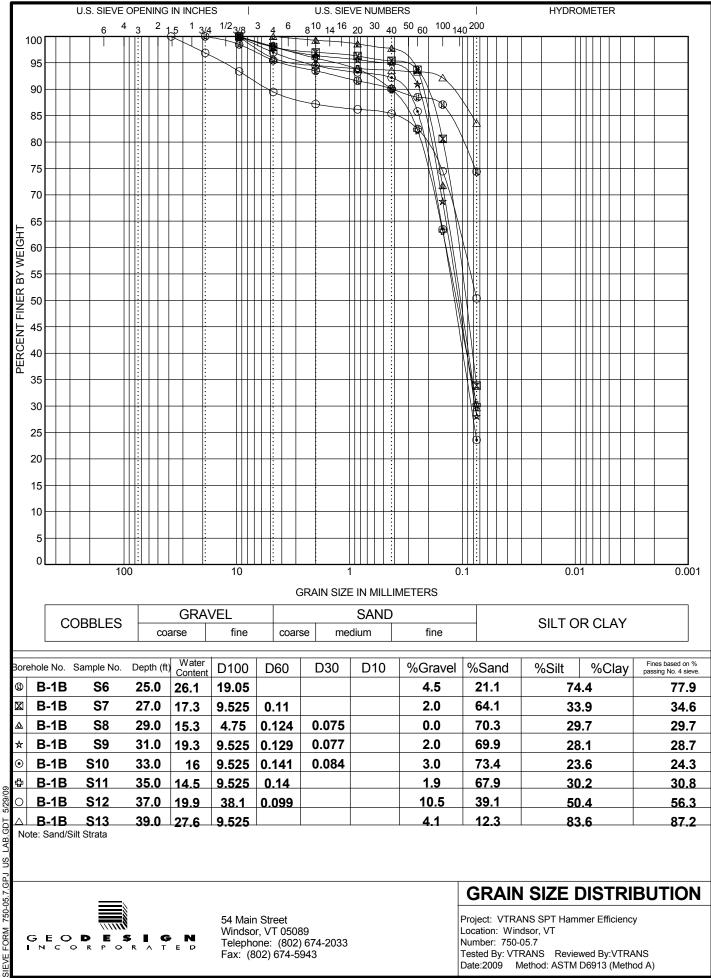
GDT LAB.(750-05.7.GPJ US FORM

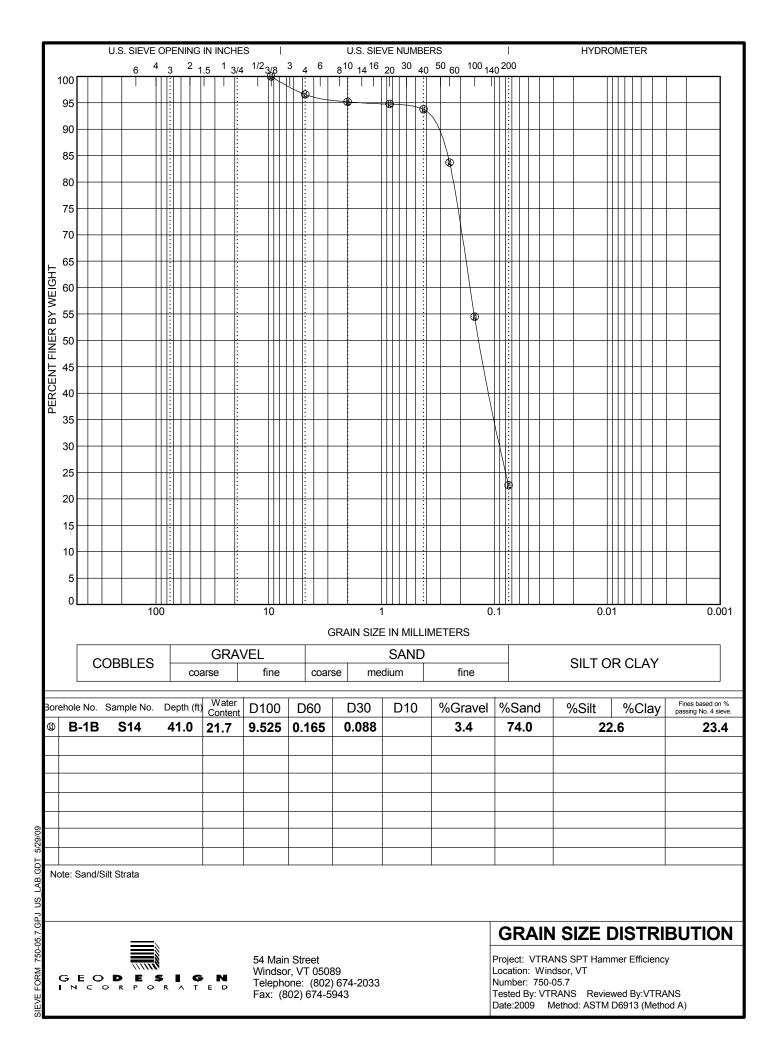


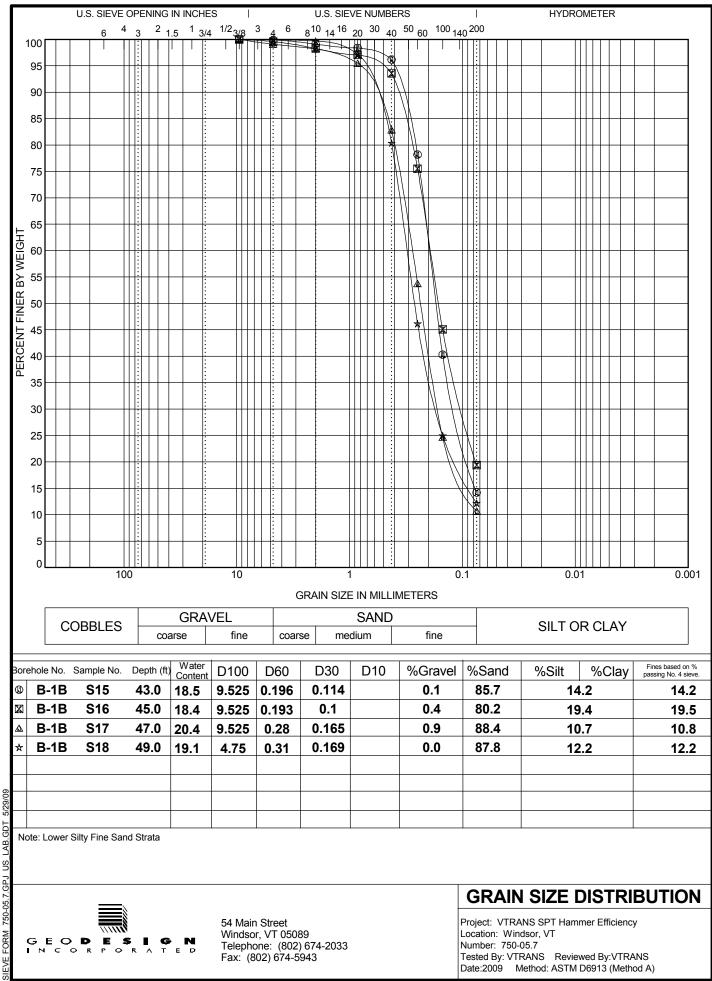
SIEVE

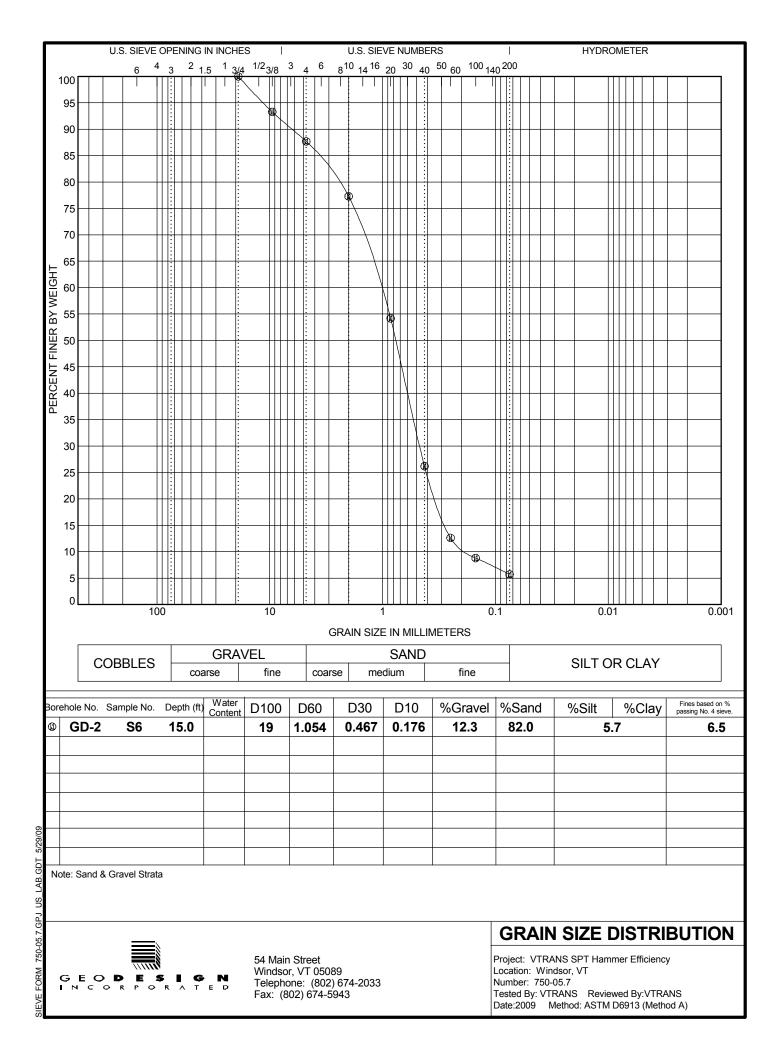

Telephone: (802) 674-2033 Fax: (802) 674-5943

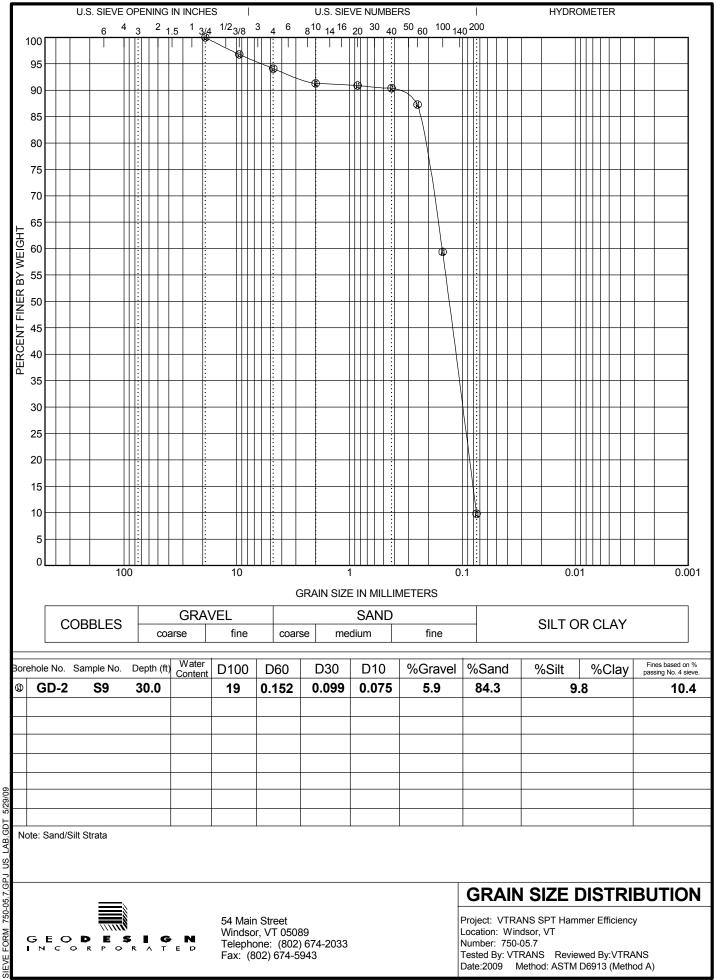

Tested By: VTRANS Reviewed By: VTRANS

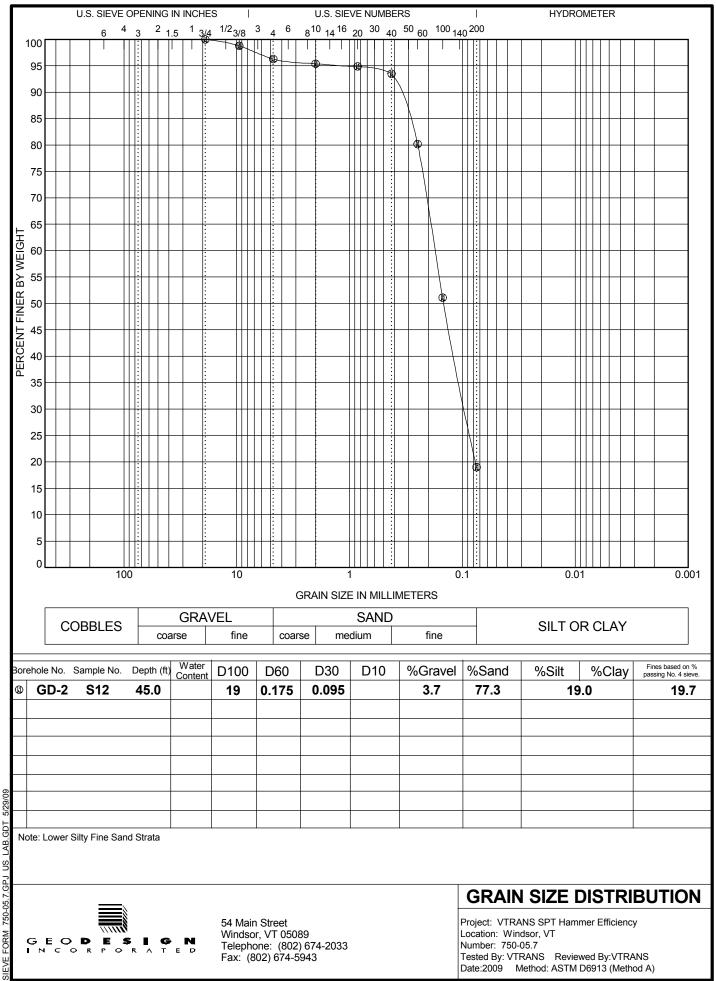

Date:2009 Method: ASTM D6913 (Method A)


750-05.7.GPJ US LAB.GDT FORM

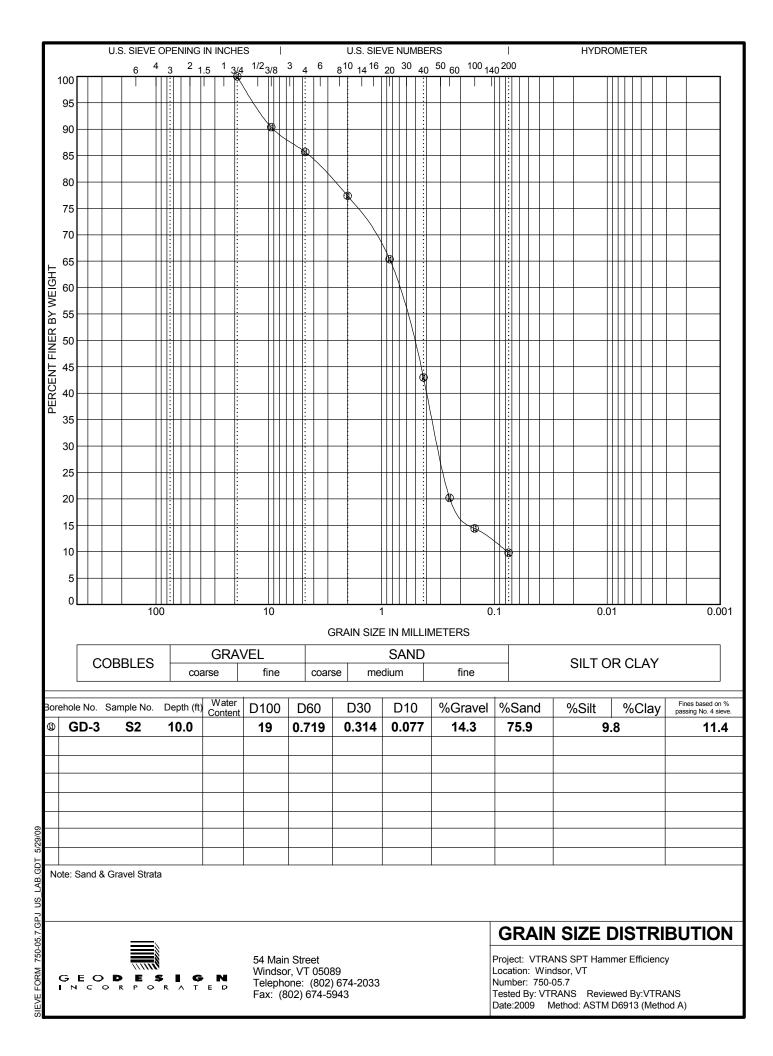


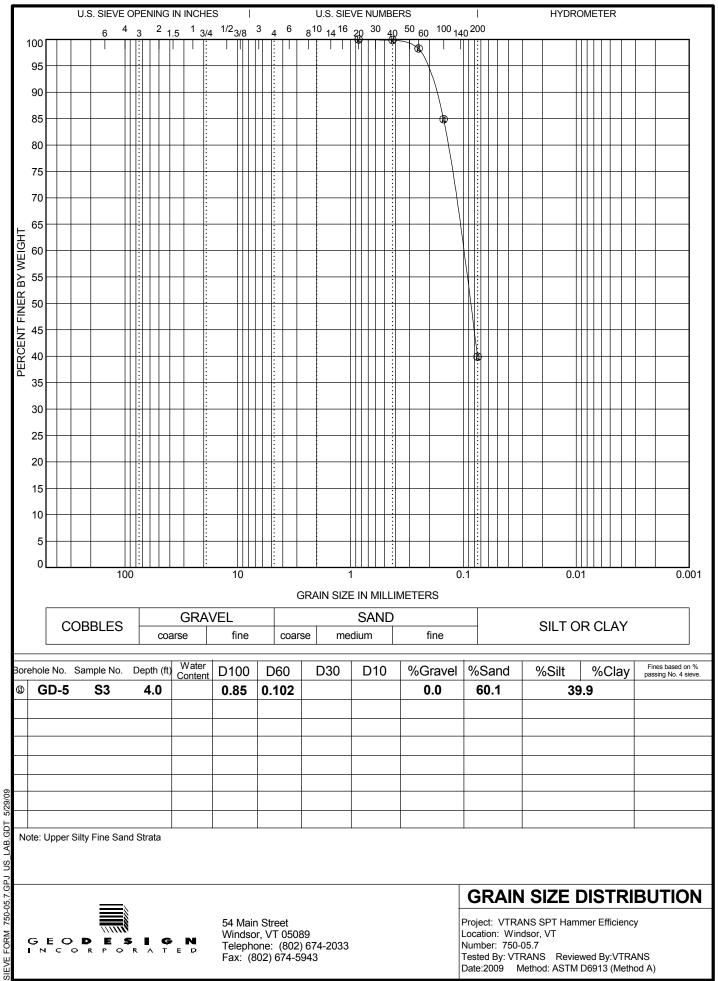


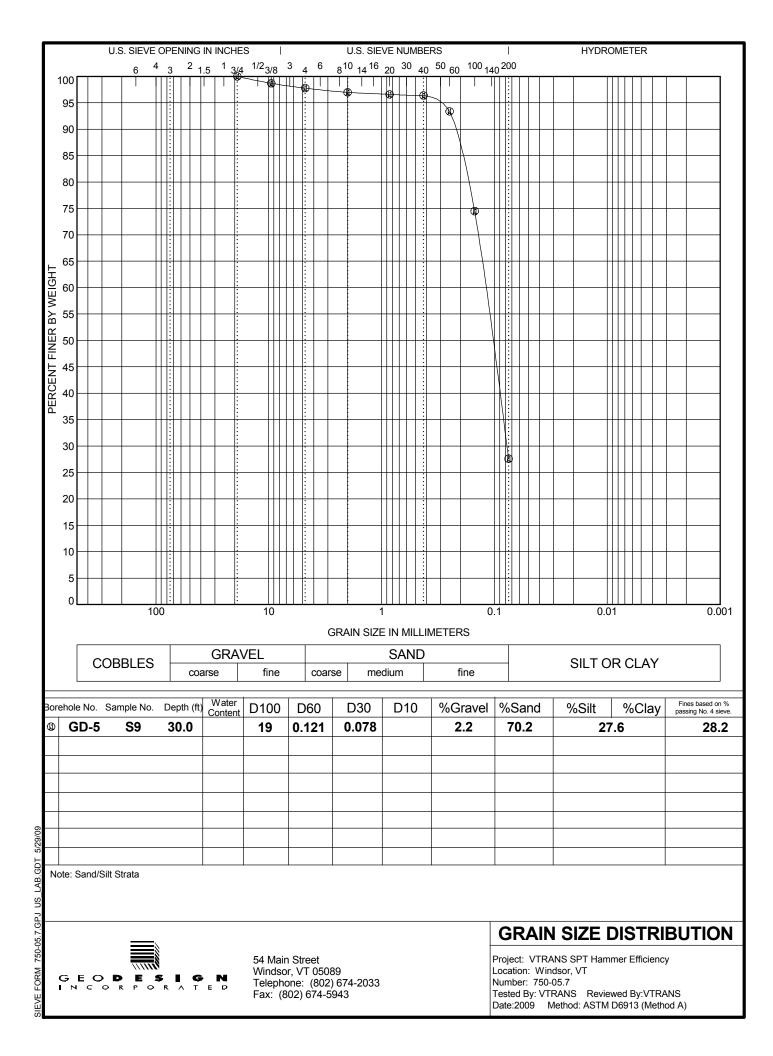

GDT LAB. 750-05.7.GPJ US FORM

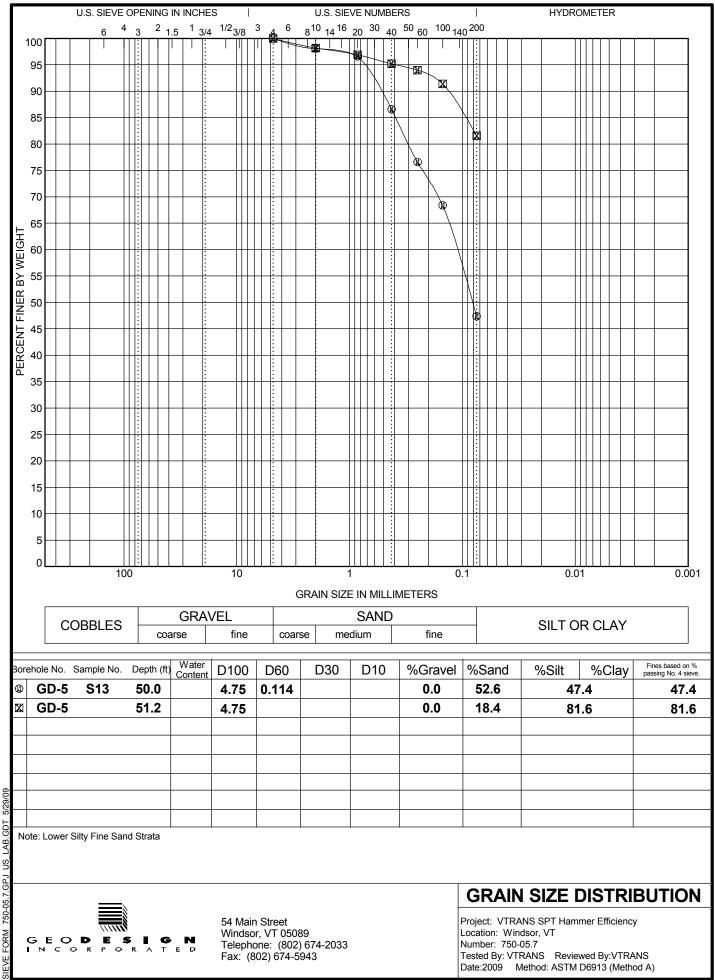


GDT LAB.(750-05.7.GPJ US FORM

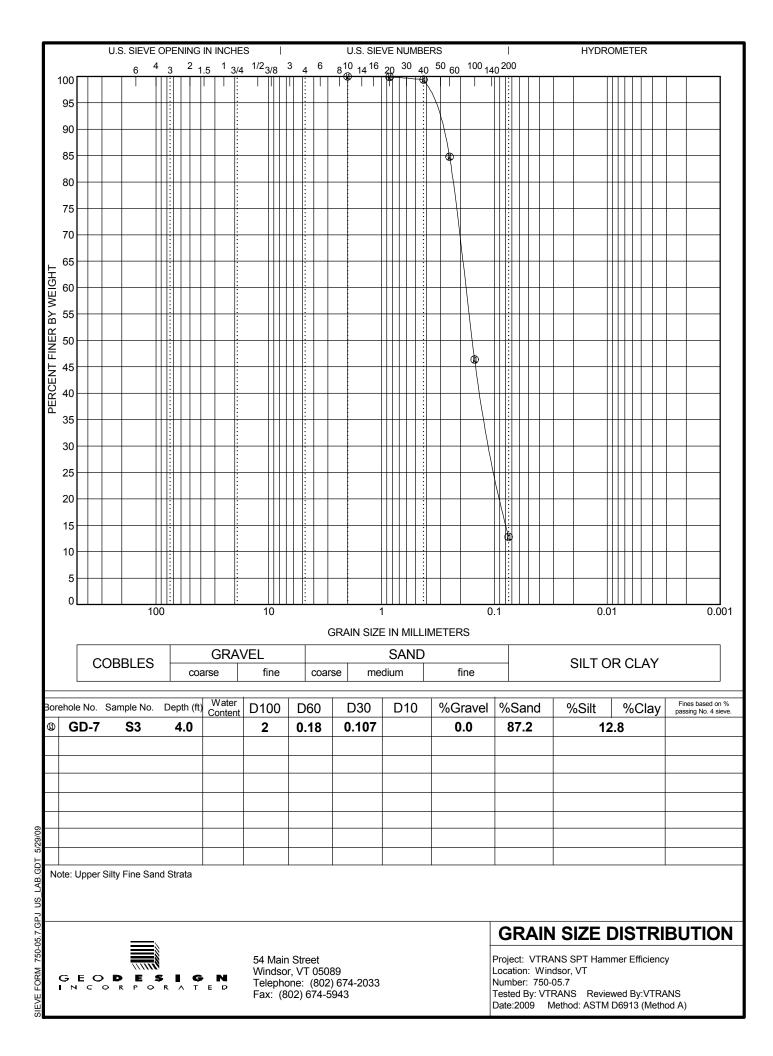


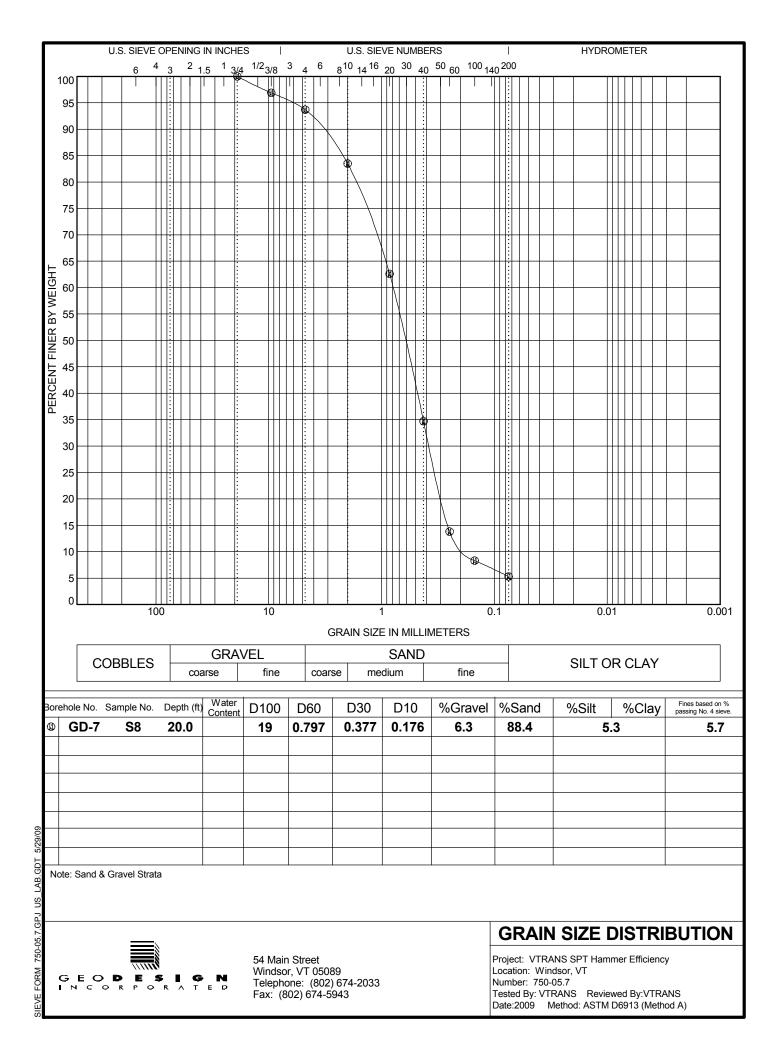


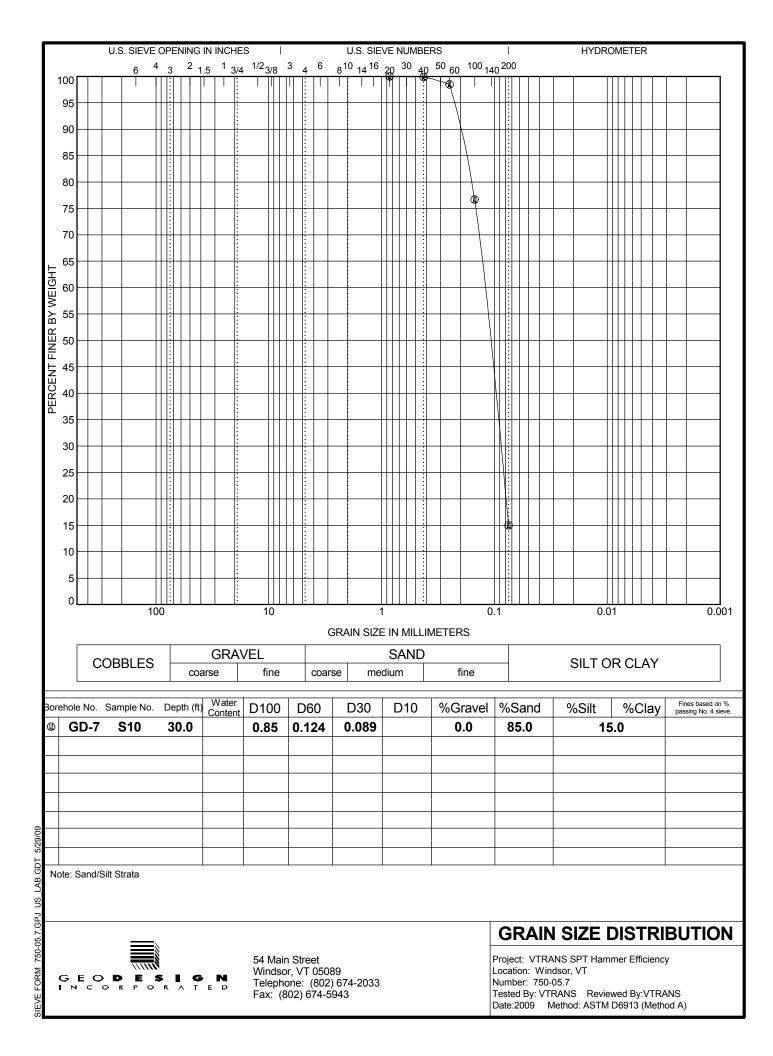

750-05.7.GPJ US LAB.GDT FORM

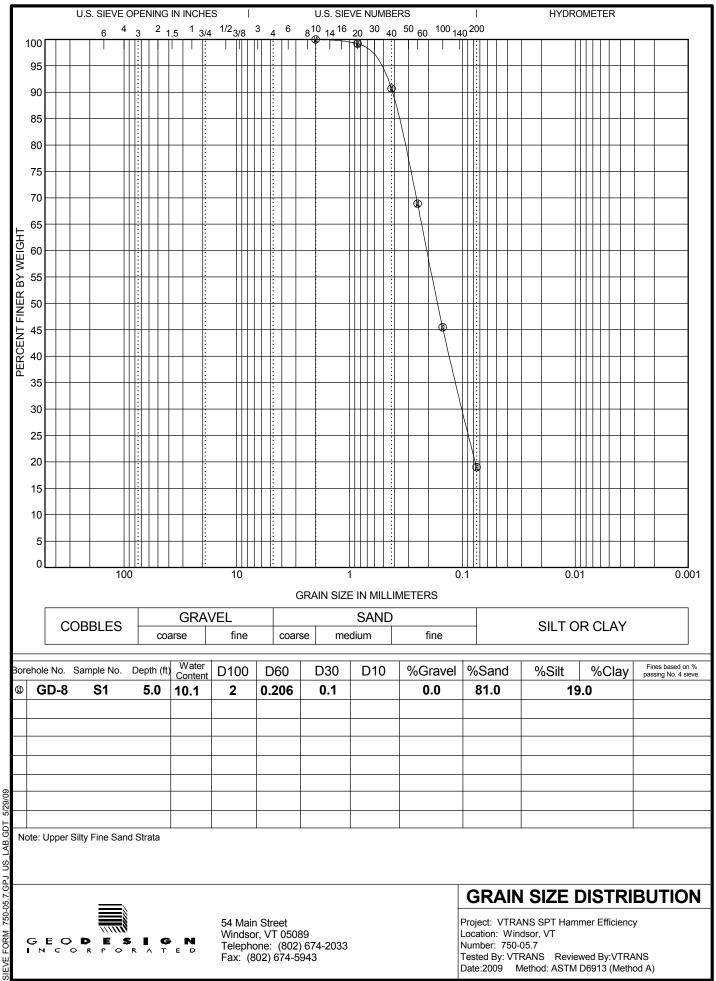


750-05.7.GPJ US LAB.GDT FORM

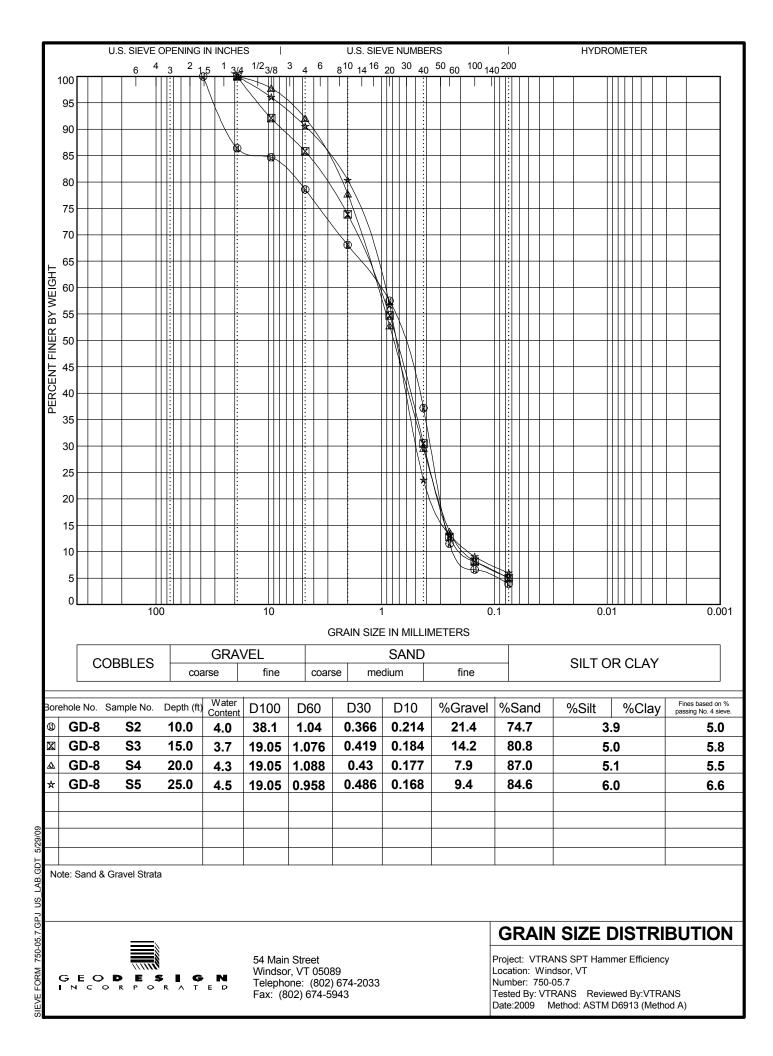


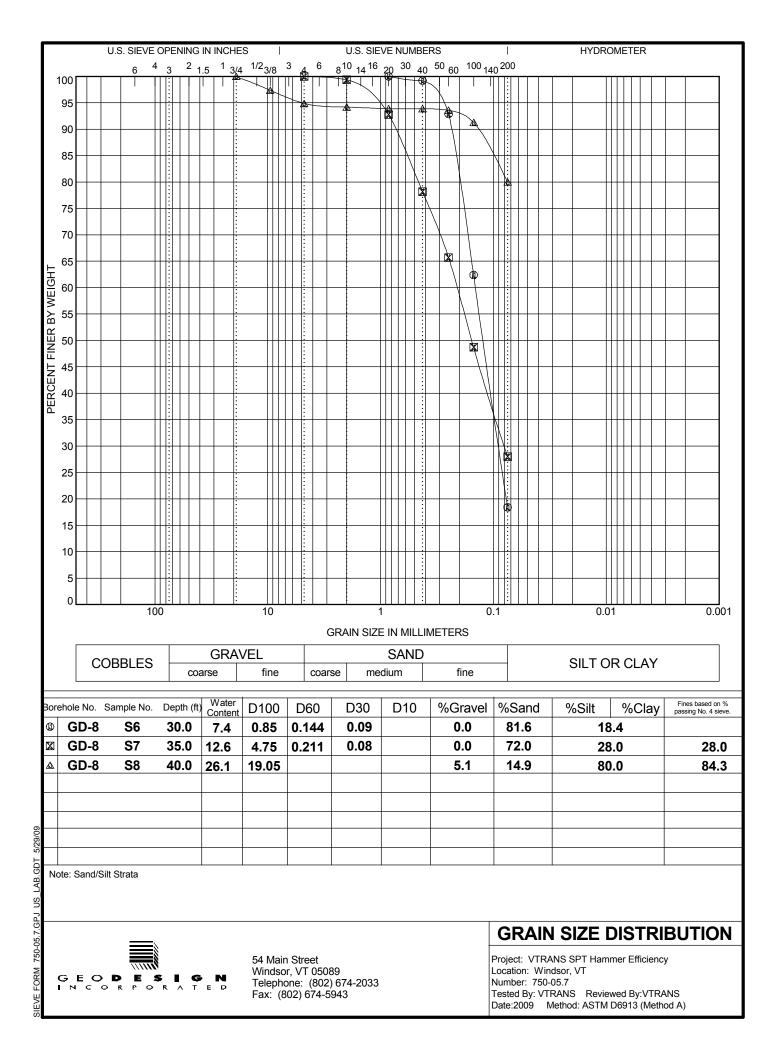


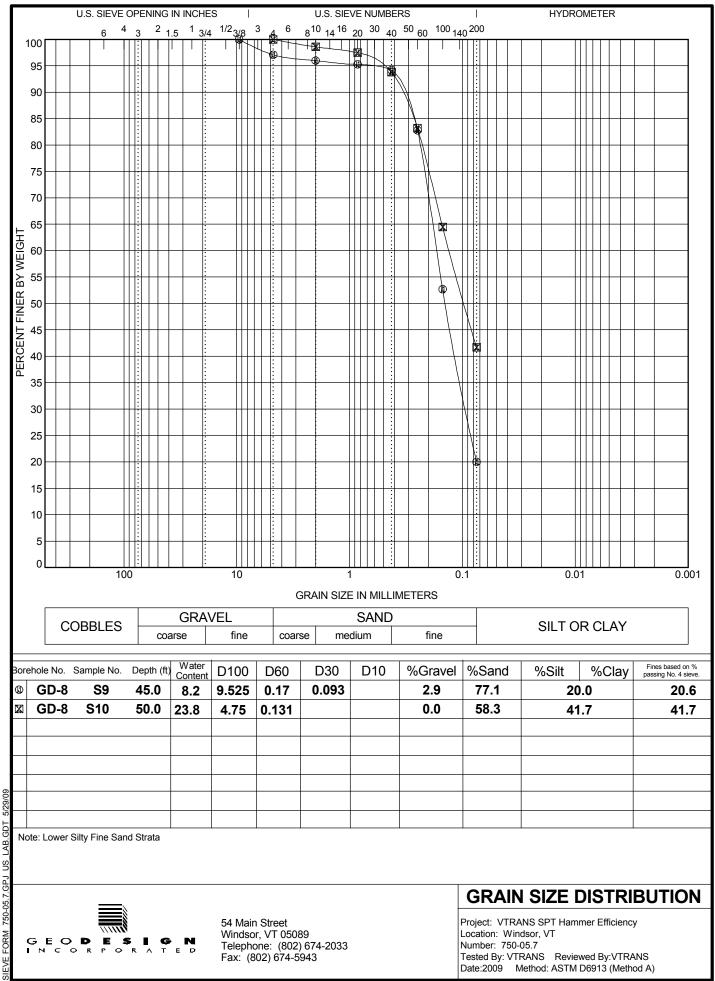




LAB.GDT 750-05.7.GPJ US FORM







750-05.7.GPJ US LAB.GDT FORM

750-05.7.GPJ US FORM

HAMMER STUDY, WINDSOR

HOLE: B-1B

DEPTH FT.	% MOIST.	CLASS.	DES.	N VALUE	% PASS 1.5"	% PASS 3/4"	% PASS 3/8"	% PASS #4	% PASS #10	% PASS #20	% PASS #40	% PASS #60	% PASS #100	% PASS #200
0-2	14.0	A-4	Sa Si	13		100	98.4	94.9	88.5	80.2	73.0	68.6	63.8	45.2
5-7	18.3	A-2-4	Si Sa	6	100	94.5	94.5	94.5	94.3	94.2	93.6	78.3	57.0	28.3
10-12	18.0	A-3	Sa	9		100	93.1	89.4	86.6	82.7	59.6	20.0	11.2	6.7
15-17	10.8	A-1-b	Gr Sa	19	100	96.0	87.8	81.8	71.9	53.4	29.4	17.2	12.3	8.0
20-22	11.6	A-1-b	Gr Sa	19	100	95.4	88.0	79.2	68.7	54.3	36.3	21.0	14.3	9.1
25-27	26.1	A-4	Si	7		100	98.5	95.5	93.5	91.6	90.1	88.5	87.1	74.4
27-29	17.3	A-2-4	Si Sa	17			100	98.0	97.0	96.3	95.4	93.7	80.6	33.9
29-31	15.3	A-2-4	Si Sa	19				100	99.3	98.6	97.8	93.8	71.8	29.7
31-33	19.3	A-2-4	Si Sa	16			100	98.0	96.4	95.6	95.0	91.0	68.8	28.1
33-35	16.0	A-2-4	Si Sa	17			100	97.0	94.5	93.2	92.2	85.8	63.5	23.6
35-37	14.5	A-2-4	Si Sa	12			100	98.1	95.9	93.8	90.0	82.3	63.2	30.2
37-39	19.9	A-4	Sa Si	17	100	96.9	93.4	89.5	87.2	86.2	85.4	82.5	74.5	50.4
39-41	27.6	A-4	Si	12			100	95.9	94.5	93.9	93.6	93.3	92.2	83.6
41-43	21.7	A-2-4	Si Sa	17			100	96.6	95.2	94.8	93.8	83.7	54.5	22.6
43-45	18.5	A-2-4	Sa	24			100	99.9	99.1	98.4	96.2	78.2	40.3	14.2
45-47	18.4	A-2-4	Sa	23			100	99.6	98.3	97.1	93.6	75.5	45.1	19.4
47-49	20.4	A-2-4	Sa	22			100	99.1	98.2	95.5	82.9	53.8	24.7	10.7
49-51	19.1	A-2-4	Sa	28				100	99.7	97.2	80.4	46.2	25.0	12.2

G:/Soils&Foundation/Projects/Hammer Study/Boring Logs/B-1b samples

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090289	Corrected copy:	N/A			Report Da	ate:	4/20/2	009 12:5:	5:24
Project: HAM	MER STUDY	Nu	mber:	WINDS	SOR	Site:		RSC	H011-70.	3
Date sampled:	Rece	ived:	Т	ested:	4/13/2009	Tested	by:	J. TOL	JCHETT	Έ
Station:	Offset:	Hole:	GD-2]	Depth:	15 FT	to:		17 FT	
Field description	on:									
Submitted by:	WERNER/GeoDe	sign		I	Address:					
Sample type:	SPLIT BARREL			(Quantity:					
Sample source/	Outside agency na	me:								
Location used:				Exami	ned for: C	CLASSIFIC	ATIC	DN		
Comment:										
				-						

Test Results

		1 est itesuite	,			
T 00	Sieve Analysis				Limits	
T-88	% Passing Total Sample	T-26	5 Moistu	re content	: 3.:	3%
	-	Т-89	Liquid L	imit:		
75 mm (3.0'')		Т-90	Plastic L	imit:		
37.5 mm (1.5")						
19 mm (3/4'')	:	1-90	Plasticity	y Index:	1	NP
9.5 mm (3/8")	: 93.3%			Mois	ture Dens	ity
4.75 mm (#4)		Test	method:	T-180		Method:
2.00 mm (#10)	: 77.3%	Max	imum der	nsitv:		pcf
850 µm (#20)	: 54.2%			•		F
425 μm (#40)	: 26.2%	-	mum moi			
250 μm (#60)	: 12.6%	T-10	0 Specific	e Gravity:		
150 μm (#100)	: 8.8%	Gr:	22.7%	D2487:	SP-SM	
75 μm (#200)	: 5.7%	Sa:	71.6%	M145:	A-1-b	Gravelly Sand
Hydromet	ter Analysis	Si:	5.7%			-
Particles smalle	er % total sample					
0.05 mm	:					
0.02 mm	:					
0.005 mm	:					
0.002 mm	:					
0.001 mm	:					
0						

Comments: GD-2 S-6

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090290	Corrected copy:	N/A			Report Da	ate:	4/20/2	2009 12:55	5:24
Project: HAM	MER STUDY	Nu	mber:	WIND	SOR	Site:		RSC	H011-703	3
Date sampled:	Rec	eived:	T	ested:	4/13/2009	Tested	l by:	J. TOU	UCHETTI	Е
Station:	Offset:	Hole:	GD-2		Depth:	30 FT	to:		32 FT	
Field descriptio	on:									
Submitted by:	WERNER/GeoDe	esign			Address:					
Sample type:	SPLIT BARREL				Quantity:					
Sample source/	Outside agency na	ame:								
Location used:				Exam	ined for: C	CLASSIFIC	ATI	ON		
Comment:										

Test Results

T-88	Sieve Analysis % Passing]	Limits	
	Total Sample	T-26	65 Moistu	re content:	: :	5.9%
77 (2.64)		T-89) Liquid L	imit:		
75 mm (3.0"):		Т-9() Plastic L	imit:		
37.5 mm (1.5"):						ND
19 mm (3/4"):		1-90) Plasticity	Index:		NP
9.5 mm (3/8"):	96.8%			Mois	ture Dei	nsity
4.75 mm (#4):	94.1%	Test	method:	T-180		Method:
2.00 mm (#10):	91.3%	Max	ximum der	nsity:		pcf
850 µm (#20):	90.9%			-		per
425 µm (#40):	90.4%	-	imum moi			
250 µm (#60):	87.3%	T-1(00 Specific	Gravity:		
150 µm (#100):	59.4%	Gr:	8.7%	D2487:	SP-SM	
75 μm (#200):	9.8%	Sa:	81.5%	M145:	A-3	Sand
Hydromet	er Analysis	Si:	9.8%			
•	r % total sample					
0.05 mm:						
0.02 mm:						
0.005 mm:						
0.002 mm:						
0.001 mm:						

Comments: GD-2 S-9

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090291 Con	rrected copy:	N/A			Report D	ate:	4/20/20	09 12:55:25
Project: HAM	MER STUDY	Nu	mber:	WINI	DSOR	Site:		RSCH	011-703
Date sampled:	Receive	d:	T	ested:	4/13/2009	Teste	d by:	J. TOU	CHETTE
Station:	Offset:	Hole:	GD-2		Depth:	45 FT	to:	: 47	FT
Field description	on:								
Submitted by:	WERNER/GeoDesign	n			Address:				
Sample type:	SPLIT BARREL				Quantity:				
Sample source/	Outside agency name	•							
Location used:				Exam	ined for: C	CLASSIFIC	CATI	ON	
Comment:									
			Test R	esults					

Sieve Analysis Limits **T-88** % Passing **T-265 Moisture content:** 11.0% **Total Sample T-89 Liquid Limit:** 75 mm (3.0"): **T-90 Plastic Limit:** 37.5 mm (1.5"): **T-90 Plasticity Index:** NP 19 mm (3/4"): 9.5 mm (3/8"): 98.8% **Moisture Density** 4.75 mm (#4): 96.3% Test method: T-180 Method: 2.00 mm (#10): 95.4% Maximum density: pcf 850 µm (#20): 94.9% **Optimum moisture:** 425 µm (#40): 93.5% **T-100 Specific Gravity:** 250 µm (#60): 80.2% 150 µm (#100): 51.1% Gr: 4.6%D2487: SM 75 µm (#200): 19.0% Sa: 76.4% M145: A-2-4 Sand Si: 19.0% **Hydrometer Analysis** Particles smaller % total sample 0.05 mm:

0.02 mm: 0.005 mm: 0.002 mm: 0.002 mm:

Comments: GD-2 S-12

Reviewed by: Christopher C. Benda, PE, Soils & Foundations Engineer

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090292	Corrected copy:	N/A			Report Da	ate:	4/20/2	2009 12:5	55:26
Project: HAM	MER STUDY	Nu	imber:	WINI	DSOR	Site:		RSC	CH011-70)3
Date sampled:	Rece	eived:	Т	ested:	4/13/2009	Tested	by:	J. TO	UCHET	ΓЕ
Station:	Offset:	Hole:	GD-3		Depth:	10 FT	to:		12 FT	
Field descriptio	on:									
Submitted by:	WERNER/GeoDe	esign			Address:					
Sample type:	SPLIT BARREL				Quantity:					
Sample source/	Outside agency na	ime:								
Location used:				Exam	ined for: C	CLASSIFIC	ATIC	DN		
Comment:										
				-						

Test Results

	Sieve Analysis				Limits		
T-88	% Passing Total Sample	T-26	5 Moistu	re content	12.	8%	
75	-	T-89	Liquid L	imit:			
75 mm (3.0"): 37.5 mm (1.5"):		Т-90	Plastic L	imit:			
19 mm (3/4"):		Т-90	Plasticity	y Index:	1	NP	
9.5 mm (3/8''):				Mois	ture Dens	ity	
4.75 mm (#4):	85.7%	Test	method:	T-180		Method:	
2.00 mm (#10):	77.4%	Max	imum deı	nsity:		pcf	
850 μm (#20):	65.4%			•		P	
425 µm (#40):	43.0%	Opti	mum moi	sture:			
250 μm (#60):	20.2%	T-10	0 Specific	e Gravity:			
150 µm (#100):	14.4%	Gr:	22.6%	D2487:	SP-SM		
75 μm (#200):	9.8%	Sa:	67.5%	M145:	A-1-b	Gravelly Sand	
Hydromet	er Analysis	Si:	9.8%			-	
•	r % total sample						
0.05 mm:							
0.02 mm:							
0.005 mm:							
0.002 mm:							
0.001 mm:							

Comments: GD-3 S-2

Reviewed by: Christopher C. Benda, PE, Soils & Foundations Engineer

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090293 C	orrected copy: N/A			Report Date:	4/20/2009 12:55:26
Project: HAM	MER STUDY	Number	WINI	DSOR	Site:	RSCH011-703
Date sampled:	Receiv	ved:	Tested:	4/13/2009	Tested by	: J. TOUCHETTE
Station:	Offset:	Hole: GD-5		Depth:	4 FT to	•: 6 FT
Field description	on:					
Submitted by:	WERNER/GeoDesi	gn		Address:		
Sample type:	SPLIT BARREL			Quantity:		
Sample source/	Outside agency nan	ne:				
Location used:			Exam	ined for: (CLASSIFICAT	ION
Comment:						
			_			

Test Results

		1000 10000000		
T 00	Sieve Analysis		Li	imits
T-88	% Passing Total Sample	T-265 Moistu	re content:	7.2%
	-	T-89 Liquid I	Limit:	
75 mm (3.0")		T-90 Plastic I	.imit:	
37.5 mm (1.5")				
19 mm (3/4'')	:	T-90 Plasticit	y Index:	NP
9.5 mm (3/8'')	:		Moistu	are Density
4.75 mm (#4)	: 100.0%	Test method:	T-180	Method:
2.00 mm (#10)	: 100.0%	Maximum de	nsity:	pcf
850 µm (#20)	:		•	P
425 µm (#40)	: 99.9%	Optimum mo		
250 µm (#60)	: 98.3%	T-100 Specifi	c Gravity:	
150 µm (#100)	: 84.9%	Gr: 0.0%	D2487:	SM
75 μm (#200)	: 39.9%	Sa: 60.1%		A-4 Silty Sand
Hydrome	ter Analysis	Si: 39.9%		
Particles smalle	er % total sample			
0.05 mm	:			
0.02 mm	:			
0.005 mm	:			
0.002 mm	:			
0.001 mm	:			
Comments: (GD-5 S-3			

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090294 Cor	rected copy: N/A		Report Date	: 4/20/2009 12:55:27
Project: HAM	MER STUDY	Number:	WINDSOR	Site:	RSCH011-703
Date sampled:	Received	l: To	ested: 4/13/200	9 Tested by	y: J. TOUCHETTE
Station:	Offset:	Hole: GD-5	Depth:	30 FT to	32 FT
Field description	on:				
Submitted by:	WERNER/GeoDesign		Address:		
Sample type:	SPLIT BARREL		Quantity	:	
Sample source/	Outside agency name:				
Location used:			Examined for:	CLASSIFICAT	TION
Comment:					
		T A D	14.		

Test Results

T-88	Sieve Analysis % Passing]	Limits	
1 00	Total Sample	T-20	65 Moistur	e content	9	9.1%
	-	T-8 9) Liquid L	imit:		
75 mm (3.0"):		Т-9() Plastic Li	imit:		
37.5 mm (1.5"):						
19 mm (3/4"):		Т-9() Plasticity	Index:		NP
9.5 mm (3/8''):	98.7%			Mois	ture Den	sity
4.75 mm (#4):	97.8%	Test	method:	T-180		Method:
2.00 mm (#10):	97.0%	May	kimum den	sitv		pcf
850 μm (#20):	96.6%			-		per
425 μm (#40):	96.4%	Opt	imum mois	sture:		
250 μm (#60):	93.4%	T-10	00 Specific	Gravity:		
150 µm (#100):	74.5%	Gr:	3.0%	D2487:	SM	
75 μm (#200):	27.6%	Sa:	69.4%	M145:	A-2-4	Silty Sand
Hydromete	er Analysis	Si:	27.6%			2
Particles smaller	r % total sample					
0.05 mm:						
0.02 mm:						
0.005 mm:						
0.002 mm:						
0.001 mm:						
G						

Comments: GD-5 S-9

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090295 Con	rected copy: N/A		Report Date:	4/20/2009 12:55:27
Project: HAM	MER STUDY	Number:	WINDSOR	Site:	RSCH011-703
Date sampled:	Receive	d: To	ested: 4/13/2009	Tested by	: J. TOUCHETTE
Station:	Offset:	Hole: GD-5	Depth:	50 FT to	: 52 FT
Field descriptio	on:				
Submitted by:	WERNER/GeoDesign	1	Address:		
Sample type:	SPLIT BARREL		Quantity:		
Sample source/	Outside agency name	:			
Location used:			Examined for: (CLASSIFICAT	ION
Comment:					
			14		

Test Results

	Sieve Analysis				Limits	
T-88	% Passing					
	Total Sample	T-26	5 Moistur	e content	:	20.6%
75 mm (3.0		T-8 9	Liquid L	imit:		
37.5 mm (1.5	,	Т-90	Plastic L	imit:		
19 mm (3/4	,	Т-90	Plasticity	Index:		NP
9.5 mm (3/8	,		2		sture D	encity
4.75 mm (#	,		4 1			•
2.00 mm (#1	,		method:	T-180		Method:
2:00 mm (#1 850 μm (#2		Max	imum den	sity:		pcf
425 μm (#4		Opti	mum mois	sture:		
423 μm (#4 250 μm (#6		T-10	0 Specific	Gravity:		
250 μm (#0 150 μm (#10	,			v		
75 μm (#10	,	Gr:	1.9%	D2487:	SM	
75 μm (#20	b). 47.470	Sa:	50.7%	M145:	A-4	Silty Sand
Hydron	neter Analysis	Si:	47.4%			
Particles sma	iller % total sample					
0.05 m	m:					
0.02 m	m:					
0.005 m	m:					
0.002 m	m:					
0.001 m	m:					
Comments	GD-5 S-13a					
Commentes.	02 0 0 100					

Reviewed by: Christopher C. Benda, PE, Soils & Foundations Engineer

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090299	Corrected copy	: N/A			Report Da	ate:	4/20/2	2009 12:5	55:29
Project: HAM	MER STUDY	Ν	umber:	WINI	DSOR	Site:		RSC	CH011-70)3
Date sampled:	Rec	eived:	Т	ested:	4/13/2009	Tested	l by:	J. TO	UCHETT	ΓЕ
Station:	Offset:	Hole	GD-5		Depth:	50 FT	to:		52 FT	
Field description	on:									
Submitted by:	WERNER/GeoD	esign			Address:					
Sample type:	SPLIT BARREL				Quantity:					
Sample source/	Outside agency n	ame:								
Location used:				Exam	ined for: (CLASSIFIC	ATI	ON		
Comment:										
			T 4 D							

Test Results

	Sieve Analysis				Limits	s
T-88	% Passing					
	Total Sample	T-2	265 Moistu	re content	:	31.5%
75 (2.011)		Т-8	89 Liquid L	imit:		
75 mm (3.0"):		Т-9	00 Plastic L	imit:		
37.5 mm (1.5"):		т.0	0 Plasticity	v Index•		NP
19 mm (3/4"):		1-2	o i lasticity			
9.5 mm (3/8''):				Mois	ture I	Density
4.75 mm (#4):		Tes	st method:	T-180		Method:
2.00 mm (#10):		Ma	iximum dei	nsity:		pcf
850 µm (#20):	96.9%			•		-
425 µm (#40):	95.2%	-	timum moi			
250 µm (#60):	94.0%	T- 1	00 Specific	e Gravity:		
150 µm (#100):	91.4%	Gr:	1.8%	D2487:	ML	
75 μm (#200):	81.6%	Sa:	16.6%	M145:	A-4	Silt
		Su:	81.6%	11143.	11 1	Silt
•	er Analysis	51;	61.0%			
Particles smalle	r % total sample					
0.05 mm:						
0.02 mm:						
0.005 mm:						
0.002 mm:						
0.001 mm:						

Comments: GD-5 S-13b

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090296 C	Corrected copy: N/A		Report Date:	4/20/2009 12:55:28
Project: HAM	MER STUDY	Number:	WINDSOR	Site:	RSCH011-703
Date sampled:	Recei	ved: To	ested: 4/13/2009	Tested by	: J. TOUCHETTE
Station:	Offset:	Hole: GD-7	Depth:	4 FT to	6 FT
Field descriptio	on:				
Submitted by:	WERNER/GeoDes	ign	Address:		
Sample type:	SPLIT BARREL		Quantity:		
Sample source/	Outside agency nar	ne:			
Location used:			Examined for:	CLASSIFICATI	ION
Comment:					
			•.		

Test Results

			-			
T-88	Sieve Analysis				Limits	
1-99	% Passing Total Sample	T-26	5 Moistu	re content	: 7	.7%
75 mm (3.0''	-	T-8 9	Liquid L	imit:		
37.5 mm (3.0		Т-90	Plastic L	imit:		
19 mm (3/4"		Т-90	Plasticity	Index:		NP
9.5 mm (3/8"				Mois	ture Den	sity
4.75 mm (#4): 100.0%	Test	method:	T-180		Method:
2.00 mm (#10	·	Max	imum der	nsity:		pcf
850 μm (#20		Opti	mum moi	sture:		_
425 μm (#40	·	-	0 Specific			
250 μm (#60		1-10	ospecific	Ulavity.		
150 μm (#100	·	Gr:	0.0%	D2487:	SM	
75 μm (#200): 12.8%	Sa:	87.2%	M145:	A-2-4	Sand
Hydrom	eter Analysis	Si:	12.8%			
Particles small	ler % total sample					
0.05 mn	n:					
0.02 mm	n:					
0.005 mn						
0.002 mn						
0.001 mn	n:					

Comments: GD-7 S-3

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090297 C	orrected copy: 1	N/A		Report Da	ate: 4	/20/2009 12:55:28
Project: HAM	MER STUDY	Num	nber: V	VINDSOR	Site:		RSCH011-703
Date sampled:	Receiv	ved:	Tes	ted: 4/13/20	09 Tested	by: J.	TOUCHETTE
Station:	Offset:	Hole: C	GD-7	Depth:	20 FT	to:	22 FT
Field descriptio	on:						
Submitted by:	WERNER/GeoDesi	gn		Address	:		
Sample type:	SPLIT BARREL			Quantity	/:		
Sample source/	Outside agency nan	ne:					
Location used:			E	Examined for:	CLASSIFIC	ATION	1
Comment:							
				•.			

Test Results

Total Sample T-265 Moisture content: 4.6% 75 mm (3.0"): T-89 Liquid Limit: T-90 Plastic Limit: 37.5 mm (1.5"): T-90 Plastic Limit: NP 19 mm (3/4"): T-90 Plasticity Index: NP 9.5 mm (3/8"): 96.9% Moisture Density 4.75 mm (#4): 93.7% Test method: T-180 2.00 mm (#10): 83.5% Maximum density: pcf 850 µm (#20): 62.6% Optimum moisture: 250 µm (#40): 34.7% 250 µm (#40): 34.7% Gr: 16.5% D2487: SP-SM 150 µm (#100): 8.3% Gr: 16.5% D2487: SP-SM 75 µm (#200): 5.3% Sa: 78.1% M145: A-1-b Sand	
75 mm (3.0"):T-90 Plastic Limit:37.5 mm (1.5"):T-90 Plastic Limit:19 mm (3/4"):T-90 Plasticity Index:9.5 mm (3/8"):96.9%4.75 mm (#4):93.7%2.00 mm (#10):83.5%850 μ m (#20):62.6%425 μ m (#40):34.7%250 μ m (#60):13.8%150 μ m (#100):8.3%75 μ m (#200):5.3%	
T-90 Plastic Limit:37.5 mm (1.5"):T-90 Plastic Limit:19 mm (3/4"):T-90 Plasticity Index:NP9.5 mm (3/8"):96.9%Moisture Density4.75 mm (#4):93.7%Test method:T-1802.00 mm (#10):83.5%Maximum density:pcf850 μ m (#20):62.6%Optimum moisture:T-100 Specific Gravity:250 μ m (#40):13.8%T-100 Specific Gravity:Gr:150 μ m (#100):8.3%Gr:16.5%D2487:SP-SM	
19 mm (3/4"): T-90 Plasticity Index: NP 9.5 mm (3/8"): 96.9% Moisture Density 4.75 mm (#4): 93.7% Test method: T-180 Meth 2.00 mm (#10): 83.5% Maximum density: pcf 850 µm (#20): 62.6% Optimum moisture: pcf 425 µm (#40): 34.7% T-100 Specific Gravity: 150 µm (#100): 8.3% 75 µm (#200): 5.3% Gr: 16.5% D2487: SP-SM	
9.5 mm (3/8"): 96.9% Moisture Density 4.75 mm (#4): 93.7% Test method: T-180 Meth 2.00 mm (#10): 83.5% Maximum density: pcf 850 µm (#20): 62.6% Optimum moisture: pcf 425 µm (#40): 34.7% T-100 Specific Gravity: for the formula to	
4.75 mm (#4): 93.7% Test method: T-180 Meth 2.00 mm (#10): 83.5% Maximum density: pcf 850 μm (#20): 62.6% Optimum moisture: pcf 425 μm (#40): 34.7% T-100 Specific Gravity: 13.8% 150 μm (#100): 8.3% Gr: 16.5% D2487: SP-SM	
2.00 mm (#10): 83.5% Maximum density: pcf 850 μm (#20): 62.6% Optimum moisture: pcf 250 μm (#40): 34.7% T-100 Specific Gravity: for the second se	
850 μm (#20): 62.6% Maximum density: pcf 425 μm (#40): 34.7% Optimum moisture: 13.8% 250 μm (#60): 13.8% T-100 Specific Gravity: 60.10% 150 μm (#100): 8.3% 8.3% 6r: 16.5% D2487: SP-SM	od:
850 μm (#20): 62.6% 425 μm (#40): 34.7% 250 μm (#60): 13.8% 150 μm (#100): 8.3% 75 μm (#200): 5.3% Gr: 16.5% D2487: SP-SM	
425 μm (#40): 34.7% 250 μm (#60): 13.8% T-100 Specific Gravity: 150 μm (#100): 8.3% Gr: 16.5% D2487: SP-SM	
150 μm (#100): 8.3% Gr: 16.5% D2487: SP-SM 75 μm (#200): 5.3%	
Gr: 10.5% D2487: SP-5M	
75 um (#200)· 5 3%	
Hydrometer Analysis Si: 5.3%	
Particles smaller % total sample	
0.05 mm:	
0.02 mm:	
0.005 mm:	
0.002 mm:	
0.001 mm:	

Comments: GD-7 S-8

Vermont Agency of Transportation Materials and Research Section 1 National Life Drive Montpelier, VT 05633-5001

Report on Soil Sample

Lab number:	E090298 C	orrected copy: N/A			Report Da	ate: 4	4/20/2009 12:55:29
Project: HAM	MER STUDY	Number	WINI	DSOR	Site:		RSCH011-703
Date sampled:	Receiv	ved:	fested:	4/13/2009	Tested	l by:	J. TOUCHETTE
Station:	Offset:	Hole: GD-7		Depth:	30 FT	to:	32 FT
Field description	on:						
Submitted by:	WERNER/GeoDesi	gn		Address:			
Sample type:	SPLIT BARREL			Quantity:			
Sample source/	Outside agency nan	ne:					
Location used:			Exam	ined for: (CLASSIFIC	ATIO	N
Comment:							
			_				

Test Results

			-			
T-88	Sieve Analysis % Passing				Limits	
1-00	% Passing Total Sample	T-26	65 Moistur	e content	: 3	.9%
75 mm (3.0'	").	T-89) Liquid L	imit:		
37.5 mm (1.5)		Т-9() Plastic L	imit:		
19 mm (3/4	,	Т-9() Plasticity	Index:		NP
9.5 mm (3/8				Mois	sture Den	sity
4.75 mm (#4	4): 100.0%	Test	method:	T-180		Method:
2.00 mm (#1		Max	aimum der	sity:		pcf
850 μm (#20	0):			-		•
425 μm (#40	0): 99.9%	-	imum moi			
250 μm (#6	0): 98.5%	T-1(00 Specific	Gravity:		
150 µm (#10	0): 76.7%	Gr:	0.0%	D2487:	SM	
75 μm (#20	0): 15.0%	Sa:	85.0%	M145:	A-2-4	Sand
Hydrom	neter Analysis	Si:	15.0%			
Particles sma	ller % total sample					
0.05 m	m:					
0.02 m	m:					
0.005 m	m:					
0.002 m	m:					
0.001 m	m:					

Comments: GD-7 S-10

Reviewed by: Christopher C. Benda, PE, Soils & Foundations Engineer

HAMMER STUDY, WINDSOR

HOLE: GD-8

09/26/2008

DEPTH FT.	SAMPLE #	% MOIST.	CLASS.	DES.	% PASS 1.5"	% PASS 3/4"	% PASS 3/8"	% PASS #4	% PASS #10	% PASS #20	% PASS #40	% PASS #60	% PASS #100	% PASS #200
5-7	1	10.1	A-2-4	Sa					100	99.2	90.7	68.9	45.5	19.0
10-12	2	4.0	A-1-b	Gr Sa	100	86.4	84.7	78.6	68.1	57.5	37.2	11.5	6.6	3.9
15-17	3	3.7	A-1-b	Gr Sa		100	92.1	85.8	73.9	54.7	30.5	12.8	8.1	5.0
20-22	4	4.3	A-1-b	Gr Sa		100	97.8	92.1	77.8	52.8	29.6	13.8	8.2	5.1
25-27	5	4.5	A-1-b	Sa		100	96.1	90.6	80.4	56.7	23.6	13.2	9.1	6.0
30-32	6	7.4	A-2-4	Sa						100	99.2	92.9	62.4	18.4
35-37	7	12.6	A-2-4	Si Sa				100	99.4	92.8	78.2	65.7	48.7	28.0
40-42	8	26.1	A-4	Si		100	97.4	94.9	94.2	93.9	93.9	93.6	91.3	80.0
45-47	9	8.2	A-2-4	Si Sa			100	97.1	96.0	95.3	94.2	82.8	52.7	20.0
50-52	10	23.8	A-4	Si Sa				100	98.6	97.5	93.8	83.2	64.5	41.7

G:/Soils&Foundation/Projects/Hammer Study/Boring Logs/GD-8 samples

APPENDIX 5 – GRAIN-SIZE ANALYSES (BY SOIL LAYER)

						Hammer Efficiency, ETR (%)				Adjustment Factor, C _n				
Hammer Type	Drill Rig	Vehicle #	Hammer Operator	SPT Test Date	Boring ID	MIN	ΜΑΧ	AVG	>30'	MIN	ΜΑΧ	AVG	>30'	
CME Automatic	CME 55 - Track	356675	Glen Porter	9/23/2008	GD-1	63.6	94.5	85	87.5	1.1	1.6	1.4	1.5	
CME Automatic	CME 45C Skid-rig on trailer	277564	Howard Garrow	9/23/2008	GD-2	60.6	86.4	77.4	79.6	1	1.4	1.3	1.3	
CME Automatic	CME 55 - Track	356675	Glen Porter	9/24/2008	GD-3	64.4	94.9	87.4	90.5	1.1	1.6	1.5	1.5	
Safety	CME 45C Skid-rig on trailer	277564	Howard Garrow	9/24/2008	GD-4	40	82.4	66.3	69.2	0.7	1.4	1.1	1.2	
CME Automatic	CME 75 - Track	200587	John Leonhardt	9/25/2008	GD-5	60.9	95.4	84	85.6	1	1.6	1.4	1.4	
Safety	CME 75 - Track	200587	John Leonhardt	9/25/2008	GD-6	34.3	94.6	60.3	-	0.6	1.6	1	-	
CME Automatic	CME 45C Track	306614	Glen Porter	9/26/2008	GD-7	65.6	92.4	80.6	80.2	1.1	1.5	1.3	1.3	
CME Automatic	CME 45C Track	306614	Glen Porter	9/26/2008	GD-8	58.4	93.3	81.1	84.2	1	1.6	1.4	1.4	
Mobile Safety Driver	Simco 2800		Chris Aldrich	9/29/2008	GD-9	32	62.9	48.1	51.0	0.5	1	0.8	0.9	

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	N	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)				(%)		(ft)	
			1									Average	0.297	0.377	0.350	85.0	27.4	52.6	14	1.4	20				
											All	Std.Dev.	0.017	0.032	0.000	4.9 94.5	0.3	3.2 53.8	22	1.6	35	85	1.4	43.8	cohesionless soil
											depths	Maximum Minimum	0.331 0.222	0.423	0.350	94.5 63.6	28.2 26.5	26.7	5	1.6 1.1	5				
Automatic								Miller				Average	0.249	0.284	0.350	71.2	27.1	52.8	5	1.2	6			0	
Hammer -	CME 55 - Track	356675	AWJ	4 inch HW Casing	Vtrans	Glen Porter	Shawn Kelley	Construction Yard, Windsor,	9/23/2008 10:00	GD-1	10'-12'	Std.Dev. Maximum	0.014 0.272	0.002	0.000	4.1 77.7	0.2 27.5	0.2 53.0	5	1.3	6				Fine to Medium Sand and Gravel
CME	Hack			Casing		1 Ofter	Reliey	VT				Minimum	0.272	0.280	0.350	63.6	26.8	52.5	5	1.1	5				
												Average	0.278	0.332	0.350	79.3	27.4	52.9	9	1.3	12	1			
											15'-17'	Std.Dev. Maximum	0.013 0.292	0.002	0.000	3.8 83.5	0.2 27.8	0.1 53.1	9	1.4	13				Fine to Medium Sand and Gravel
												Minimum	0.252	0.328	0.350	72.6	26.7	52.7	9	1.4	11				
												Average	0.299	0.360	0.350	85.3	27.1	53.4	18	1.4	26				
											20'-22'	Std.Dev. Maximum	0.010 0.319	0.004	0.000	2.7 91.1	0.2 27.4	0.2 53.7	18	1.5	27				Fine to Medium Sand and Gravel
												Minimum	0.277	0.352	0.350	79.2	26.7	53.1	18	1.3	24				
												Average	0.296	0.384	0.350	84.6	27.2	53.1	6	1.4	8				
				spin and								Std.Dev.	0.011	0.007	0.000	3.0	0.1	0.2					ETR	1	
				wash ahead with roller bit							25'-27'												Average		Silty Fine Sand
				with foller bit								Maximum	0.330	0.407	0.350	94.2	27.6	53.3	6	1.6	9		(>30')		
												Minimum	0.286	0.376	0.350	81.8 85.8	26.9 27.6	52.8 53.1	6	1.4 1.4	8 21		(%)		
											201.007	Average Std.Dev.	0.300	0.398	0.350	85.8 1.1	0.2	0.1	15	1.4	21	1			Olley Fires On the
	I										30'-32'	Maximum	0.309	0.408	0.350	88.3	27.9	53.3	15	1.5	22	1			Silty Fine Sand
												Minimum	0.294	0.389	0.350	84.1	27.1	52.7	15	1.4	21	Į	87.5	I	
												Average Std.Dev.	0.312	0.408	0.350	89.2 1.2	27.6 0.2	49.6 9.3	19	1.5	28				
											35'-37'	Maximum	0.320	0.423	0.350	91.3	28.2	53.8	19	1.5	29				Silty Fine Sand
												Minimum	0.305	0.398	0.350	87.1	27.2	26.7	19	1.5	28				
												Average Std.Dev.	0.316	0.390	0.350	90.1 1.4	27.5 0.1	53.2 0.2	11	1.5	17				
											40'-42'	Maximum	0.331	0.416	0.350	94.5	27.8	53.6	11	1.6	17				Silty Fine Sand
												Minimum	0.305	0.361	0.350	87.1	27.1	52.8	11	1.5	16				
												Average Std Dov	0.305	0.389	0.350	87.3	27.3	50.7	20	1.5	29				
											45'-47'	Std.Dev. Maximum	0.005	0.010	0.000	1.4 89.5	0.3 27.7	6.5 53.7	20	1.5	30				Fine Sand
												Minimum	0.295	0.373	0.350	84.3	26.7	30.4	20	1.4	28	1			
												Average	0.298	0.391	0.350	85.2	27.4	52.8	22	1.4	31				
											50'-52'	Std.Dev. Maximum	0.005	0.006	0.000	1.5 88.4	0.3 27.9	0.2 53.2	22	1.5	32				Fine Sand
												Minimum	0.286	0.372	0.350	81.7	26.5	52.3	22	1.4	30				
												Average	0.271	0.353	0.350	77.4	25.5	59.8	14	1.3	18				
											All depths	Std.Dev. Maximum	0.018	0.026	0.000	5.0 86.4	0.5 26.8	1.8 63.6	20	1.4	29	77.4	1.3	47.0	cohesionless soil
											deptilis	Minimum	0.302	0.399	0.350	60.6	20.8	55.8	7	1.4	7				
Automatic	CME 45C			3 1/4" HSA				Miller				Average	0.237	0.287	0.350	67.7	25.4	59.3	9	1.1	10				
Hammer -	skid rig on	277564	AWJ	with auger	Vtrans	Howard	Shawn Kelley	Construction Yard, Windsor,	9/23/2008 12:25	GD-2	10'-12'	Std.Dev.	0.023	0.006	0.000	6.5	0.3	1.1	0	1.4	12				Fine to Medium Sand and Gravel
CME	trailer			plug		Garrow	Kelley	VT				Maximum Minimum	0.290 0.212	0.299 0.280	0.350	82.9 60.6	25.8 24.7	60.5 55.9	9	1.4 1.0	9				
												Average	0.250	0.323	0.350	71.3	25.9	62.1	18	1.2	21	1			
											15'-17'	Std.Dev.	0.006	0.005	0.000	1.8	0.2	0.2	10						Fine to Medium Sand and Gravel
												Maximum Minimum	0.264 0.239	0.335	0.350	75.3 68.1	26.2 25.3	62.6 61.8	18 18	1.3 1.1	23 20				
											-	Average	0.278	0.351	0.350	79.5	25.8	61.9	16	1.3	21	1			
	I										20'-22'	Std.Dev.	0.011	0.006	0.000	3.2	0.4	0.3				ł			Fine to Medium Sand and Gravel
												Maximum Minimum	0.299 0.259	0.369 0.339	0.350	85.4 74.0	26.8 25.2	62.8 61.3	16 16	1.4 1.2	23 20				
	I											Average	0.259	0.360	0.350	76.9	26.0	61.1	7	1.2	9	1			<u>.</u>
											25'-27'	Std.Dev.	0.007	0.008	0.000	2.0	0.3	0.5							Silty Fine Sand
	I			n/a								Maximum Minimum	0.288	0.376	0.350	82.3	26.5	62.3	7	1.4	10 9	ł			City Fillo Calla
												winimum	0.262	0.353	0.350	74.7	25.5	60.3	7	1.2	9		ETR	1	
																							Average		
											30'-32'	Average	0.270	0.370	0.350	77.1	25.8	60.3	14	1.3	18	l	(>30')		Silty Fine Sand
											00 02	Std.Dev.	0.004	0.005	0.000	1.0	0.3	1.4	4.4	4.0	40	1	(%)		City I no odna
	I											Maximum Minimum	0.277 0.265	0.383	0.350	79.2 75.8	26.1 25.2	62.2 55.8	14 14	1.3 1.3	18 18	1	79.6		
												Average	0.288	0.371	0.350	82.2	24.9	59.2	15	1.4	21	j			
											35'-37'	Std.Dev.	0.006	0.004	0.000	1.6	0.5	0.3				1			Silty Fine Sand
												Maximum Minimum	0.298	0.381 0.361	0.350	85.3 79.4	25.7 23.9	60.1 58.8	15 15	1.4 1.3	21 20	1			
		1										Average	0.278	0.378	0.350	80.9	25.5	60.2	8	1.3	11	1			<u> </u>
			1								40'-42'	Std.Dev.	0.006	0.007	0.000	1.7	0.3	0.5				1			Silty Fine Sand
					1	I						Maximum	0.302	0.399	0.350	86.4	26.2	61.5	8	1.4	12	1			City I no odila
										1	ji	Minimum	0.274	0.367	0.350	78.4 79.2	24.9 25.8	59.4 57.8	8	1.3	10				
												Average	0.277	0.30.3					18	1.3	24	1			
											45'-47'	Average Std.Dev.	0.277 0.005	0.363	0.350	1.6	0.3	0.6	18	1.3	24				Fine Sand
											45'-47'	Std.Dev. Maximum	0.005 0.291	0.006 0.380	0.000 0.350	1.6 83.3	0.3 26.6	0.6 60.4	18	1.4	25				Fine Sand
											45'-47'	Std.Dev. Maximum Minimum	0.005 0.291 0.269	0.006 0.380 0.355	0.000 0.350 0.350	1.6 83.3 76.8	0.3 26.6 25.3	0.6 60.4 57.1	18 18	1.4 1.3	25 23				Fine Sand
												Std.Dev. Maximum	0.005 0.291	0.006 0.380	0.000 0.350	1.6 83.3	0.3 26.6	0.6 60.4	18	1.4	25				
											45'-47' 50'-52'	Std.Dev. Maximum Minimum Average	0.005 0.291 0.269 0.275	0.006 0.380 0.355 0.362	0.000 0.350 0.350 0.350	1.6 83.3 76.8 78.6	0.3 26.6 25.3 25.3	0.6 60.4 57.1 57.4	18 18	1.4 1.3	25 23				Fine Sand Fine Sand

Imme	Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
And and any series of the s												(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)					(%)		(ft)	
												١١٨								15	1.5	21				
MAX200 00 00 00													Maximum	0.332	0.420	0.350	94.9	47.1	53.9				87.4	1.5	none	cohesionless soil
 									Millor										-							
OM IN IN <thin< th=""> IN IN IN<!--</td--><td>Automatic</td><td>CME 55 -</td><td>256675</td><td>NIM/ I</td><td>4 inch HW</td><td>Vtranc</td><td>Glen</td><td>Shawn</td><td></td><td>0/24/2008 0:45</td><td>CD 2</td><td>5' 7'</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>1.2</td><td>5</td><td></td><td></td><td></td><td>Fine Sand</td></thin<>	Automatic	CME 55 -	256675	NIM/ I	4 inch HW	Vtranc	Glen	Shawn		0/24/2008 0:45	CD 2	5' 7'								4	1.2	5				Fine Sand
 		Track	330073	11003	Casing	vitaris	Porter	Kelley		9/24/2008 9.45	GD-3	5-7														Tille Saliu
Norma Norma <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>vi</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									vi										-							
												10'-12'								40	10					Fine to Medium Sand and Gravel
New product of the series of																										
																				16	1.4	23				
												15'-17'								16	1.6	25				Fine to Medium Sand and Gravel
																0.350							1			
					spin and															17	1.5	25				
												20'-22'								17	1.6	27				Fine to Medium Sand and Gravel
New or interpretation Normalization Normalinatinteral pandinteral panding Normali					with folier bit												1									
New Prime No. Prime <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>1.5</td><td>12</td><td></td><td></td><td></td><td></td></t<>																				8	1.5	12				
Number Numer Numer Numer <td></td> <td>25'-27'</td> <td></td> <td></td> <td>0.396</td> <td></td> <td>90.6</td> <td></td> <td>53.9</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>Silty Fine Sand</td>												25'-27'			0.396		90.6		53.9				1			Silty Fine Sand
													Minimum	0.297	0.358	0.350	85.0	39.6	53.4	8	1.4	11		FTR	T	
N N																										
1 1 <td></td> <td>30'-32'</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19</td> <td>1.5</td> <td>28</td> <td></td> <td></td> <td></td> <td>Silty Fine Sand</td>												30'-32'								19	1.5	28				Silty Fine Sand
OM Image Im																				19	1.6	30		(78)		
Image: Normal base in the serie of the s																	1]	90.5		
New Property interverse New Property i																				25	1.6	39				
Same A												32'-34'	Maximum	0.332	0.420	0.350	94.9	47.1	53.8							Silty Fine Sand
Setup Num Num<																	1						<u> </u>	1	1	
Setup Num Stripping												All								10	1.1	17	66.3	1.1	42.0	achasianlana asil
Set of land												depths											00.3	1.1	42.0	conesioniess son
Skety interned 27764 AVJ interned view plag View plag View interned Orbitalized interned 924208 130 View interned 930 930 400 14 000 14 000 14 000 14 000 14 <td></td> <td>0145 450</td> <td></td> <td></td> <td>0.4/48.110.4</td> <td></td> <td></td> <td></td> <td>Miller</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		0145 450			0.4/48.110.4				Miller													-				
name pig outro full iso			277564	AWJ		Vtrans				9/24/2008 13:30	GD-4	5'-7'										_	1			Fine Sand
Image: Properting of the set of	Hammer				-		Garrow	Kelley			-															
													Average	0.194	0.173	0.350	55.5	16.9	20.2	14		13	1			
												10'-12'								14	11	15				Fine to Medium Sand and Gravel
n/a SdD*, 0010 0.021 0.000 5.4 0.9 2.8 -																										
n/a Norm 0.207 0.208 0.309 63.0 0.1 27.0 5 1.0 5 n/a Average 0.216 0.237 0.208 0.300 63.0 0.1 27.0 5 1.0 5 0.8 4 N/a Average 0.216 0.237 0.300 61.7 18.2 28.6 21 1.0 22 5 0.8 4 4 1.0 22 28.0 0.018 0.000 1.0 1.0 22 28.0 0.018 0.000 1.0 1.0 22 28.0 0.018 0.000 1.0 1.0 22 1.0 1.1 2.0 1.0																				5	0.9	5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												15'-17'								5	1.0	5				Fine to Medium Sand and Gravel
																	1						1			
Na Na Maximum 0.222 0.280 0.350 42.1 1.2 25 Minimum 0.122 0.026 0.350 40.2 16.8 16 1.1 1.0 1.0 1																				21	1.0	22				
1 Average 0.231 0.235 0.230 0.60 1.0 1.1 1.1 1.8 25:27 300 0.021 0.024 0.000 0.33 20.8 39.1 1.6 1.3 21 Maximum 0.281 0.300 0.350 80.3 20.9 39.1 1.6 0.9 1.4 1.9 21 <td></td> <td></td> <td></td> <td></td> <td>n/a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20'-22'</td> <td>Maximum</td> <td>0.252</td> <td>0.280</td> <td>0.350</td> <td>72.1</td> <td>19.8</td> <td>34.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Fine to Medium Sand and Gravel</td>					n/a							20'-22'	Maximum	0.252	0.280	0.350	72.1	19.8	34.0							Fine to Medium Sand and Gravel
1 1																										
Image: Second												25' 27'								10	1.1	10				Silty Eine Sond
Average 0.237 0.278 0.350 67.7 18.9 31.0 18 1.1 20 30'-32' Sid. Dev. 0.025 0.027 0.000 7.1 0.9 2.7 18 1.1 20 Minimum 0.129 0.329 0.326 7.97 2.06 36.5 18 1.3 2.4 Misimum 0.280 0.350 54.4 16.4 2.23 18 0.9 16 3'-37' Sid. Dev. 0.018 0.000 4.6 0.6 4.0 - - Maximum 0.280 0.335 0.350 58.9 1.9 3.0 2.3 1.3 31 Maximum 0.280 0.335 0.350 68.1 2.2 1 1.1 1.2 2.3 Maximum 0.288 0.342 0.350 68.7 19.4 32.2 - - - - - - - - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25-27</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sity File Salu</td></t<>												25-27														Sity File Salu
Average 0.237 0.278 0.350 67.7 18.9 31.0 18 1.1 20 30'3 2 0.027 0.027 0.000 7.1 0.9 2.7 -						1							winningin	0.190	0.200	0.330	54.5	10.9	31.7	10	0.9	14		Average	٦	
Maximum 0.279 0.329 0.350 79.7 20.6 36.5 18 1.3 24 Maximum 0.279 0.329 0.350 56.4 18 1.3 24 Maximum 0.279 0.220 0.350 57.3 18.8 30.5 23 1.2 27 36'-37 Sid.Dev. 0.018 0.000 4.6 0.6 4.0																				18	1.1	20		(>30')		
Image: Second												30'-32'								18	13	24	1	(%)	-	Silty Fine Sand
$ \left\{ \begin{array}{c c c c c c c c c c c c c c c c c c c $														0.190		0.350	54.4		22.3			16	1	69.2		
Silly File Sand Maximum 0.280 0.335 0.350 80.1 20.9 36.0 23 1.3 31 Minimum 0.206 0.243 0.350 58.9 17.9 19.7 23 1.0 23 Minimum 0.206 0.243 0.350 58.9 17.9 19.7 23 1.0 23 Minimum 0.208 0.321 0.021 0.024 0.000 5.9 0.8 3.2 - - Minimum 0.288 0.342 0.350 82.4 21.1 35.7 11 1.4 15 Minimum 0.288 0.350 0.350 70.9 204.0 31.0 24 1.2 28 Sid.Dev. 0.020 0.028 0.0300 5.8 0.9 2.3 - - Minimum 0.165 0.201 0.350 71.6 20.4 31.1 21 28 - Sid.Dev. 0.020 0.021 0.0350 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>23</td><td>1.2</td><td>27</td><td></td><td></td><td>_</td><td></td></t<>																				23	1.2	27			_	
$ \frac{1}{10000000000000000000000000000000000$												35'-37'								23	1.3	31	1			Silty Fine Sand
$ \frac{40'-42'}{45'-47'} \frac{\text{Std.Dev.}}{0.021} 0.024 0.000 5.9 0.8 3.2 }{0.350 82.4 21.1 35.7 11 1.4 15} \\ \frac{40'-42'}{45'-47'} \frac{\text{Std.Dev.}}{0.288 0.342 0.350 82.4 21.1 35.7 11 1.4 15} \\ \frac{40'-42'}{1.1 0.193 0.236 0.350 5.2 17.8 24.7 11 0.9 10} \\ \frac{40'-42'}{1.1 0.9 10} \\ \frac{40'-42'}{1.1 0.193 0.236 0.350 0.350 5.2 17.8 24.7 11 0.9 10} \\ \frac{40'-42'}{1.1 0.9 10} \\ \frac{40'-42'}{1.1 0.193 0.236 0.350 0.350 0.350 0.350 0.350 0.201 0.23 0 0.28 0.00 0.28 0.00 0.00 0.00 0.00 0.$												L	Minimum	0.206	0.243	0.350	58.9	17.9	19.7	23	1.0	23]			
40-42 Maximum 0.288 0.342 0.350 82.4 21.1 35.7 11 1.4 15 Minimum 0.193 0.286 0.350 55.2 17.8 24.7 11 0.9 10 45'-47' Minimum 0.193 0.026 0.0350 70.9 204.0 31.0 24 1.2 24 Maximum 0.286 0.367 0.350 81.8 21.8 35.7 24 1.4 33 45'-47' Minimum 0.165 0.201 0.350 47.1 16.3 22.4 24 0.8 19 Minimum 0.165 0.201 0.350 47.1 16.3 22.4 24 0.8 19 50'-52' Muximum 0.216 0.021 0.000 4.7 0.7 2.6 1 1.3 28																				11	1.1	12	1			
Average 0.248 0.305 0.350 70.9 204.0 31.0 24 1.2 28 45'-47' Std.Dev. 0.020 0.028 0.000 5.8 0.9 2.3												40'-42'	Maximum	0.288	0.342	0.350	82.4	21.1	35.7				1			Silty Fine Sand
45'-47' Std.Dev. 0.020 0.028 0.000 5.8 0.9 2.3 L L Maximum 0.286 0.357 0.350 81.8 21.8 35.7 24 1.4 33 Minimum 0.165 0.201 0.350 47.1 16.3 22.4 24 0.8 19 Sol-52' Sol-52' Oxed 0.016 0.021 0.000 4.7 0.7 2.6 The Sand Maximum 0.279 0.351 0.350 79.7 21.7 34.2 21 1.3 28																							Į			
45-47 Maximum 0.286 0.357 0.350 81.8 21.8 35.7 24 1.4 33 Minimum 0.165 0.201 0.350 47.1 16.3 22.4 24 0.8 19 Average 0.251 0.315 0.350 71.6 20.4 31.1 21 1.2 25 50'-52' Std.Dev. 0.016 0.021 0.000 4.7 0.7 2.6												AE' 47'								∠4	1.2	28	1			Fine Con-
Average 0.251 0.315 0.350 71.6 20.4 31.1 21 1.2 25 Std.Dev. 0.016 0.021 0.000 4.7 0.7 2.6 Image: Constraint of the standard standar												45'-47'	Maximum	0.286	0.357	0.350	81.8	21.8	35.7]			Fine Sand
50'-52' Std.Dev. 0.016 0.021 0.000 4.7 0.7 2.6 Maximum 0.279 0.351 0.350 79.7 21.7 34.2 21 1.3 28																			1				4			
Maximum 0.279 0.351 0.350 79.7 21.7 34.2 21 1.3 28												50'-52'	Std.Dev.	0.016	0.021	0.000	4.7	0.7	2.6				1			Fine Sand
												00 02	Maximum Minimum	0.279 0.216	0.351 0.272	0.350	79.7 61.8	21.7 19.0	34.2 23.2	21 21	1.3 1.0	28 22	1			i ilio dalla

GeoDesign, I	nc.
--------------	-----

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)				(%)		(ft)	
												Average	0.294	0.388	0.350	84.0	26.6	51.3	10	1.4	14				
											All	Std.Dev.	0.018	0.027	0.000	5.3	0.7	5.9	40	1.0	05	84.0	1.4	48.0	cohesionless soil
											depths	Maximum Minimum	0.334 0.213	0.437	0.350	95.4 60.9	27.8 24.8	58.6 33.4	16 3	1.6 1.0	25 3				
Automotio				4 1/4" HSA				Miller				Average	0.249	0.307	0.350	71.1	26.1	45.9	5	1.2	6				
Automatic Hammer -	CME 75 -	200587	AWJ	with auger	Transtech	John	Shawn	Construction	9/25/2008 9:50	GD-5	10'-12'	Std.Dev.	0.023	0.005	0.000	6.6	0.3	1.0							Fine Sand
CME	track			plug		Leonhardt	Kelley	Yard, Windsor, VT				Maximum Minimum	0.276 0.213	0.312 0.296	0.350	78.8 60.9	26.4 25.4	47.2 44.3	5 5	1.3 1.0	7 5				
								v,				Average	0.213	0.250	0.350	86.3	26.6	55.7	7	1.4	10				
											15'-17'	Std.Dev.	0.019	0.012	0.000	5.4	0.4	1.3							Fine Sand
											13-17	Maximum	0.334	0.382	0.350	95.4	27.4	56.7	7	1.6	11				
												Minimum Average	0.256	0.337	0.350	73.2 83.1	25.7 27.4	51.8 53.4	7	1.2 1.4	9 17				
												Std.Dev.	0.291	0.0011	0.000	3.4	0.5	2.4	12	1.4	17				
											20'-22'	Maximum	0.317	0.392	0.350	90.4	27.8	54.5	12	1.5	18				Fine to Medium Sand and Gravel
												Minimum	0.260	0.341	0.350	74.2	25.7	43.9	12	1.2	15				
												Average Std.Dev.	0.276	0.375	0.350	79.0 3.0	25.7 0.6	47.1 6.6	3	1.3	4				
											25'-27'	Maximum	0.286	0.392	0.350	81.7	26.6	52.7	3	1.4	4				Silty Fine Sand
				n/a								Minimum	0.259	0.347	0.350	74.0	24.8	33.4	3	1.2	4	-			
																							ETR		
												Average	0.275	0.371	0.350	78.6	25.9	42.0	16	1.3	21		Average		
											30'-32'	Average Std.Dev.	0.275	0.007	0.000	1.5	0.3	3.4	16	1.3	21		(>30') (%)		Silty Fine Sand
												Maximum	0.289	0.383	0.350	82.5	26.5	45.7	16	1.4	22		(17)		
												Minimum	0.262	0.352	0.350	74.8	25.0	37.4	16	1.2	20		85.6		
												Average	0.302	0.406	0.350	86.3	26.0	51.8	12	1.4	17				
											35'-37'	Std.Dev. Maximum	0.004 0.310	0.005	0.000	1.2 88.5	0.5 27.0	0.3 52.5	12	1.5	18				Silty Fine Sand
												Minimum	0.291	0.395	0.350	83.2	25.3	51.1	12	1.4	17				
												Average	0.311	0.420	0.350	88.7	27.2	57.7	13	1.5	19				
											40'-42'	Std.Dev.	0.007	0.007	0.000	1.9	0.2	0.4	40	4.5					Silty Fine Sand
												Maximum Minimum	0.322 0.295	0.431 0.402	0.350	92.1 84.3	27.6 26.8	58.6 57.0	13 13	1.5 1.4	20 18				
												Average	0.301	0.400	0.350	85.9	27.0	53.2	13	1.4	19				
											45'-47'	Std.Dev.	0.004	0.005	0.000	1.2	0.2	1.0							Fine Sand
											40 47	Maximum	0.315	0.411	0.350	89.9	27.5	54.1	13	1.5	20				
												Minimum Average	0.294	0.390	0.350	83.9 88.6	26.4 26.9	50.5 53.7	13 6	1.4 1.5	18 9				
											501 501	Std.Dev.	0.006	0.009	0.000	1.7	0.4	1.3	0	1.5	3				Et a David
											50'-52'	Maximum	0.324	0.437	0.350	92.6	27.3	54.7	6	1.5	9				Fine Sand
												Minimum	0.301	0.403	0.350	85.9	26.0	50.6	6	1.4	9			1	
											All	Average Std.Dev.	0.211 0.038	0.244 0.049	0.350	60.3 10.9	21.9 1.7	55.7 2.3	15	1.0	15				
											depths	Maximum	0.331	0.329	0.350	94.6	24.8	61.7	27	1.6	43	60.3	1.0	none	cohesionless soil
												Minimum	0.120	0.139	0.350	34.3	16.5	48.7	8	0.6	5				
0.4	0145 75			3 1/4" HSA		1.1.	0	Miller				Average	0.200	0.187	0.350	57.3	22.3	54.4	8	1.0	8				
Safety Hammer	CME 75 - track	200587	AWJ	with auger	Transtech	John Leonhardt	Shawn Kelley	Construction Yard, Windsor,	9/25/2008 13:40	GD-6	5'-7'	Std.Dev. Maximum	0.023	0.020	0.000	6.5 67.2	1.0 23.8	1.8 57.1	8	1.1	9				Fine Sand
. Idiniioi	udon			plug		Loomaa	rtonoy	VT				Minimum	0.158	0.156	0.350	45.2	20.2	50.7	8	0.8	6				
												Average	0.233	0.235	0.350	66.4	22.6	55.7	13	1.1	14				
											10'-12'	Std.Dev.	0.040	0.023	0.000	11.3	1.1	1.7	10						Fine Sand
											-	Maximum Minimum	0.331 0.161	0.281 0.163	0.350	94.6 46.1	24.7 19.4	58.8 51.6	13 13	1.6 0.8	20 10				
													0.185			52.8	20.6	57.4	27	0.8	24				
											15'-17'	Std.Dev.	0.039	0.044	0.000	11.2	1.9	2.4							Fine to Medium Sand and Gravel
											13-17	Maximum	0.281	0.321	0.350	80.2	24.8	61.7	27	1.3	36				This to medium Sand and Glaver
												Minimum	0.120	0.139	0.350	34.3	16.5	48.7	27	0.6	15 19				
												Average Std.Dev.	0.226	0.283	0.350	64.6 6.9	22.6 1.2	55.0 1.0	18	1.1	19				
											20'-22'	Maximum	0.262	0.322	0.350	74.7	24.3	56.5	18	1.2	22				Fine to Medium Sand and Gravel
												Minimum	0.159	0.203	0.350	45.3	19.5	51.4	18	0.8	14				
												Average Std Dov	0.227	0.290	0.350	64.8 7.0	22.8	54.1	9	1.1	10				
											25'-27'	Std.Dev. Maximum	0.025	0.033 0.329	0.000	7.0	1.3 24.1	2.1 61.2	9	1.2	11				Silty Fine Sand
												Maximum													

GeoDesign,	Inc.
------------	------

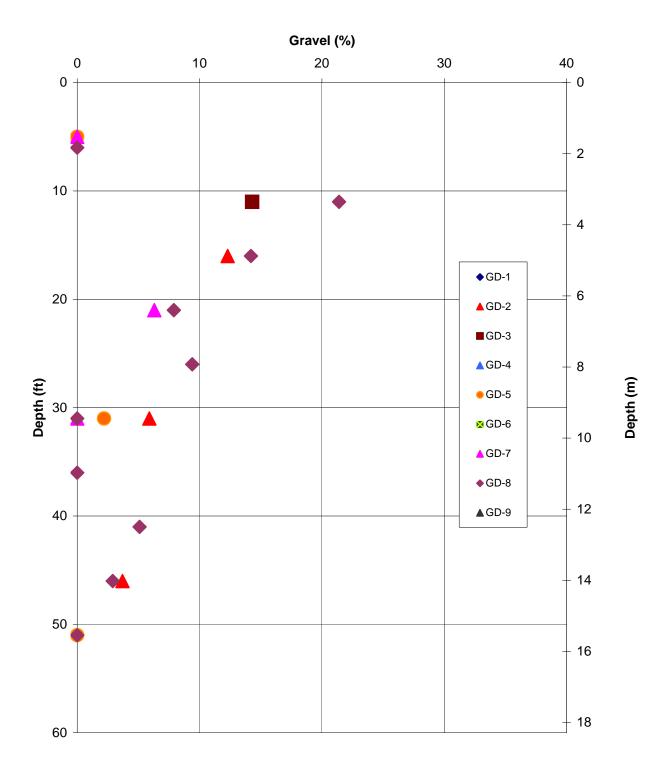
Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Ν	Cn	N60	ETR Average
				Penetration Method			-	-			(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)				(%)
												Average	0.282	0.351	0.350	80.6	25.0	53.5	14	1.3	19	
											All	Std.Dev.	0.014	0.019	0.000	3.9	0.9	1.9				
											depths	Maximum	0.323	0.391	0.350	92.4	26.5	55.0	22	1.5	34	80.6
												Minimum	0.230	0.282	0.350	65.6	22.8	26.7	7	1.1	8	
				2.4/41.110.4				Miller				Average	0.257	0.302	0.350	73.5	25.8	53.6	7	1.2	9	
utomatic lammer -	CME 45C	200004.4	A14/1	3 1/4" HSA	1//	Glen	Shawn	Construction	0/00/0000 0.00	00.7	101 101	Std.Dev.	0.018	0.011	0.000	5.2	0.4	0.8				
CME	Track	306614	AWJ	with auger	Vtrans	Porter	Kelley	Yard, Windsor,	9/26/2008 9:00	GD-7	10'-12'	Maximum	0.283	0.318	0.350	81.0	26.4	54.5	7	1.3	9	
CIVIE				plug				VT				Minimum	0.230	0.282	0.350	65.6	25.0	52.3	7	1.1	8	
												Average	0.292	0.324	0.350	83.4	25.1	52.8	22	1.4	31	1
											451 471	Std.Dev.	0.010	0.007	0.000	2.8	0.6	4.3				
											15'-17'	Maximum	0.313	0.340	0.350	89.4	26.2	55.0	22	1.5	33	
												Minimum	0.267	0.309	0.350	76.3	23.8	26.7	22	1.3	28	1
												Average	0.295	0.354	0.350	84.3	24.1	53.5	16	1.4	22	i i
												Std.Dev.	0.015	0.006	0.000	4.2	1.0	0.8	-			
											20'-22'	Maximum	0.323	0.368	0.350	92.4	26.2	54.2	16	1.5	25	
												Minimum	0.270	0.342	0.350	77.0	22.9	49.7	16	1.3	21	1
												Average	0.271	0.361	0.350	77.5	25.7	53.7	20	1.3	26	i
												Std.Dev.	0.006	0.006	0.000	1.6	0.4	0.3	20		20	
											25'-27'	Maximum	0.280	0.375	0.350	80.0	26.4	54.5	20	1.3	27	
												Minimum	0.260	0.347	0.350	74.4	25.0	53.2	20	1.2	25	1
												Average	0.275	0.361	0.350	78.6	24.9	53.6	8	1.3	10	
											30'-32'	Std.Dev.	0.275	0.007	0.000	1.8	0.3	0.4	0	1.5	10	1
												Maximum	0.287	0.374	0.350	81.9	25.6	54.1	8	1.4	11	1
												Minimum	0.263	0.348	0.350	75.0	23.0	52.6	8	1.4	10	4
													0.283	0.369	0.350	80.8	25.7	53.8	11	1.3	10	1
												Average Std.Dev.	0.265	0.007	0.000	1.5	0.4	0.4	11	1.5	15	1
											35'-37'	Maximum	0.003	0.391	0.350	84.0	26.3	54.6	11	1.4	15	1
												Minimum	0.294	0.358	0.350	78.0	25.0	53.2	11	1.4	14	1
																83.1		53.8		1.3	14	1
												Average Std Dov	0.291	0.376	0.350	1.5	26.0 0.3	0.4	9	1.4	12	4
											40'-42'	Std.Dev.	0.005	0.006	0.000	1.5 86.4		0.4 54.5	0	1.4	40	4
												Maximum					26.5		9		13 12	4
												Minimum	0.281	0.363	0.350	80.4	25.2	52.7	9	1.3		4
												Average	0.270	0.345	0.350	77.2	25.0	53.6	20	1.3	26	4
											45'-47'	Std.Dev.	0.007	0.009	0.000	2.1	0.5	0.3				4
												Maximum	0.285	0.366	0.350	81.4	26.2	54.3	20	1.4	27	4
												Minimum	0.256	0.329	0.350	73.1	24.3	52.9	20	1.2	24	4
												Average	0.284	0.354	0.350	81.1	24.1	53.6	17	1.4	23	4
											50'-52'	Std.Dev.	0.008	0.008	0.000	2.3	0.7	0.5				4
											00 02	Maximum	0.296	0.374	0.350	84.7	25.8	54.6	17	1.4	24	4
			1		I	1	1		1	1	1	Minimum	0.268	0.336	0.350	76.5	22.8	52.7	17	1.3	22	1

~	Cn Average	Depth to H ₂ O	Soil Description
		(ft)	
	1.3	50.0	cohesionless soil
			Fine to Medium Sand and Gravel
			Fine to Medium Sand and Gravel
			Fine to Medium Sand and Gravel
			Fine to Medium Sand and Gravel
	ETR Average (>30') (%) 80.2		Silty Fine Sand
			Fine Sand

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)				(%)		(ft)	
			1			1						Average	0.284	0.338	0.350	81.1	40.3	51.7	13	1.4	17				
											All	Std.Dev.	0.020	0.025	0.000	5.8	0.9	5.1				04.4		10.0	
											depths	Maximum	0.327	0.372	0.350	93.3	42.7	54.8	22	1.6	34	81.1	1.4	40.0	cohesionless soil
												Minimum	0.204	0.246	0.350	58.4	37.6	26.8	5	1.0	5				
Automatic				3 1/4" HSA				Miller				Average	0.238	0.254	0.350	67.9	39.6	52.3	5	1.1	6				
Hammer -	CME 45C	306614	NWJ	with auger	Vtrans	Glen	Shawn	Construction	9/26/2008 12:05	GD-8	5'-7'	Std.Dev.	0.031	0.006	0.000	8.8	0.8	0.3							Fine Sand
CME	Track		-	plug		Porter	Kelley	Yard, Windsor,				Maximum	0.299	0.267	0.350	85.3	40.6	52.7	5	1.4	7				
								VT				Minimum	0.204	0.246	0.350	58.4	38.0	51.6	5	1.0	5				
												Average Std.Dev.	0.254 0.012	0.312	0.350	72.7	40.7 0.5	53.8 0.4	9	1.2	11				
											10'-12'	Maximum	0.012	0.323	0.350	80.2	41.6	54.4	9	1.3	12				Fine to Medium Sand and Gravel
												Minimum	0.243	0.303	0.350	69.3	39.9	53.2	9	1.2	10				
												Average	0.292	0.329	0.350	83.6	39.9	51.8	17	1.4	24				
												Std.Dev.	0.016	0.008	0.000	4.7	0.9	2.4							
											15'-17'	Maximum	0.327	0.348	0.350	93.3	41.8	52.8	17	1.6	26				Fine to Medium Sand and Gravel
												Minimum	0.269	0.312	0.350	76.9	37.6	40.1	17	1.3	22				
												Average	0.279	0.345	0.350	79.7	39.9	53.5	18	1.3	24				
											20'-22'	Std.Dev.	0.006	0.008	0.000	1.8	0.7	0.4							Fine to Medium Sand and Gravel
											20-22	Maximum	0.300	0.367	0.350	85.6	40.9	54.2	18	1.4	26				The to mediant band and Graver
												Minimum	0.268	0.323	0.350	76.7	38.2	52.6	18	1.3	23				
												Average	0.292	0.338	0.350	83.3	40.2	40.9	22	1.4	31				
											25'-27'	Std.Dev.	0.006	0.010	0.000	1.8	0.8	10.0		4.5					Fine to Medium Sand and Gravel
												Maximum Minimum	0.307	0.357	0.350	87.8 79.7	41.9 38.4	54.8 26.8	22 22	1.5 1.3	32 29				
												Minimum	0.219	0.321	0.330	19.1	30.4	20.0	22	1.5	29		ETR	1	
																							Average		
												Average	0.299	0.354	0.350	85.4	41.3	53.9	9	1.4	13		(>30')		
											30'-32'	Std.Dev.	0.004	0.008	0.000	1.2	0.7	0.3	, , , , , , , , , , , , , , , , , , ,				(%)		Silty Fine Sand
												Maximum	0.308	0.369	0.350	88.1	42.7	54.3	9	1.5	13			1	
												Minimum	0.288	0.335	0.350	82.2	39.4	53.4	9	1.4	12		84.2		
												Average	0.295	0.355	0.350	84.2	40.5	51.5	10	1.4	14			-	
											35'-37'	Std.Dev.	0.004	0.003	0.000	1.1	0.6	3.3							Silty Fine Sand
											00 0/	Maximum	0.301	0.361	0.350	86.0	41.5	52.7	10	1.4	14				Only I nie Gana
												Minimum	0.286	0.350	0.350	81.8	39.3	37.4	10	1.4	14				
												Average	0.290	0.357	0.350	82.9	40.6	53.5	10	1.4	14				
											40'-42'	Std.Dev.	0.013	0.007	0.000	3.7	1.0	0.2	10	4.5	45				Silty Fine Sand
												Maximum Minimum	0.319 0.260	0.372 0.349	0.350	91.2 74.2	42.0 39.1	54.0 53.1	10 10	1.5 1.2	15 12				-
														0.349	0.350	68.2	40.6	52.5	16	1.2	12				
											45'-47' **	Average Std.Dev.	0.238	0.346	0.350	3.3	40.6	0.0	10	1.1	10	1			
											only 2	Maximum	0.250	0.350	0.350	71.5	40.8	52.5	16	1.2	19	1			Fine Sand
											blows	Minimum	0.227	0.342	0.350	64.9	40.5	52.5	16	1.1	17	1			
												Average			0.350	1			15		1	1			
												Std.Dev.		1	0.000	1	1	1		1	1	1			Fine Cand
											50'-52' **	Maximum			0.350				15						Fine Sand
												Minimum			0.350				15						

GeoDesign, I	nc.
--------------	-----

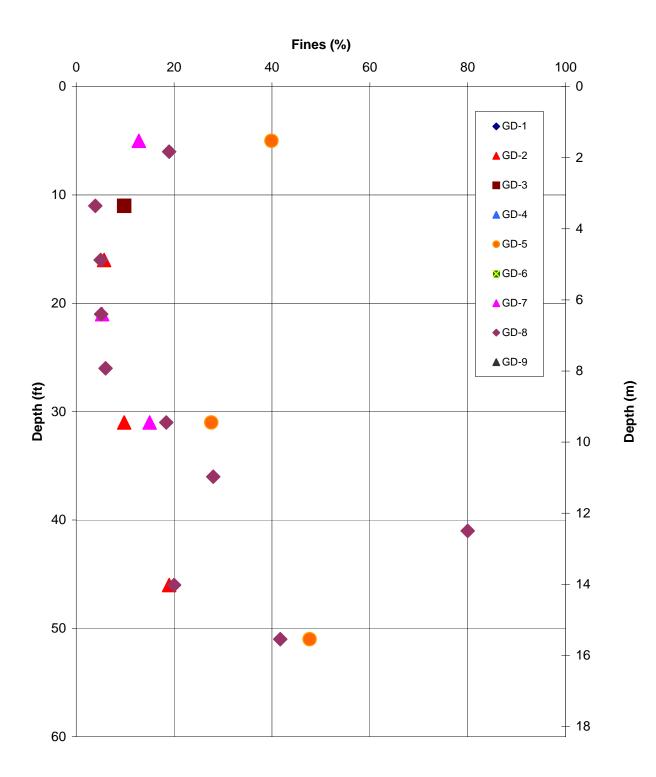
lammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)				(%)		(ft)	
												Average	0.168	0.197	0.350	48.1	18.3	46.1	25	0.8	20				
											All	Std.Dev.	0.020	0.028	0.000	5.7	0.9	2.7				48.1	0.8	50.0	cohesionless soil
											depths	Maximum	0.220	0.255	0.350	62.9	20.6	53.3	52	1.0	54	40.1	0.0	30.0	conesioness son
												Minimum	0.112	0.109	0.350	32.0	15.2	38.3	9	0.5	5				
Safety				4 1/4" HSA	Specialty			Miller				Average	0.135	0.120	0.350	38.5	17.0	41.7	9	0.6	6				
Driver	Simco		AWJ	with auger	Drilling &	Chris	Shawn	Construction	9/29/2008 9:45	GD-9	5'-7'	Std.Dev.	0.014	0.009	0.000	4.0	1.0	2.3							Fine Sand
ammer -	2800		/	plug	Investigation	Aldrich	Kelley	Yard, Windsor,	0/20/2000 0.10	05 0	÷.	Maximum	0.167	0.145	0.350	47.6	19.5	45.4	9	0.8	7				i nio odna
lobile				p	gener			VT				Minimum	0.112	0.109	0.350	32.0	15.7	38.3	9	0.5	5	1			
												Average	0.162	0.156	0.350	46.4	18.1	45.1	9	0.8	7				
											10'-12'	Std.Dev.	0.026	0.013	0.000	7.5	0.7	1.5							Fine Sand
												Maximum	0.218	0.176	0.350	62.4	19.3	48.5	9	1.0	9				
												Minimum	0.115	0.131	0.350	33.0	17.1	42.5	9	0.5	5	4			
												Average	0.182	0.177	0.350	51.9	18.2	44.0	29	0.9	25				
											15'-17'	Std.Dev.	0.018	0.016	0.000	5.0	1.2	2.0							Fine to Medium Sand and Gra
												Maximum	0.211	0.208	0.350	60.2	20.3	48.2	29	1.0	29				
												Minimum	0.145	0.140	0.350	41.5	15.2	39.9	29	0.7	20				
												Average	0.170	0.203	0.350	48.4	18.6	47.7	31	0.8	25				
											20'-22'	Std.Dev.	0.017	0.017	0.000	4.8	1.0	1.8	0.1	1.0	00				Fine to Medium Sand and Gra
												Maximum	0.204	0.239	0.350	58.4	20.6	53.3 44.4	31	1.0	30				
												Minimum	0.127	0.159	0.350	36.2	16.5		31	0.6	19				
												Average	0.156	0.196	0.350	44.5	18.1	48.6	52	0.7	39				
											25'-27'	Std.Dev. Maximum	0.012	0.012	0.000	3.4 56.3	0.6 19.4	1.8 52.0	52	0.9	49				Fine to Medium Sand and Gra
												Minimum	0.197	0.227	0.350	36.6	19.4	44.8	52	0.9	32				
												wiininnunn	0.120	0.103	0.330	30.0	10.0	44.0	JZ	0.0	32	1 1	ETR	l	
																							Average		
												Average	0.181	0.224	0.350	51.6	18.8	43.7	14	0.9	12		(>30')		
											30'-32'	Std.Dev.	0.017	0.224	0.000	4.8	0.6	1.9	14	0.9	12		(%)		Silty Fine Sand
												Maximum	0.220	0.249	0.350	62.9	20.0	46.8	14	1.0	15		(70)		
												Minimum	0.156	0.243	0.350	44.6	17.3	39.6	14	0.7	10		51.0		
											-	Average	0.174	0.221	0.350	49.9	18.3	47.3	22	0.8	18	1 1	51.0		
												Std.Dev.	0.010	0.012	0.000	3.0	0.7	1.7	22	0.0	10				
											35'-37'	Maximum	0.203	0.246	0.350	58.0	19.7	51.9	22	1.0	21				Silty Fine Sand
												Minimum	0.156	0.194	0.350	44.6	16.4	43.9	22	0.7	16				
												Average	0.169	0.215	0.350	48.2	18.2	44.9	27	0.8	22	1			
												Std.Dev.	0.017	0.020	0.000	4.7	0.9	1.8		0.0					
											40'-42'	Maximum	0.219	0.255	0.350	62.6	19.8	49.8	27	1.0	28				Silty Fine Sand
												Minimum	0.131	0.168	0.350	37.5	16.2	39.9	27	0.6	17	1			
												Average	0.191	0.231	0.350	54.4	18.9	47.0	32	0.9	29	1			
											45'-47' **	Std.Dev.	0.024	0.009	0.000	6.8	0.5	1.5				1			
											only 6	Maximum	0.219	0.244	0.350	62.6	19.5	49.6	32	1.0	33	1			Silty Fine Sand
											blows	Minimum	0.142	0.218	0.350	40.5	18.0	45.3	32	0.7	22	1			
												Average			0.350			Ī	26			1			
												Std.Dev.			0.000							1			Ciller Fine Co. 1
											50'-52' **	Maximum			0.350				26			1			Silty Fine Sand
												Minimum			0.350				26			1			


EMX (kip-ft) = the energy delivered by the hammer to the top of the drill string as determined by the EMX method EF2 (kip-ft) = the energy delivered by the hammer to the top of the drill string as determined by the F-squared method ER (kip-ft) = 0.35 kip-ft, the theoretical free hall hammer energy for the SPT hammers ETR (%) = EMX/ER, energy transfer ratio, the efficiency of the hammer as calculated by the SPT Analyzer FMX (kips) = the force delivered by the hammer BPM (blows / minute) = the operating rate of the hammer in blows per minute N = the number of blow counts required to drive the SPT sampler over the depth interval of 6 inches to 18 inches for an 24-inch sampling episode N₆₀ = {(N x EMX) / (0.60 x ER}) = {(N0.60) x ETR}, the N-value adjusted to a hammer efficiency of 60 percent

 $C_{\eta} = \{(ETR / 0.60)\} = \{EMX / (0.60 \times ER)\} = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-$

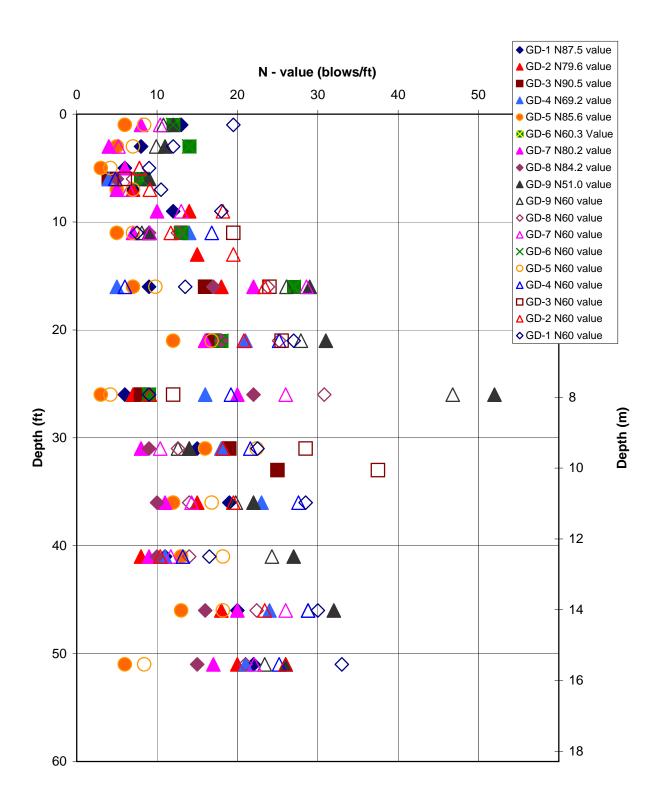
APPENDIX 6 – EXAMPLE OF SPT ANALYZER FIELD DATA (FORCE – VELOCITY PLOTS)

GeoDesign, Inc. Windsor, VT Job No. 750-5.7

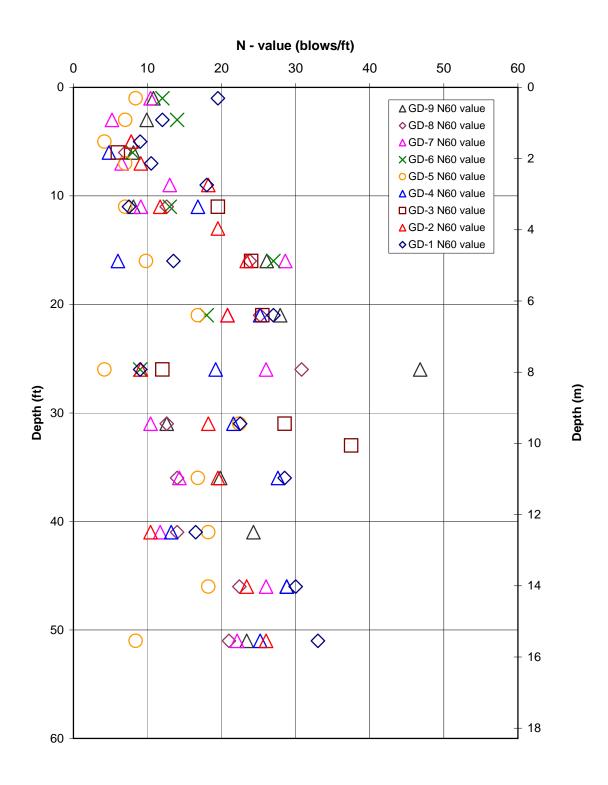

SPT Hammer Energy Variability Evaluation Windsor, VT

Vtrans # RSCH012-703

GeoDesign, Inc. Windsor, VT Job No. 750-5.7

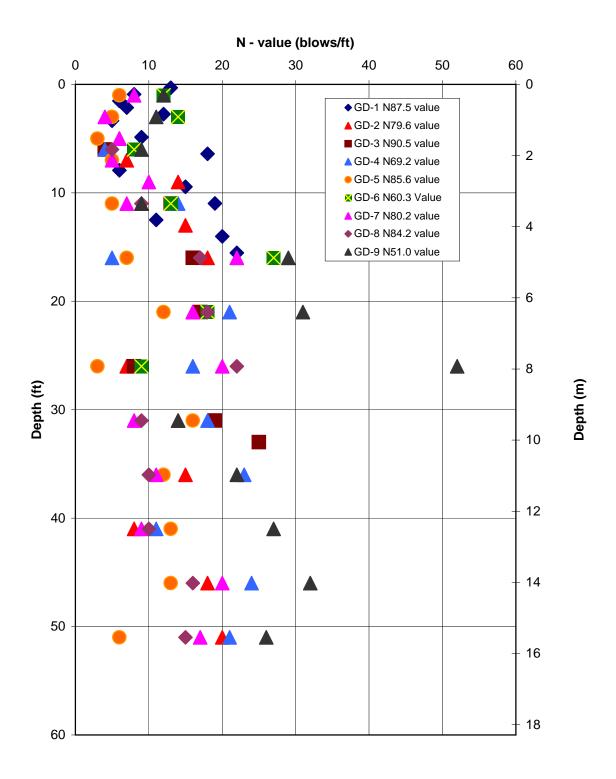

SPT Hammer Energy Variability Evaluation Windsor, VT

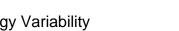
Vtrans # RSCH012-703


GeoDesign, Inc. Windsor, VT Job No. 750-5.7

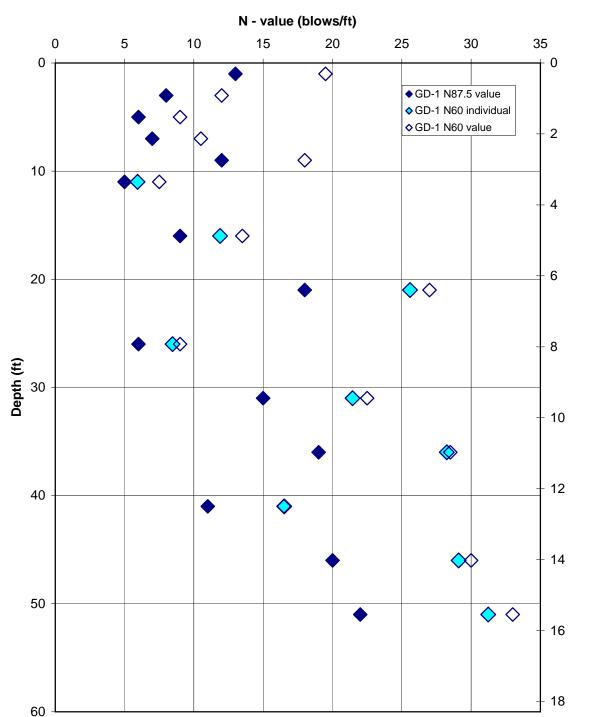
SPT Hammer Energy Variability Evaluation Windsor, VT

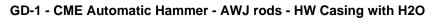
GeoDesign, Inc. Windsor, VT Job No. 750-5.7


SPT Hammer Energy Variability Evaluation Windsor, VT

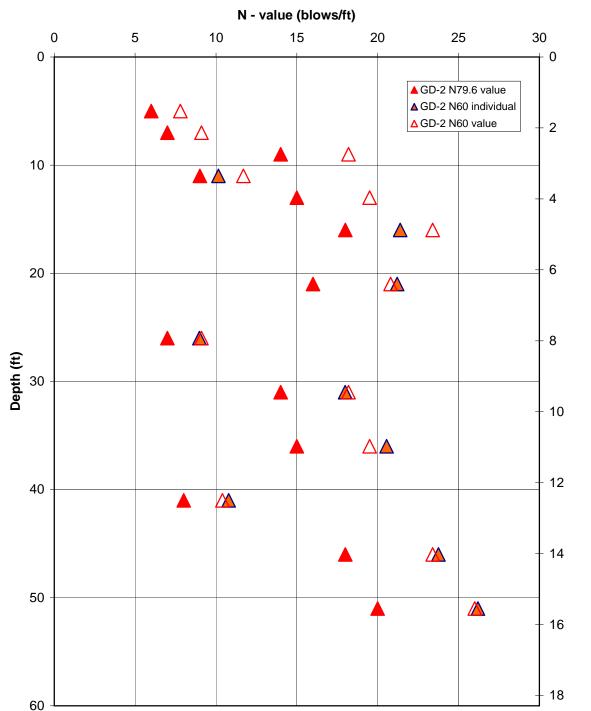

Vtrans # RSCH012-703

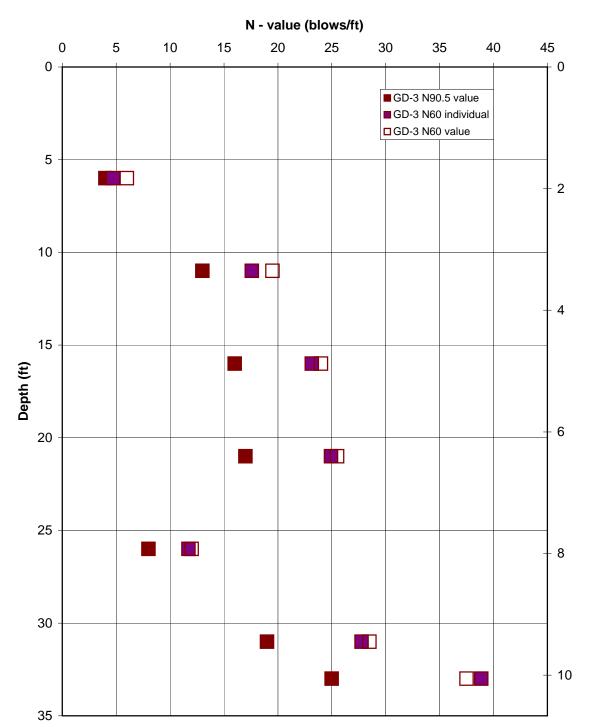
GeoDesign, Inc. Windsor, VT Job No. 750-5.7

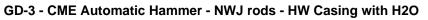

SPT Hammer Energy Variability Evaluation Windsor, VT

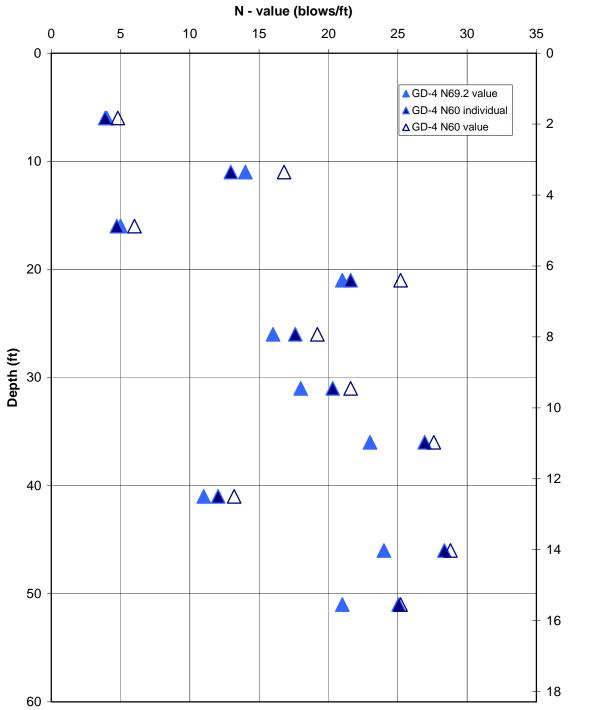


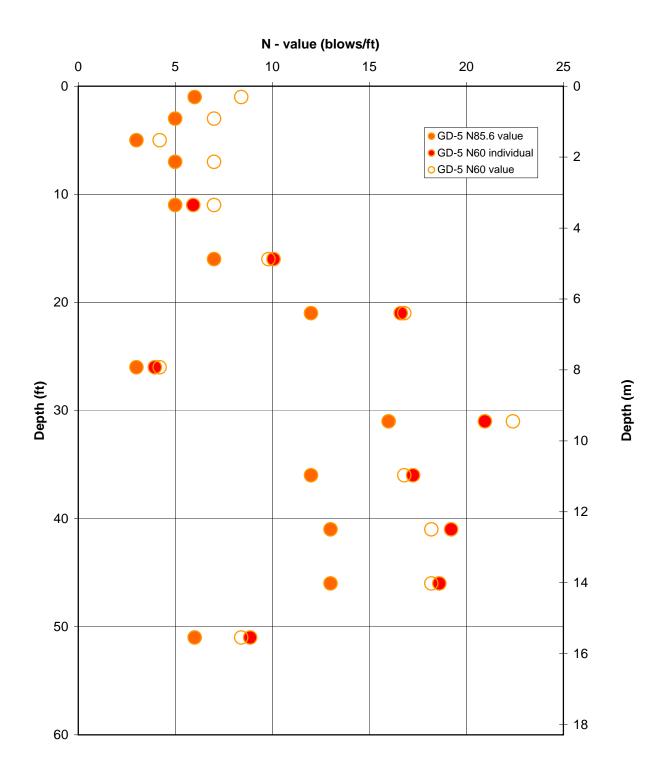
SPT Hammer Energy Variability Evaluation Windsor, VT


Vtrans # RSCH012-703

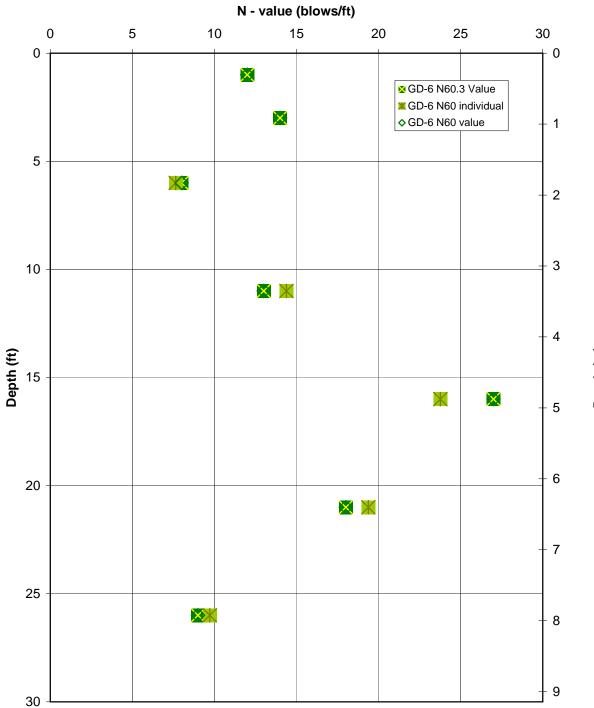



SPT Hammer Energy Variability Evaluation Windsor, VT

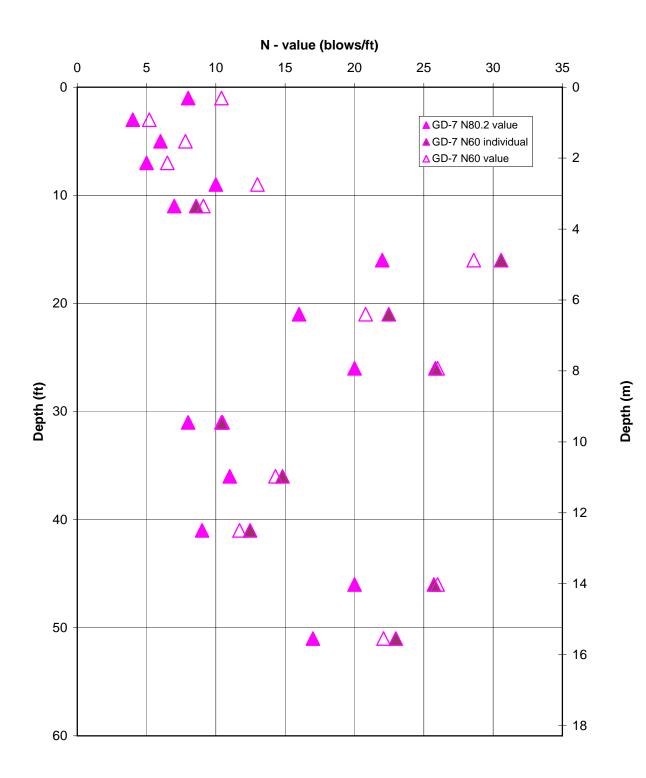

SPT Hammer Energy Variability Evaluation Windsor, VT


SPT Hammer Energy Variability Evaluation Windsor, VT

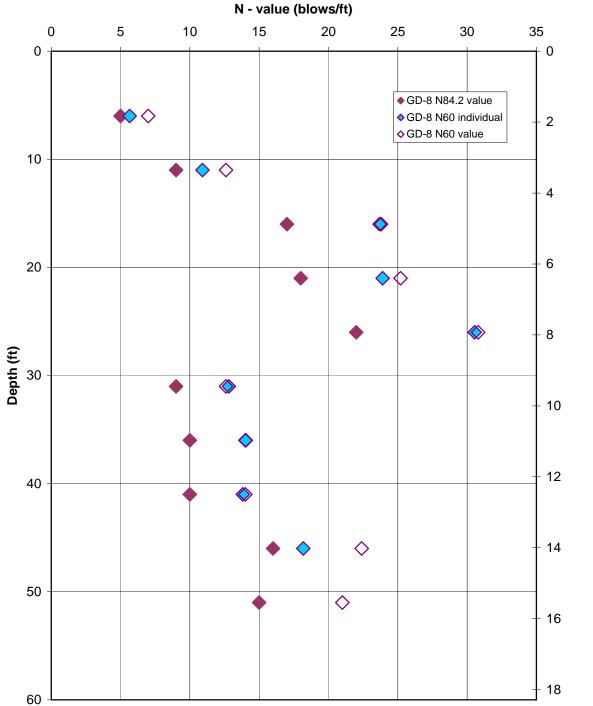
GD-4 - Mobile Safety Hammer - AWJ rods - 3 1/4" HSA


SPT Hammer Energy Variability Evaluation Windsor, VT

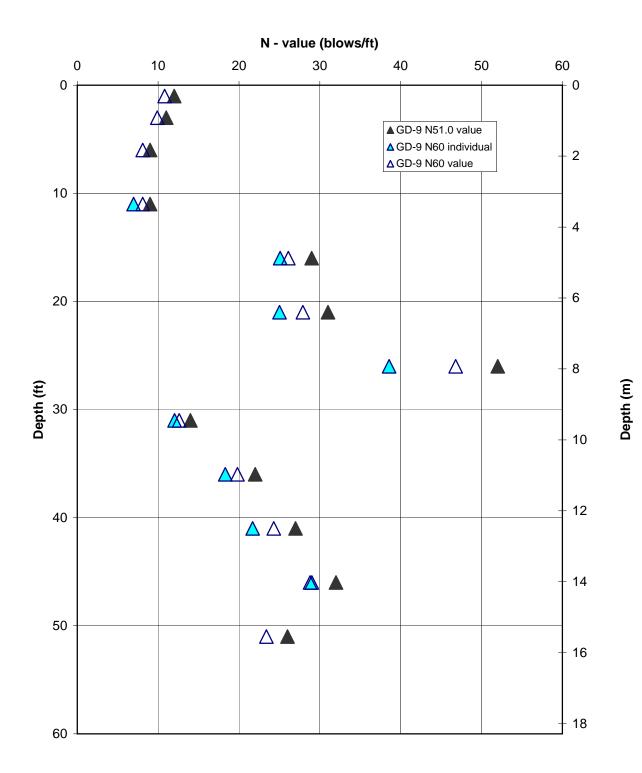
GD-5 - CME Automatic Hammer - AWJ rods - 4 1/4 HSA


SPT Hammer Energy Variability Evaluation Windsor, VT

GD-6 - Mobile Safety Hammer - AWJ rods - 3 1/4 HSA


SPT Hammer Energy Variability Evaluation Windsor, VT

GD-7 - CME Automatic Hammer - AWJ rods - 3 1/4 HSA


SPT Hammer Energy Variability Evaluation Windsor, VT

GD-8 - CME Automatic Hammer - NWJ rods - 3 1/4 HSA

SPT Hammer Energy Variability Evaluation Windsor, VT

APPENDIX 7 – SPT HAMMER ENERGY SUMMARY SHEETS

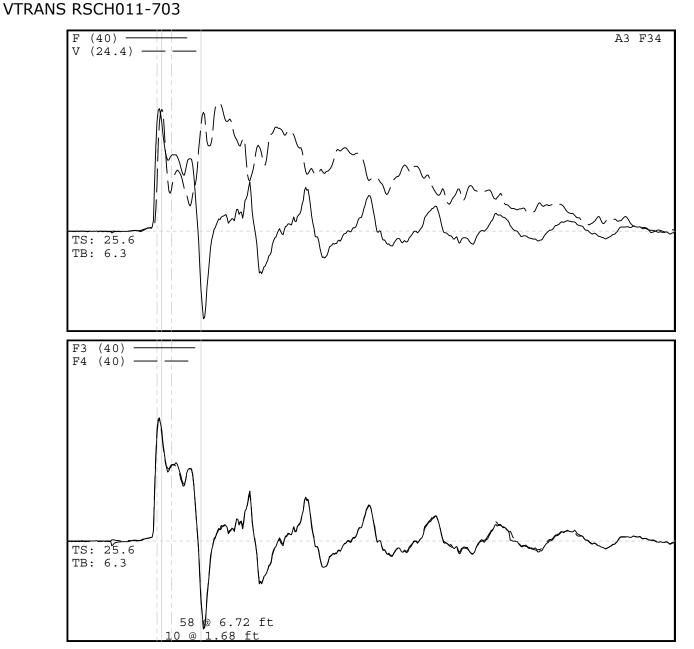
Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded Analyzed hammer blows	N	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)					(%)		(ft)	
											All	Average Std.Dev.	0.297 0.017	0.377 0.032	0.350	85.0 4.9	27.4 0.3	52.6 3.2	257 215	14	1.4	20	_			
											depths	Maximum	0.331	0.423	0.350	94.5	28.2	53.8	45 45	22	1.6	35	85.0	1.4	43.8	cohesionless soil
								Miller				Minimum	0.222 0.249	0.281	0.350	63.6 71.2	26.5 27.1	26.7 52.8	13 13 13 13	5	1.1	5				
Automatic Hammer -	CME 55 -	356675	AWJ	4 inch HW	Vtrans	Glenn Porter	Shawn	Construction	9/23/2008 10:00	GD-1	10' 12'	Average Std.Dev.	0.249	0.284 0.002	0.000	4.1	0.2	0.2	13 13	5	1.2	6				Fina to Madium Sand and Croual
CME	Track	330073	Avv3	Casing	vitaris	Gierin Fonter	Kelley	Yard, Windsor, VT	9/23/2008 10.00	GD-1	10'-12'	Maximum Minimum	0.272	0.288 0.281	0.350	77.7 63.6	27.5	53.0 52.5	13 13 13 13	5 5	1.3 1.1	6 5				Fine to Medium Sand and Gravel
								VI				Average	0.222 0.278	0.281	0.350	79.3	26.8 27.4	52.5	18 18	9	1.1	12				
											15'-17'	Std.Dev.	0.013	0.002	0.000	3.8	0.2	0.1								Fine to Medium Sand and Gravel
												Maximum Minimum	0.292 0.254	0.337 0.328	0.350	83.5 72.6	27.8 26.7	53.1 52.7	18 18 18 18	9	1.4 1.2	13 11	-			
												Average	0.299	0.360	0.350	85.3	27.1	53.4	30 30	18	1.4	26				
											20'-22'	Std.Dev. Maximum	0.010 0.319	0.004 0.370	0.000	2.7 91.1	0.2 27.4	0.2 53.7	30 30	18	1.5	27	-			Fine to Medium Sand and Gravel
												Minimum	0.277	0.352	0.350	79.2	26.7	53.1	30 30	18	1.3	24				
												Average Std.Dev.	0.296	0.384 0.007	0.350	84.6 3.0	27.2 0.1	53.1 0.2	18 18	6	1.4	8				
				spin and wash ahead							25'-27'	Old.Dev.	0.011	0.007	0.000	5.0	0.1	0.2						ETR	1	Silty Fine Sand
				with roller bit							25-21	Massiansan	0.330	0.407	0.350	04.0	27.6	53.3	18 18	c	1.6	q		Average		Sity File Salu
												Maximum Minimum	0.330	0.407	0.350	94.2 81.8	27.6	53.3	18 18 18 18	6	1.6	8		(>30') (%)		
												Average	0.300	0.398	0.350	85.8	27.6	53.1	30 31	15	1.4	21	1		1	
											30'-32'	Std.Dev. Maximum	0.004 0.309	0.005	0.000	1.1 88.3	0.2 27.9	0.1 53.3	30 31	15	1.5	22	1			Silty Fine Sand
												Minimum	0.294	0.389	0.350	84.1	27.1	52.7	30 31	15	1.4	21	1	87.5	l	
												Average Std.Dev.	0.312 0.004	0.408	0.350	89.2 1.2	27.6 0.2	49.6 9.3	37 18	19	1.5	28				
											35'-37'	Maximum	0.320	0.423	0.350	91.3	28.2	53.8	37 18	19	1.5	29				Silty Fine Sand
												Minimum	0.305	0.398	0.350	87.1	27.2	26.7	37 18	19	1.5	28				
											401 401	Average Std.Dev.	0.316 0.005	0.390 0.014	0.350	90.1 1.4	27.5 0.1	53.2 0.2	26 25	11	1.5	17	-			
											40'-42'	Maximum	0.331	0.416	0.350	94.5	27.8	53.6	26 25	11	1.6	17				Silty Fine Sand
												Minimum Average	0.305	0.361 0.389	0.350	87.1 87.3	27.1 27.3	52.8 50.7	26 25 40 17	11 20	1.5 1.5	16 29	-			
											45'-47'	Std.Dev.	0.005	0.000	0.000	1.4	0.3	6.5	10 17	20	1.0	20				Fine Sand
											10 11	Maximum Minimum	0.313 0.295	0.411 0.373	0.350	89.5 84.3	27.7 26.7	53.7 30.4	40 17 40 17	20 20	1.5 1.4	30 28	-			The Galid
												Average	0.298	0.391	0.350	85.2	27.4	52.8	45 45	20	1.4	31	1			
											50'-52'	Std.Dev. Maximum	0.005 0.310	0.006	0.000	1.5 88.4	0.3 27.9	0.2 53.2	45 45	22	15	32	_			Fine Sand
												Minimum	0.286	0.404	0.350	81.7	27.9	53.2	45 45 45 45	22	1.5 1.4	32				
												Average	0.271	0.353	0.350	77.4	25.5	59.8	245 211	14	1.3	18	-			
											All depths	Std.Dev. Maximum	0.018 0.302	0.026	0.000	5.0 86.4	0.5 26.8	1.8 63.6	35 34	20	1.4	29	77.4	1.3	47.0	cohesionless soil
												Minimum	0.212	0.272	0.350	60.6	22.9	55.8	14 12	7	1.0	7				
Automatic	CME 45C			3 1/4" HSA		Howard	Shawn	Miller Construction				Average Std.Dev.	0.237 0.023	0.287 0.006	0.350	67.7 6.5	25.4 0.3	59.3 1.1	20 13	9	1.1	10	-			
Hammer - CME	skid rig on trailer	277564	AWJ	with auger plug	Vtrans	Garrow	Kelley	Yard, Windsor,	9/23/2008 12:25	GD-2	10'-12'	Maximum	0.290	0.299	0.350	82.9	25.8	60.5	20 13	9	1.4	12				Fine to Medium Sand and Gravel
OWIE	trailer			plug				VT				Minimum	0.212 0.250	0.280	0.350	60.6 71.3	24.7 25.9	55.9 62.1	20 13 32 29	9 18	1.0	9 21				
											15' 17'	Average Std.Dev.	0.250	0.323	0.000	1.8	0.2	0.2	32 29	10	1.2	21				Fine to Medium Sand and Crouol
											15'-17'	Maximum	0.264	0.335	0.350	75.3	26.2	62.6	32 29	18	1.3	23				Fine to Medium Sand and Gravel
												Minimum Average	0.239 0.278	0.312 0.351	0.350	68.1 79.5	25.3 25.8	61.8 61.9	32 29 31 28	18 16	1.1	20 21	1			
											20'-22'	Std.Dev.	0.011	0.006	0.000	3.2	0.4	0.3					1			Fine to Medium Sand and Gravel
												Maximum Minimum	0.299 0.259	0.369 0.339	0.350	85.4 74.0	26.8 25.2	62.8 61.3	31 28 31 28	16 16	1.4 1.2	23 20	1			
												Average	0.269	0.360	0.350	76.9	26.0	61.1	14 12	7	1.3	9	1			
											25'-27'	Std.Dev. Maximum	0.007	0.008	0.000	2.0 82.3	0.3 26.5	0.5 62.3	14 12	7	1.4	10	-			Silty Fine Sand
				n/a								Minimum	0.288	0.376	0.350	82.3 74.7	26.5 25.5	62.3	14 12 14 12	7	1.4	9	1		_	
																								ETR		
											201 001	Average	0.270	0.370	0.350	77.1	25.8	60.3	28 15	14	1.3	18	J	Average (>30')		Olley First Or and
											30'-32'	Std.Dev.	0.004	0.005	0.000	1.0	0.3	1.4						(%)		Silty Fine Sand
												Maximum Minimum	0.277 0.265	0.383 0.363	0.350	79.2 75.8	26.1 25.2	62.2 55.8	28 15 28 15	14 14	1.3 1.3	18 18	1	79.6		
												Average	0.288	0.371	0.350	82.2	24.9	59.2	27 26	15	1.4	21	1	. 0.0		
											35'-37'	Std.Dev. Maximum	0.006	0.004 0.381	0.000	1.6 85.3	0.5 25.7	0.3 60.1	27 26	15	1.4	21	-			Silty Fine Sand
												Minimum	0.298	0.361	0.350	79.4	23.9	58.8	27 26 27 26	15	1.4	20	1			
												Average Std.Dev.	0.283	0.378	0.350	80.9	25.5	60.2	24 23	8	1.3	11	4			
											40'-42'	Maximum	0.006	0.007 0.399	0.000	1.7 86.4	0.3 26.2	0.5 61.5	24 23	8	1.4	12	1			Silty Fine Sand
												Minimum	0.274	0.367	0.350	78.4	24.9	59.4	24 23	8	1.3	10]			
												Average Std.Dev.	0.277 0.005	0.363 0.006	0.350	79.2 1.6	25.8 0.3	57.8 0.6	34 31	18	1.3	24	1			
											45'-47'	Maximum	0.291	0.380	0.350	83.3	26.6	60.4	34 31	18	1.4	25	1			Fine Sand
												Minimum Average	0.269	0.355	0.350	76.8 78.6	25.3 25.3	57.1 57.4	34 31 35 34	18 20	1.3	23 26	4			
											50'-52'	Std.Dev.	0.005	0.006	0.000	1.3	0.3	0.6					1			Fine Sand
											50-52	Maximum Minimum	0.286 0.265	0.376 0.346	0.350	81.7 75.8	25.8 24.7	59.0 56.1	35 34 35 34	20 20	1.4 1.3	27 25	-			rine Saliu
<u>I</u>		II				1	8	11	1	1	L		0.200	0.040	0.000	10.0	24.1	30.1		20	1.3	20				1

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded hammer blows	Analyzed hammer blows	N	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
												Average	0.306	0.364	0.350	87.4	42.2	53.6	212	205	15	1.5	21				
											All depths	Std.Dev. Maximum	0.019	0.031	0.000 0.350	5.4 94.9	2.3 47.1	0.2 53.9	51	44	25	1.6	40	87.4	1.5	none	cohesionless soil
											dopino	Minimum	0.225	0.270	0.350	64.4	39.0	53.0	8	8	4	1.1	4				
Automatic								Miller				Average	0.248	0.280	0.350	70.8	40.7	53.2	8	8	4	1.2	5				
Hammer -	CME 55 - Track	356675	NWJ	4 inch HW Casing	Vtrans	Glennn Porter	Shawn Kelley	Construction Yard, Windsor,	9/24/2008 9:45	GD-3	5'-7'	Std.Dev. Maximum	0.018	0.004	0.000 0.350	5.2 78.3	0.4 41.4	0.1 53.3	8	8	4	1.3	5				Fine Sand
CME	Hack			Casing		1 Ofter	Reliey	VT				Minimum	0.225	0.204	0.350	64.4	40.2	53.0	8	8	4	1.1	4				
												Average	0.284	0.319	0.350	81.2	41.3	53.5	23	23	13	1.4	18				
											10'-12'	Std.Dev. Maximum	0.015	0.006	0.000 0.350	4.3 93.5	0.6 42.3	0.1 53.7	23	23	13	1.6	20				Fine to Medium Sand and Gravel
												Minimum	0.266	0.310	0.350	76.1	39.9	53.3	23	23	13	1.3	16				
												Average	0.304	0.349	0.350	86.8	41.8	53.5	33	34	16	1.4	23				
											15'-17'	Std.Dev. Maximum	0.008	0.006	0.000 0.350	2.2 93.4	0.6 43.1	0.2 53.8	33	34	16	1.6	25				Fine to Medium Sand and Gravel
												Minimum	0.282	0.338	0.350	80.5	40.5	53.2	33	34	16	1.3	21				
				spin and								Average	0.308	0.363	0.350	88.0	39.8	53.6	34	33	17	1.5	25				
				wash ahead							20'-22'	Std.Dev. Maximum	0.009	0.006	0.000 0.350	2.5 94.6	0.6 41.3	0.1 53.9	34	33	17	1.6	27				Fine to Medium Sand and Gravel
				with roller bit								Minimum	0.293	0.351	0.350	83.7	39.0	53.3	34	33	17	1.4	24				
												Average	0.307	0.374	0.350	87.8	41.6	53.7	22	22	8	1.5	12				
											25'-27'	Std.Dev. Maximum	0.005	0.009	0.000 0.350	1.5 90.6	1.0 43.3	0.1 53.9	22	22	8	1.5	12				Silty Fine Sand
												Minimum	0.297	0.358	0.350	85.0	39.6	53.4	22	22	8	1.4	11				
																									ETR		
												Average	0.307	0.371	0.350	87.7	41.0	53.6	41	41	19	1.5	28		Average (>30')		
											30'-32'	Std.Dev.	0.009	0.009	0.000	2.5	0.5	0.2				1.0	20		(%)		Silty Fine Sand
												Maximum	0.329	0.384	0.350	94.1	42.2	53.9	41	41	19	1.6	30				
												Minimum Average	0.290	0.333	0.350	82.9 93.3	39.8 46.3	53.2 53.5	41 51	41 44	19 25	1.4 1.6	26 39		90.5		
											32'-34'	Std.Dev.	0.003	0.011	0.000	0.9	0.5	0.1	01		10		00				Silty Fine Sand
											32-34	Maximum	0.332	0.420	0.350	94.9	47.1	53.8	51	44	25	1.6	40				Sitty Fille Salid
												Minimum Average	0.318	0.383	0.350	90.8 66.3	44.6 19.2	53.4 31.1	51 292	44 289	25 16	1.5 1.1	38 17			r	
											All	Std.Dev.	0.027	0.049	0.000	7.7	1.3	3.4						66.3	1.1	42.0	cohesionless soil
											depths	Maximum Minimum	0.288	0.357	0.350	82.4	21.8	39.1	44 9	44 5	24 4	1.4 0.7	33 3	00.5	1.1	42.0	conesioness son
								Miller				Average	0.140	0.128	0.350	40.0 58.3	15.0 18.5	19.4 30.1	9 10	10	4	1.0	4				
Safety	CME 45C · skid rig on	277564	AWJ	3 1/4" HSA with auger	Vtrans	Howard	Shawn	Construction	9/24/2008 13:30	GD-4	5'-7'	Std.Dev.	0.033	0.012	0.000	9.4	0.8	1.8									Fine Sand
Hammer	trailer			plug		Garrow	Kelley	Yard, Windsor, VT				Maximum Minimum	0.273 0.158	0.184 0.144	0.350	78.0 45.0	19.8 17.1	32.9 27.5	10 10	10 10	4	1.3 0.8	5				
												Average	0.194	0.173	0.350	55.5	16.9	20.2	25	25	14	0.9	13				
											10'-12'	Std.Dev.	0.019	0.019	0.000	5.6	0.9	0.6									Fine to Medium Sand and Gravel
												Maximum Minimum	0.224 0.140	0.205	0.350	64.1 40.0	18.2 15.0	20.8 19.4	25 25	25 25	14 14	1.1 0.7	15 9				
												Average	0.199	0.237	0.350	56.8	19.1	24.8	9	5	5	0.9	5				
											15'-17'	Std.Dev.	0.019	0.021	0.000	5.4	0.9	2.6		-	_		-				Fine to Medium Sand and Gravel
												Maximum Minimum	0.220	0.263 0.209	0.350	63.0 49.6	20.1 17.7	27.0 21.2	9 9	5 5	5 5	1.0 0.8	5 4				
												Average	0.216	0.237	0.350	61.7	18.2	29.6	40	40	21	1.0	22				
				n/a							20'-22'	Std.Dev.	0.018	0.018	0.000	5.2	0.7	2.9	40	10	04	10	05				Fine to Medium Sand and Gravel
												Maximum Minimum	0.252 0.172	0.280	0.350	72.1 49.2	19.8 16.9	34.0 19.5	40 40	40 40	21 21	1.2 0.8	25 17				
												Average	0.231	0.255	0.350	66.0	18.9	34.9	30	30	16	1.1	18				
											25'-27'	Std.Dev. Maximum	0.022	0.024	0.000 0.350	6.3 80.3	1.0 20.9	1.7 39.1	30	30	16	1.3	21				Silty Fine Sand
												Minimum	0.281	0.208	0.350	54.3	16.9	39.1	30	30	16	0.9	14				
																									Average		
											30'-32'	Average Std.Dev.	0.237 0.025	0.278	0.350 0.000	67.7 7.1	18.9 0.9	31.0 2.7	34	35	18	1.1	20		(>30') (%)		Silty Fine Sand
											50-52	Maximum	0.025	0.329	0.000	7.1	20.6	36.5	34	35	18	1.3	24		(70)		Unty Fine Saliu
												Minimum	0.190	0.220	0.350	54.4	16.4	22.3	34	35	18	0.9	16		69.2		
												Average Std.Dev.	0.246	0.293 0.018	0.350	70.3 4.6	19.8 0.6	30.5 4.0	37	37	23	1.2	27				
											35'-37'	Maximum	0.016	0.018	0.350	80.1	20.9	4.0 36.0	37	37	23	1.3	31				Silty Fine Sand
												Minimum	0.206	0.243	0.350	58.9	17.9	19.7	37	37	23	1.0	23				
												Average Std.Dev.	0.230	0.281 0.024	0.350 0.000	65.7 5.9	19.4 0.8	32.2 3.2	25	25	11	1.1	12				
											40'-42'	Maximum	0.021	0.024	0.350	82.4	21.1	35.7	25	25	11	1.4	15				Silty Fine Sand
												Minimum	0.193	0.236	0.350	55.2	17.8	24.7	25	25	11	0.9	10				
												Average Std.Dev.	0.248	0.305	0.350	70.9 5.8	204.0 0.9	31.0 2.3	44	44	24	1.2	28				
											45'-47'	Maximum	0.020	0.028	0.000	5.8 81.8	21.8	2.3 35.7	44	44	24	1.4	33				Fine Sand
												Minimum	0.165	0.201	0.350	47.1	16.3	22.4	44	44	24	0.8	19				
												Average Std.Dev.	0.251 0.016	0.315	0.350	71.6 4.7	20.4 0.7	31.1 2.6	38	38	21	1.2	25				
I						1	I		1	I	50'-52'								20	20							Fine Sand
												Maximum	0.279	0.351	0.350	79.7	21.7	34.2	38	38	21	1.3	28				r life Salid

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type Penetration	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM (blows/	Recorded hammer blows	Analyzed hammer blows	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Method							(feet)			(kip-ft)	(kip-ft)	(%)	(kips)	minute)						(%)		(ft)	
											All	Average Std.Dev.		0.388	0.350	84.0 5.3	26.6 0.7	51.3 5.9	169	173	10	1.4	14				
											depths	Maximum	0.334	0.437	0.350	95.4	27.8	58.6	32	34	16	1.6	25	84.0	1.4	48.0	cohesionless soil
								Miller				Minimum Average		0.296	0.350	60.9 71.1	24.8 26.1	33.4 45.9	6 10	6	3	1.0 1.2	3		1		
Automatic Hammer -	CME 75 -	200587	AWJ	4 1/4" HSA with auger	Transtech	John	Shawn	Construction	9/25/2008 9:50	GD-5	10'-12'	Std.Dev.	0.023	0.005	0.000	6.6	0.3	1.0			-						Fine Sand
CME	track			plug		Leonhardt	Kelley	Yard, Windsor, VT				Maximum Minimum		0.312 0.296	0.350	78.8 60.9	26.4 25.4	47.2 44.3	10 10	6 6	5	1.3 1.0	75				
												Average		0.361	0.350	86.3	26.6	55.7	15	21	7	1.4	10				
											15'-17'	Std.Dev. Maximum		0.012	0.000	5.4 95.4	0.4 27.4	1.3 56.7	15	21	7	1.6	11				Fine Sand
												Minimum		0.337	0.350	73.2	25.7	51.8	15	21	7	1.0	9				
												Average		0.380	0.350	83.1 3.4	27.4 0.5	53.4 2.4	20	18	12	1.4	17				
											20'-22'	Std.Dev. Maximum		0.392	0.000	3.4 90.4	27.8	2.4 54.5	20	18	12	1.5	18				Fine to Medium Sand and Gravel
												Minimum		0.341	0.350	74.2	25.7	43.9	20	18	12	1.2	15				
											051 071	Average Std.Dev.		0.375 0.016	0.350	79.0 3.0	25.7 0.6	47.1 6.6	6	8	3	1.3	4				
				n/a							25'-27'	Maximum	0.286	0.392	0.350	81.7	26.6	52.7	6	8	3	1.4	4				Silty Fine Sand
												Minimum	0.259	0.347	0.350	74.0	24.8	33.4	6	8	3	1.2	4		ETR		
																									Average		
											30'-32'	Average Std.Dev.		0.371 0.007	0.350	78.6 1.5	25.9 0.3	42.0 3.4	32	34	16	1.3	21		(>30') (%)		Silty Fine Sand
												Maximum		0.383	0.350	82.5	26.5	45.7	32	34	16	1.4	22		(70)		
												Minimum		0.352	0.350	74.8	25.0	37.4	32	34	16	1.2	20		85.6		
											051 071	Average Std.Dev.		0.406	0.350	86.3 1.2	26.0 0.5	51.8 0.3	24	24	12	1.4	17				
											35'-37'	Maximum		0.413	0.350	88.5	27.0	52.5	24	24	12	1.5	18				Silty Fine Sand
												Minimum Average		0.395	0.350	83.2 88.7	25.3 27.2	51.1 57.7	24 26	24 26	12 13	1.4 1.5	17 19				
											40'-42'	Std.Dev.		0.007	0.000	1.9	0.2	0.4									Silty Fine Sand
												Maximum Minimum		0.431 0.402	0.350	92.1 84.3	27.6 26.8	58.6 57.0	26 26	26 26	13 13	1.5 1.4	20 18				- ,
												Average	0.301	0.400	0.350	85.9	27.0	53.2	25	25	13	1.4	19	1			
											45'-47'	Std.Dev. Maximum		0.005	0.000	1.2 89.9	0.2 27.5	1.0 54.1	25	25	13	1.5	20				Fine Sand
												Minimum		0.390	0.350	83.9	26.4	50.5	25	25	13	1.4	18				
												Average		0.418	0.350	88.6 1.7	26.9 0.4	53.7 1.3	11	11	6	1.5	9				
											50'-52'	Std.Dev. Maximum		0.009	0.000	92.6	27.3	54.7	11	11	6	1.5	9				Fine Sand
												Minimum		0.403	0.350	85.9	26.0	50.6	11	11	6	1.4	9		1		
											All	Average Std.Dev.		0.244	0.350	60.3 10.9	21.9 1.7	55.7 2.3	146	143	15	1.0	15				
											depths	Maximum		0.329	0.350	94.6	24.8	61.7	50	46	27	1.6	43	60.3	1.0	none	cohesionless soil
								Miller				Minimum Average		0.139 0.187	0.350	34.3 57.3	16.5 22.3	48.7 54.4	16 16	16 16	8	0.6	5				
Safety	CME 75 -	200587	AWJ	3 1/4" HSA with auger	Transtech	John	Shawn	Construction	9/25/2008 13:40	GD-6	5'-7'	Std.Dev.	0.023	0.020	0.000	6.5	1.0	1.8									Fine Sand
Hammer	track			plug		Leonhardt	Kelley	Yard, Windsor, VT				Maximum Minimum		0.218 0.156	0.350	67.2 45.2	23.8 20.2	57.1 50.7	16 16	16 16	8	1.1 0.8	9				
												Average		0.235	0.350	66.4	22.6	55.7	25	25	13	1.1	14				
											10'-12'	Std.Dev. Maximum		0.023	0.000	11.3 94.6	1.1 24.7	1.7 58.8	25	25	13	1.6	20	-			Fine Sand
												Minimum		0.163	0.350	46.1	19.4	51.6	25	25	13	0.8	10				
													0.185				20.6	57.4	50	46	27	0.9	24				
											15'-17'	Std.Dev. Maximum		0.044 0.321	0.000	11.2 80.2	1.9 24.8	2.4 61.7	50	46	27	1.3	36	-			Fine to Medium Sand and Gravel
												Minimum		0.139	0.350	34.3	16.5	48.7	50	46	27	0.6	15]			
												Average Std.Dev.		0.283 0.029	0.350	64.6 6.9	22.6 1.2	55.0 1.0	32	34	18	1.1	19				
											20'-22'	Maximum	0.262	0.322	0.350	74.7	24.3	56.5	32	34	18	1.2	22	1			Fine to Medium Sand and Gravel
												Minimum Average		0.203	0.350	45.3 64.8	19.5 22.8	51.4 54.1	32 23	34 22	<u>18</u> 9	0.8	14 10	-			
											25'-27'	Std.Dev.	0.025	0.033	0.000	7.0	1.3	2.1			3			1			Silty Fine Sand
											25-21	Maximum Minimum		0.329 0.173	0.350 0.350	73.0 39.4	24.1 18.0	61.2 50.4	23 23	22 22	9 9	1.2 0.7	11 6	-			Only Fille Sallu
		1	1			L			L		IL	winninun	0.130	0.173	0.000	59.4	10.0	50.4	23	22	J	0.7	0	1			l

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded hammer blows	Analyzed hammer blows	N	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
												Average	0.282	0.351	0.350	80.6	25.0	53.5	248	240	14	1.3	19				
											All	Std.Dev.	0.014	0.019	0.000	3.9	0.9	1.9						80.6	1.3	50.0	cohesionless soil
											depths	Maximum	0.323	0.391	0.350	92.4	26.5	55.0	41	41	22	1.5	34	00.0	1.5	50.0	concatorileas aon
												Minimum	0.230	0.282	0.350	65.6	22.8	26.7	14	6	7	1.1	8				
Automatic				3 1/4" HSA				Miller				Average	0.257	0.302	0.350	73.5	25.8	53.6	14	6	7	1.2	9				
Hammer -	CME 45C	306614	AWJ	with auger	Vtrans	Glenn Porter	Shawn	Construction	9/26/2008 9:00	GD-7	10'-12'	Std.Dev.	0.018	0.011	0.000	5.2	0.4	0.8									Fine to Medium Sand and Grave
CME	Track	000011	/	plug	, traine		Kelley	Yard, Windsor,	0/20/2000 0.00	00.	10 12	Maximum	0.283	0.318	0.350	81.0	26.4	54.5	14	6	7	1.3	9				
				P**5				VT				Minimum	0.230	0.282	0.350	65.6	25.0	52.3	14	6	7	1.1	8				
												Average	0.292	0.324	0.350	83.4	25.1	52.8	41	41	22	1.4	31				
											15'-17'	Std.Dev.	0.010	0.007	0.000	2.8	0.6	4.3									Fine to Medium Sand and Grave
											10 17	Maximum	0.313	0.340	0.350	89.4	26.2	55.0	41	41	22	1.5	33				
												Minimum	0.267	0.309	0.350	76.3	23.8	26.7	41	41	22	1.3	28				
												Average	0.295	0.354	0.350	84.3	24.1	53.5	33	32	16	1.4	22				
											20'-22'	Std.Dev.	0.015	0.006	0.000	4.2	1.0	0.8									Fine to Medium Sand and Grave
											20-22	Maximum	0.323	0.368	0.350	92.4	26.2	54.2	33	32	16	1.5	25				The to median band and blaw
												Minimum	0.270	0.342	0.350	77.0	22.9	49.7	33	32	16	1.3	21				
												Average	0.271	0.361	0.350	77.5	25.7	53.7	33	32	20	1.3	26				
											25'-27'	Std.Dev.	0.006	0.006	0.000	1.6	0.4	0.3									Fine to Medium Sand and Grave
											23-21	Maximum	0.280	0.375	0.350	80.0	26.4	54.5	33	32	20	1.3	27				The to Medium Sand and Grave
												Minimum	0.260	0.347	0.350	74.4	25.0	53.2	33	32	20	1.2	25				
											30'-32'	Average	0.275	0.361	0.350	78.6	24.9	53.6	16	16	8	1.3	10		ETR Average (>30')		Silty Fine Sand
												Std.Dev.	0.006	0.007	0.000	1.8	0.3	0.4							(%)		,
												Maximum	0.287	0.374	0.350	81.9	25.6	54.1	16	16	8	1.4	11				
												Minimum	0.263	0.348	0.350	75.0	24.4	52.6	16	16	8	1.3	10		80.2		
												Average	0.283	0.369	0.350	80.8	25.7	53.8	21	21	11	1.3	15				
											35'-37'	Std.Dev.	0.005	0.007	0.000	1.5	0.4	0.4									Silty Fine Sand
											00 0.	Maximum	0.294	0.391	0.350	84.0	26.3	54.6	21	21	11	1.4	15				City I nie Cana
												Minimum	0.273	0.358	0.350	78.0	25.0	53.2	21	21	11	1.3	14				
												Average	0.291	0.376	0.350	83.1	26.0	53.8	18	19	9	1.4	12				
											40'-42'	Std.Dev.	0.005	0.006	0.000	1.5	0.3	0.4									Silty Fine Sand
											10 12	Maximum	0.302	0.385	0.350	86.4	26.5	54.5	18	19	9	1.4	13				City I nie Cana
												Minimum	0.281	0.363	0.350	80.4	25.2	52.7	18	19	9	1.3	12				
												Average	0.270	0.345	0.350	77.2	25.0	53.6	36	37	20	1.3	26				
											45'-47'	Std.Dev.	0.007	0.009	0.000	2.1	0.5	0.3									Silty Fine Sand
												Maximum	0.285	0.366	0.350	81.4	26.2	54.3	36	37	20	1.4	27				Only I me Gand
												Minimum	0.256	0.329	0.350	73.1	24.3	52.9	36	37	20	1.2	24				
												Average	0.284	0.354	0.350	81.1	24.1	53.6	36	36	17	1.4	23				
											E0' E0'	Std.Dev.	0.008	0.008	0.000	2.3	0.7	0.5									Fine Sand
											50'-52'	Maximum	0.296	0.374	0.350	84.7	25.8	54.6	36	36	17	1.4	24				Fine Sand
			1			1	I				ll	Minimum	0.268	0.336	0.350	76.5	22.8	52.7	36	36	17	1.3	22				

Normal USA USA <thusa< th=""> <thusa< t<="" th=""><th>Hammer Type</th><th>Drill Rig</th><th>Serial #</th><th>Rod type</th><th>Borehole Type</th><th>Owner</th><th>Hammer Operator</th><th>Testing Engineer</th><th>Location of Boring</th><th>Date and Start Time</th><th>Boring</th><th>Sample Depth</th><th></th><th>EMX</th><th>EF2</th><th>ER</th><th>ETR</th><th>FMX</th><th>BPM</th><th>Recorded hammer blows</th><th>Analyzed hammer blows</th><th>Ν</th><th>Cn</th><th>N60</th><th>ETR Average</th><th>Cn Average</th><th>Depth to H₂O</th><th>Soil Description</th></thusa<></thusa<>	Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded hammer blows	Analyzed hammer blows	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
Ansmin Op: No. Set 15 or Set 16 or Set 16 or Set 16 or <td></td> <td>(feet)</td> <td></td> <td>(kip-ft)</td> <td>(kip-ft)</td> <td>(kip-ft)</td> <td>(%)</td> <td>(kips)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(%)</td> <td></td> <td>(ft)</td> <td></td>												(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)							(%)		(ft)	
Muchang Negret Much Sub-sec Six-sec Sub-sec Six-sec Sub-se													Average	0.284	0.338	0.350	81.1	40.3	51.7	265	176	13	1.4	17				
Number R Number R <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>All</td><td>Std.Dev.</td><td>0.020</td><td>0.025</td><td>0.000</td><td>5.8</td><td>0.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>81.1</td><td>11</td><td>40.0</td><td>cohesionless soil</td></th<>												All	Std.Dev.	0.020	0.025	0.000	5.8	0.9							81.1	11	40.0	cohesionless soil
Akternet CR Mer Null Mile Net Sup Null Mile Net Sup Null Null Sup Sup Null Null Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup												depths	Maximum							45	37	22	1.6	34	01.1	1.4	40.0	corresioniess son
Nume Out Out <td></td> <td>Minimum</td> <td>0.204</td> <td></td> <td></td> <td>58.4</td> <td>37.6</td> <td></td> <td>9</td> <td>2</td> <td>5</td> <td>1.0</td> <td>5</td> <td></td> <td></td> <td></td> <td></td>													Minimum	0.204			58.4	37.6		9	2	5	1.0	5				
Larner MAR So MAR So MAR So	Automatic				3 1/4" HSA				Miller				Average	0.238	0.254	0.350	67.9	39.6	52.3	9	9	5	1.1	6				
DE Ind pla Key Party math Value Val			306614	NW.1		Vtrans	Glenn Porter	-		9/26/2008 12:05	GD-8	5'-7'																Fine Sand
No <		Track	000014	11110		vitano	Cicilit i ontoi	Kelley		0/20/2000 12:00	000	0 /								, v	9	0						
1 Suber 0.012 0.000	02				plug				VT				Minimum									5						
1 10 ⁻¹² Maximum 0.231 0.232 0.200 0.82 1.16 6.44 17 1.64 9 1.3 1.2 10 ⁻¹² Maximum 0.231 0.232 0.200 0.800 6.02 1.16 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9 1.3 1.2 1.6 9.0 9.0 9.0 1.3 1.2 1.6 9 1.3 1.2 1.6 9.0 1.3 1.2 1.6 1.6 1.6 1.0 1.2 1.7 1.3 2.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17</td><td>14</td><td>9</td><td>1.2</td><td>11</td><td></td><td></td><td></td><td></td></t<>																				17	14	9	1.2	11				
Image: Section 10 (1) Image: Section 10 (2)												10'-12'																Fine to Medium Sand and Gravel
Particle Average 0.293 0.300 43.6 39.9 51.6 32.0 1.7 1.4 2.4 15 1-17 SULDev. 0.061 0.050 4.7 9.9 2.4 -																		-	-			÷	-					
15:17 Sal Der. 0.016 0.000 0.000 4.7 0.9 2.4 1 <													-									-						
10-17 Maximum 0.350 9.33 41.8 52.8 33 3.2 17 1.6 20 Minimum 0.280 0.350 7.69 37.6 40.1 33 32 17 1.6 20 20:22 St.10 0.350 7.77 30.9 53.5 37 37 18 1.3 24 20:22 St.10 0.350 7.77 30.9 53.5 37 37 18 1.3 24 20:22 St.10 0.050 0.00 1.8 0.7 0.4 1.7 1.8 1.3 22 1.3 20 Minimum 0.237 0.330 0.350 65.4 1.8 2.2 1.3 20 2.1 3.2 2.1 3.2 1.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>33</td><td>32</td><td>17</td><td>1.4</td><td>24</td><td></td><td></td><td></td><td></td></td<>																				33	32	17	1.4	24				
Image: Section 10.500 0.50												15'-17'	0.0.0															Fine to Medium Sand and Gravel
Average 0.273 0.346 0.580 70.7 3.9 3.7 1.8 1.3 2.4 Maximum 0.300 0.387 0.380 0.86 4.0 6.42 37 37 1.8 1.4 2.8 Maximum 0.300 0.387 0.380 0.58 4.0.9 4.5 1.8 2.2 1.4 3.3 2.2 2:2:2: State 0.387 0.380 0.380 0.380 0.38 0.380 1.8 0.2 1.8 2.2 1.4 3.3 2:2:2:1: State 0.380 0.380 0.85 4.1.9 5.4.8 4.5 1.6 2.2 1.4 1.3 2.3 3:0:2: 0.380 0.380 0.854 4.1.3 5.3 2.0 2.0 9 1.4 1.3 1.3 2.3 3.5 0.3 1.4 1.3 3.4 2.4 1.3 2.3 3.5 0.3 1.4 1.4 1.4 1.3 1.4 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>																		-					-		-			
Price 0.006 0.008 0.008 0.008 0.000 1.8 0.7 0.4 -													-								-		_					
1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1																	-			37	37	18	1.3	24	_			
Image: Second												20'-22'					-	-	-	07	07	10		00	-			Fine to Medium Sand and Gravel
Prime Average 0.22 0.38 0.300 83.3 40.2 40.9 45 18 22 1.4 31 25'27 Minimum 0.307 0.357 0.350 67.8 41.9 54.8 45 18 22 1.5 32 Minimum 0.307 0.357 0.350 67.8 41.9 54.8 45 18 22 1.5 32 Minimum 0.297 0.321 0.306 77.9 84.4 45 18 22 1.3 29 Minimum 0.290 0.354 0.300 70.3 7.3 20 20 9 1.4 13 Minimum 0.308 0.300 0.300 0.300 0.300 1.3 20 20 9 1.5 13 Maximum 0.308 0.309 0.300 0.300 0.300 1.4 1.4 14 14 14 14 14 14 14 14 14<														-							-	-			-			
Std Dev. 0.006 0.000 1.8 0.8 1.0 - <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>													-								_			-				
1 1																				45	18	22	1.4	31	-			
Image: Second												25'-27'					-			45	10	22	1 5	22	-			Fine to Medium Sand and Gravel
30:32 Average 0.29 0.354 0.350 85.4 41.3 53.9 20 20 9 1.4 13 Maximum 0.308 0.360 0.350 85.1 42.7 54.3 20 20 9 1.4 13 Minimum 0.288 0.355 0.350 85.1 42.7 54.3 20 20 9 1.4 12 Average 0.285 0.350 85.1 42.2 30.4 53.4 20 20 9 1.4 12 Minimum 0.288 0.355 0.350 82.2 30.4 53.4 20 20 9 1.4 14 Minimum 0.288 0.355 0.350 82.4 20.2 20 10 1.4 14 Minimum 0.286 0.350 13.8 30.3 7.4 20 20 10 1.4 14 Minimum 0.286 0.350 81.8 39.3 37.4 20 20 10 1.4 14 Minimum 0.286 0.350 74.2 20.1 1.4 14 14 Minimum 0.286 0.350 74.2 20.4 24																		-							-			
1 1 Average 0.29 0.354 0.350 85.4 41.3 53.9 20 20 9 1.4 13 13 14 14 15 14 14 15 14 14 15 14 <td></td> <td>Withinfurn</td> <td>0.219</td> <td>0.321</td> <td>0.330</td> <td>19.1</td> <td>30.4</td> <td>20.0</td> <td>43</td> <td>10</td> <td>22</td> <td>1.3</td> <td>29</td> <td></td> <td>ETD</td> <td>٦</td> <td></td>													Withinfurn	0.219	0.321	0.330	19.1	30.4	20.0	43	10	22	1.3	29		ETD	٦	
30-32 Average 0.299 0.354 0.350 85.4 41.3 5.9 2.0 9 1.4 13 (30)																												
Site													Average	0 200	0 354	0 350	85.4	/13	53.0	20	20	٥	1.4	13		-		
Maximum 0.308 0.360 0.360 88.1 42.7 54.3 20 20 9 1.5 13 Minimum 0.288 0.336 0.360 82.2 39.4 53.4 20 20 9 1.4 12 Maximum 0.288 0.356 0.350 84.2 40.5 53.4 20 20 10 1.4 12 SidDev. 0.004 0.003 0.000 1.1 1.6 3.3 -<												30'-32'								20	20	9	1.4	13	-			Silty Fine Sand
Minimum 0.288 0.335 0.350 82.2 39.4 53.4 20 20 9 1.4 12 Average 0.295 0.355 0.350 0.42.5 31.5 20 20 10 1.4 12 35'37' 35'37' 35'30' 0.350 0.40.5 51.5 20 20 10 1.4 14 40'42' Maximum 0.301 0.350 86.0 41.5 52.7 20 20 10 1.4 14 40'42' Average 0.290 0.357 0.350 82.9 40.6 53.5 24 24 10 1.4 14 40'42' Average 0.290 0.357 0.350 82.9 40.6 53.5 24 24 10 1.5 15 40'42' Minimum 0.280 0.350 74.2 39.1 53.1 24 24 10 1.2 18 45'47' ** 0.013 0.0																		-		20	20	q	15	13	-	(70)		
Average 0.295 0.355 0.350 84.2 40.5 51.5 20 20 10 1.4 14 St-37 Maillow 0.003 0.003 0.003 1.0 0.6 3.3 - <td></td> <td>-</td> <td>-</td> <td>Ų</td> <td>-</td> <td></td> <td></td> <td>84.2</td> <td></td> <td></td>																				-	-	Ų	-			84.2		
$\frac{36^{-37}}{40^{-42}} + \frac{36^{-37}}{40^{-42}} + \frac{36^{-37}}{40^{-4}} + $																										04.2		
35-37 Maximum 0.301 0.361 0.360 86.0 41.5 52.7 20 20 10 1.4 14 Minimum 0.286 0.350 81.8 39.3 37.4 20 20 10 1.4 14 Minimum 0.286 0.350 81.8 39.3 37.4 20 20 10 1.4 14 40'-42' Minimum 0.286 0.350 81.8 39.3 37.4 20 20 10 1.4 14 40'-42' Minimum 0.280 0.350 81.8 39.3 37.4 20 20 10 1.4 14 40'-42' Minimum 0.280 0.350 74.2 34.0 53.1 24 24 10 1.2 15 15 16 1.1 18 Sity Fine Sand 45'-47'** Average 0.238 0.350 68.2 40.6 52.5 31 2 16 1.1 18 Fine Sand blows Minimum 0.227 0.360 0.350														-						20	20	10	1.4	14	-			
Minimum 0.286 0.350 81.8 39.3 37.4 20 20 10 1.4 14 40'42' Average 0.290 0.357 0.350 82.9 40.6 53.5 24 24 10 1.4 14 40'42' Std.Dev 0.319 0.357 0.350 82.9 40.6 53.5 24 24 10 1.4 14 Muimum 0.319 0.377 0.300 37.7 1.0 0.2 10 1.4 14 Muimum 0.319 0.372 0.350 91.2 42.0 54.0 24 10 1.5 15 Minimum 0.260 0.349 0.350 68.2 40.6 52.5 31 24 24 10 1.2 12 45'-47'** Average 0.236 0.360 68.2 40.6 52.5 31 2 6 1.1 12 blow Minimum 0.227 0.360												35'-37'	-							20	20	10	14	14				Silty Fine Sand
Average 0.290 0.357 0.350 82.9 40.6 53.5 24 24 10 1.4 14 40'-42' Std.Dev. 0.013 0.007 0.000 3.7 1.0 0.2																		-			-	-			-			
40°-42' Std.Dev. 0.013 0.007 0.000 3.7 1.0 0.2 Image: Constraint of the second sec													Average						53.5			10		14				
40-42 Maximum 0.319 0.372 0.360 91.2 42.0 54.0 24 24 10 1.5 15 Minimum 0.260 0.349 0.350 74.2 39.1 53.1 24 24 10 1.2 12 45'-47'** Minimum 0.260 0.349 0.350 74.2 39.1 53.1 24 24 10 1.2 12 45'-47'** One One 0.011 0.004 0.000 3.3 0.1 2 16 1.1 16 1.2 19 Maximum 0.250 0.350 0.350 71.5 40.8 52.5 31 16 1.1 17 Maximum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.1 17 Minimum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.1 17 Minimum 0.227 0.342 0.350 29 15 15 15 15 15 1																						10						
Minimum 0.260 0.349 0.350 74.2 39.1 53.1 24 24 10 1.2 12 45'-47'** Average 0.238 0.346 0.350 68.2 40.6 52.5 31 2 16 1.1 18 45'-47'** Average 0.238 0.346 0.350 68.2 40.6 52.5 31 2 16 1.1 18 6n/y 2 blows Minimum 0.227 0.350 71.5 40.8 52.5 31 16 1.2 19 Mainimum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.1 17 Mainimum 0.527 51.40.8 52.5 31 16 1.1 17 Mainimum 0.527 0.350 52.5 31 16 1.1 17 Mainimum 0.50'.52'** Std.Dev. 0.000 29 15 5 5 5 5 5 5 5 5 5 5 5 5 5												40'-42'					-	-		24	24	10	1.5	15				Silty Fine Sand
45-47 Std. Dev. 0.011 0.004 0.000 3.3 0.1 0.0 2																	-	-				-						
45-47 Std. Dev. 0.011 0.004 0.000 3.3 0.1 0.0 2													Average									16			1			
Only 2 blow Maximum 0.250 0.350 71.5 40.8 52.5 31 16 1.2 19 Maximum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.2 19 Maximum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.1 17 Aiverage 0.350 0 29 15 16 15 16 15 16 19 16 17 16 16 16 16													-	-											1			Et a t
Minimum 0.227 0.342 0.350 64.9 40.5 52.5 31 16 1.1 17 Average 0.350 29 15 50.521*** 51.0 50.521*** 51.0 51.5																		40.8		31		16	1.2	19	1			Fine Sand
50/52** Std.Dev. 0.000 Eine Sand												DIOWS	Minimum	0.227	0.342	0.350	64.9	40.5	52.5	31		16	1.1	17	1			
50°.52° ** ••••••													Average			0.350				29		15			1			
JU-92 Maximum 0.350 29 15 Fine Sand												EO' EO' **	Std.Dev.			0.000				1					1			Fine Sond
												30-52°™	Maximum			0.350				29		15]			Fine Sand
Minimum 0.350 29 15													Minimum			0.350				29		15						


Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded hammer blows	Analyzed hammer blows	Ν	Cn	N60	ETR Average	Cn Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
				1	1	1					()	Average	0.168	0.197	0.350	48.1	18.3	46.1	459	354	25	0.8	20	(,,,)		()	
											All	Std.Dev.	0.020	0.028	0.000	5.7	0.9	2.7			20	0.0	20	40.4		50.0	
											depths	Maximum	0.220	0.255	0.350	62.9	20.6	53.3	85	81	52	1.0	54	48.1	0.8	50.0	cohesionless soil
												Minimum	0.112	0.109	0.350	32.0	15.2	38.3	16	6	9	0.5	5				
Safety				4 1/4" HSA	Specialty			Miller				Average	0.135	0.120	0.350	38.5	17.0	41.7	16	14	9	0.6	6				
Driver	Simco		AWJ	with auger	Drilling &	Chris Aldrich	Shawn	Construction	9/29/2008 9:45	GD-9	5'-7'	Std.Dev.	0.014	0.009	0.000	4.0	1.0	2.3									Fine Sand
lammer -	2800			plug	Investigation		Kelley	Yard, Windsor,				Maximum	0.167	0.145	0.350	47.6	19.5	45.4	16	14	9	0.8	7	-			
Mobile								VT				Minimum	0.112	0.109	0.350	32.0 46.4	15.7 18.1	38.3 45.1	16 20	14 20	9	0.5	5	-			
												Average Std.Dev.	0.162	0.156	0.350	46.4	0.7	45.1	20	20	9	0.8	/	-			
											10'-12'	Maximum	0.020	0.013	0.350	62.4	19.3	48.5	20	20	9	1.0	9	-			Fine Sand
												Minimum	0.115	0.131	0.350	33.0	17.1	42.5	20	20	9	0.5	5				
												Average	0.182	0.177	0.350	51.9	18.2	44.0	56	58	29	0.9	25				
	Std.Dev. 0.018 0.016 0.000 5.0 1.2 2.0 Image: Constraint of the state of the															Fine to Modium Cond and Cr											
	15-17 Maximum 0.211 0.208 0.350 60.2 20.3 48.2 56 58 29 1.0 29 Minimum 0.145 0.140 0.350 41.5 15.2 39.9 56 58 29 0.7 20 Average 0.170 0.203 0.350 48.4 18.6 47.7 56 57 31 0.8 25															Fine to Medium Sand and G											
	Maximum 0.211 0.208 0.350 60.2 20.3 48.2 56 58 29 1.0 29 Minimum 0.145 0.140 0.350 41.5 15.2 39.9 56 58 29 0.7 20 Average 0.170 0.020 0.350 48.4 1.6 47.7 56 57 31 0.8 25 20.227 Std.Dev. 0.017 0.000 4.8 1.0 1.8 Fine																										
	Minimum 0.145 0.140 0.350 41.5 15.2 39.9 56 58 29 0.7 20 Average 0.170 0.203 0.350 48.4 18.6 47.7 56 57 31 0.8 25 Std.Dev. 0.017 0.017 0.000 4.8 1.0 1.8 Image: Colspan="4">Image: Colspan="4">Transpan="4">Transpan="4">Transpan="4">Transpan="4">Transpan="4">Transpan="4">Transpan="4" 58.4 20.6 53.3 56 57 31 1.0 30																										
	Minimum 0.145 0.140 0.350 41.5 15.2 39.9 56 58 29 0.7 20 Average 0.170 0.203 0.350 48.4 18.6 47.7 56 57 31 0.8 25 20'-22' Std.Dev 0.017 0.017 0.000 4.8 1.0 1.8 Fine Minimum 0.204 0.239 0.350 36.2 16.5 44.4 56 57 31 0.6 19															Fine to Medium Sand and G											
	$ \frac{\text{Average}}{\text{Std.Dev.}} \frac{\text{Average}}{\text{Naimum}} \frac{\text{O}.170}{\text{O}.017} \frac{\text{O}.203}{\text{O}.017} \frac{\text{O}.350}{\text{O}.017} \frac{\text{48.4}}{\text{18.6}} \frac{\text{48.7}}{\text{47.7}} \frac{\text{56}}{\text{56}} \frac{\text{57}}{\text{31}} \frac{\text{31}}{\text{O}.8} \frac{\text{25}}{\text{25}} \\ \frac{\text{Std.Dev.}}{\text{Maximum}} \frac{\text{O}.017}{\text{O}.017} \frac{\text{O}.017}{\text{O}.017} \frac{\text{O}.030}{\text{A}.8} \frac{\text{48.4}}{\text{10}} \frac{\text{18.6}}{\text{1.8}} \frac{\text{47.7}}{\text{56}} \frac{\text{56}}{\text{57}} \frac{\text{31}}{\text{31}} \frac{\text{O}.8}{\text{50}} \frac{\text{25}}{\text{57}} \\ \frac{\text{Average}}{\text{Maximum}} \frac{\text{O}.24}{\text{O}.249} \frac{\text{O}.350}{\text{O}.350} \frac{\text{58.4}}{\text{56}} \frac{\text{26.6}}{\text{57}} \frac{\text{57}}{\text{31}} \frac{\text{10}}{\text{1.6}} \frac{\text{10}}{\text{56}} \\ \frac{\text{Average}}{\text{Average}} \frac{\text{O}.156}{\text{O}.196} \frac{\text{O}.350}{\text{O}.350} \frac{\text{44.4}}{\text{44.5}} \frac{\text{48.6}}{\text{85}} \frac{\text{81}}{\text{52}} \frac{\text{52}}{\text{O}.7} \frac{\text{39}}{\text{39}} \\ \end{array} $																										
												-									-		-	-			
												. · · · ·							65	81	52	0.7	39	-			
											25'-27'								85	81	52	0.9	49	-			Fine to Medium Sand and G
	Minimum 0.127 0.159 0.350 36.2 16.5 44.4 56 57 31 0.6 19 Average 0.156 0.196 0.350 44.5 18.1 48.6 85 81 52 0.7 39 25'-27' Std.Dev. 0.012 0.000 3.4 0.6 1.8																										
	$\frac{A \text{ verage}}{S\text{ id} \text{ Dev.}} = 0.156 & 0.196 & 0.350 & 44.5 & 18.1 & 48.6 & 85 & 81 & 52 & 0.7 & 39 \\ \hline \frac{A \text{ verage}}{S\text{ id} \text{ Dev.}} & 0.012 & 0.012 & 0.000 & 3.4 & 0.6 & 1.8 & & & & & & & & & & & & & & & & & & &$														Silty Fine Sand												
																								_	= 1 0		
												Average	0.156	0.202	0.350	44.6	17.3	47.3	28	27	14		10 18	-	51.0		
												Std.Dev.	0.174	0.221	0.350	49.9 3.0	0.7	47.3	39	39	22	0.8	18	-			
											35'-37'	Maximum	0.203	0.246	0.350	58.0	19.7	51.9	39	39	22	1.0	21				Silty Fine Sand
												Minimum	0.156	0.194	0.350	44.6	16.4	43.9	39	39	22	0.7	16	-			
												Average	0.169	0.215	0.350	48.2	18.2	44.9	51	52	27	0.8	22				
											40'-42'	Std.Dev.	0.017	0.020	0.000	4.7	0.9	1.8									Silty Fine Sand
											40-42	Maximum	0.219	0.255	0.350	62.6	19.8	49.8	51	52	27	1.0	28				Sitty Fille Salid
												Minimum	0.131	0.168	0.350	37.5	16.2	39.9	51	52	27	0.6	17				
											45'-47' **	Average	0.191	0.231	0.350	54.4	18.9	47.0	55	6	32	0.9	29				
											only 6	Std.Dev.	0.024	0.009	0.000	6.8	0.5	1.5						-			Silty Fine Sand
											blows	Maximum Minimum	0.219	0.244	0.350	62.6 40.5	19.5 18.0	49.6	55	6	32	1.0 0.7	33 22	-			
												Average	0.142	0.218	0.350	40.5	18.0	45.3	55 53	6	26	0.7	22	-			
												Std.Dev.			0.000				55		20			-			
											50'-52' **	Maximum			0.350				53		26			-			Silty Fine Sand
												Minimum			0.350				53		26						
	EF2 (kip-ft) ER (kip-ft) ETR (%) = FMX (kips) BPM (blow N = the nur) = the ene = 0.35 kip- EMX/ER, = the force s / minute) mber of blo	rgy delivered ft, the theore energy trans e delivered t = the opera w counts re	by the hamm etical free hall I fer ratio, the e by the hammer ting rate of the quired to drive	er to the top of nammer energy fficiency of the hammer in blo the SPT samp	the drill string for the SPT h hammer as ca ows per minute ler over the de	as determin nammers Iculated by t pth interval	ned by the EMX n ned by the F-squa the SPT Analyzer of 6 inches to 18 iciency of 60 per	red method inches for an 24-inch	n sampling e	total blow	ation data erra <mark>s</mark>	atic														

 $C_{\eta} = \{(ETR / 0.60)\} = \{EMX / (0.60 \times ER)\} = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain N_{60} / N) = \{(N_{60} / N) \times 60\}, \text{ the adjustment factor by which the N-$

Pile Driving Analyzer ®

GD-2

Project Information

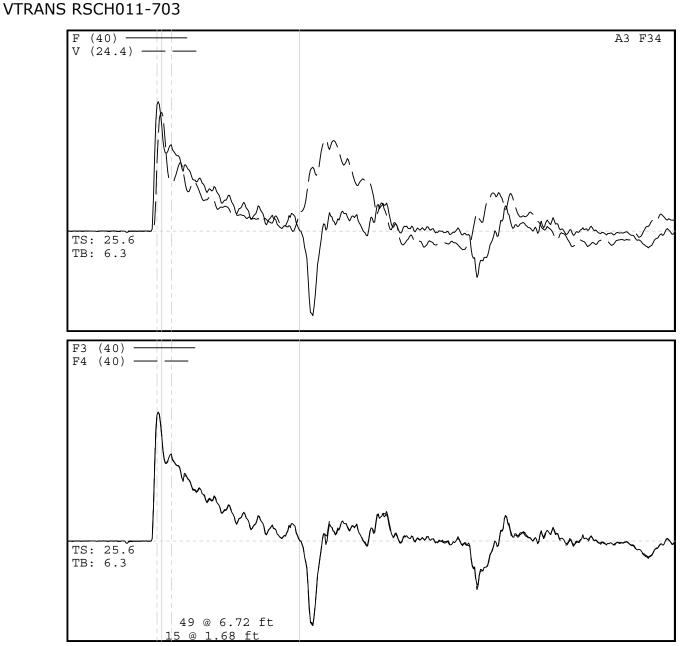
PROJECT: VTRANS RSCH011-703 PILE NAME: GD-2 DESCR: 2 INCH SS;CME-45C;VTRANS OPERATOR: SPK FILE: GD-2ALL 9/23/2008 1:22:40 PM Blow Number 1

Pile Properties

LE 13.83 ft AR 0.92 in^2 EΜ 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 1.65 ms JC 0.00 [] LP 10.00 ft

Quantity Results

EMX 0.2 k-ft EF2 0.3 k-ft ER 0.4 k-ft ETR 57.0 (%) FMX 24 kips VMX 15.5 f/s DMX 1.89 in DFN 1.89 in BPM 0.0 bpm


<u>Sensors</u>

F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.04 V1/V2: USE 2 ACCELS

Pile Driving Analyzer ®

GD-2

Project Information

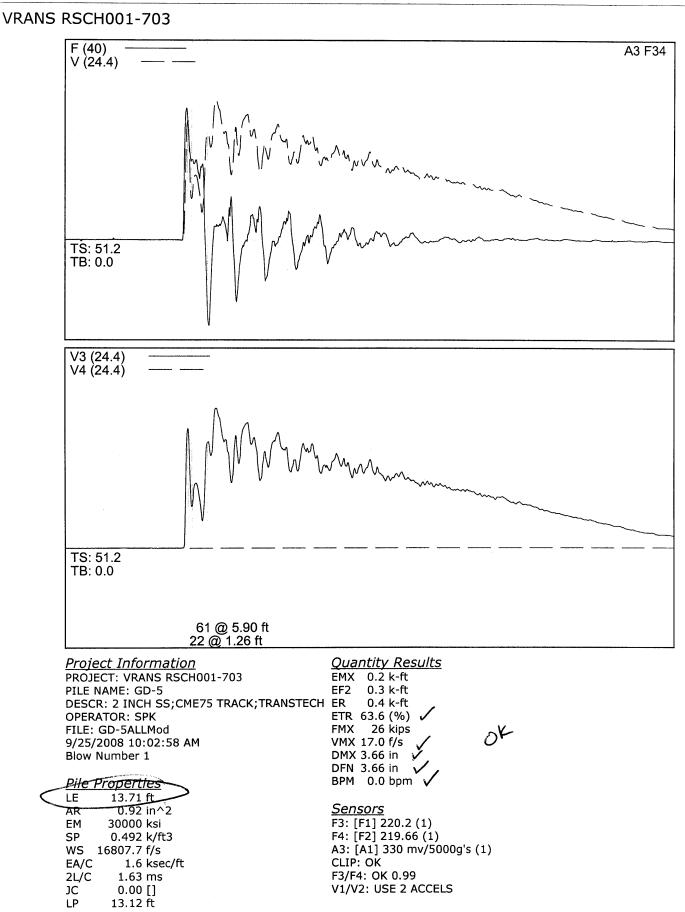
PROJECT: VTRANS RSCH011-703 PILE NAME: GD-2 DESCR: 2 INCH SS;CME-45C;VTRANS OPERATOR: SPK FILE: GD-2ALL 9/24/2008 11:38:39 AM Blow Number 23/186

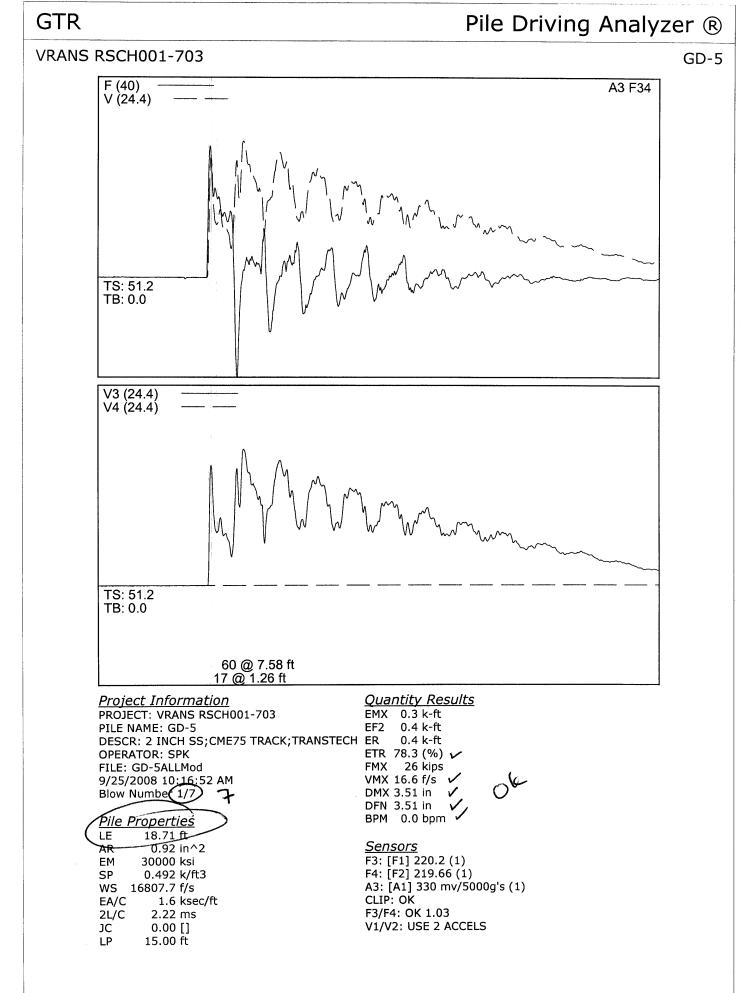
Pile Properties

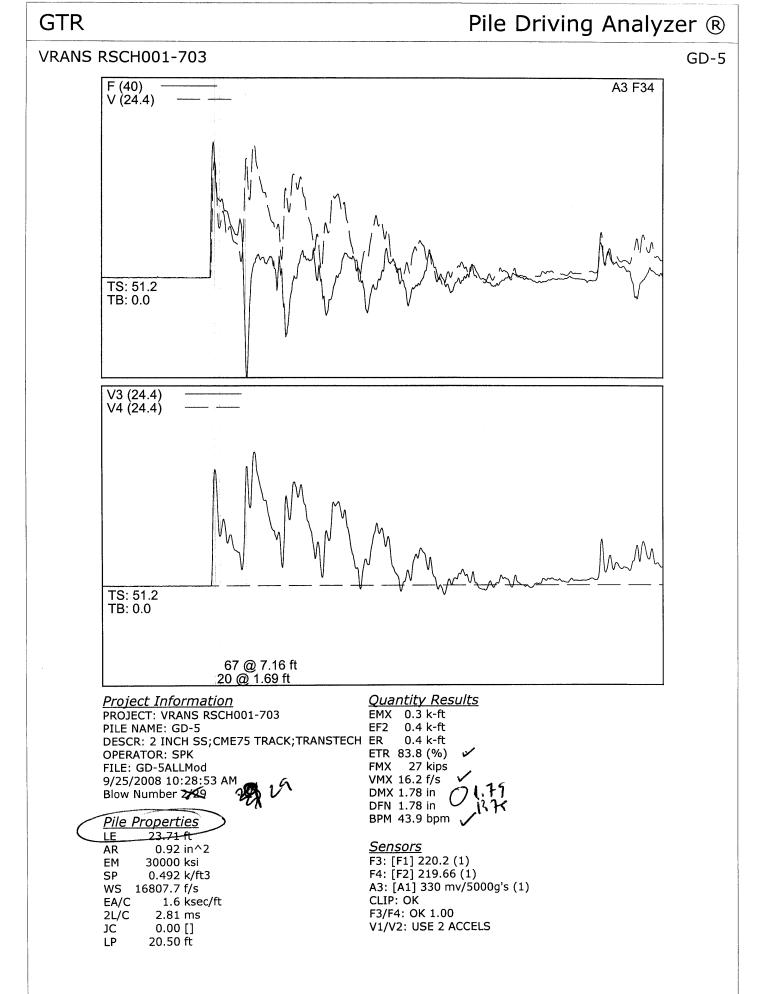
LE 48.83 ft AR 0.92 in^2 EΜ 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 5.81 ms JC 0.00 [] LP 46.50 ft

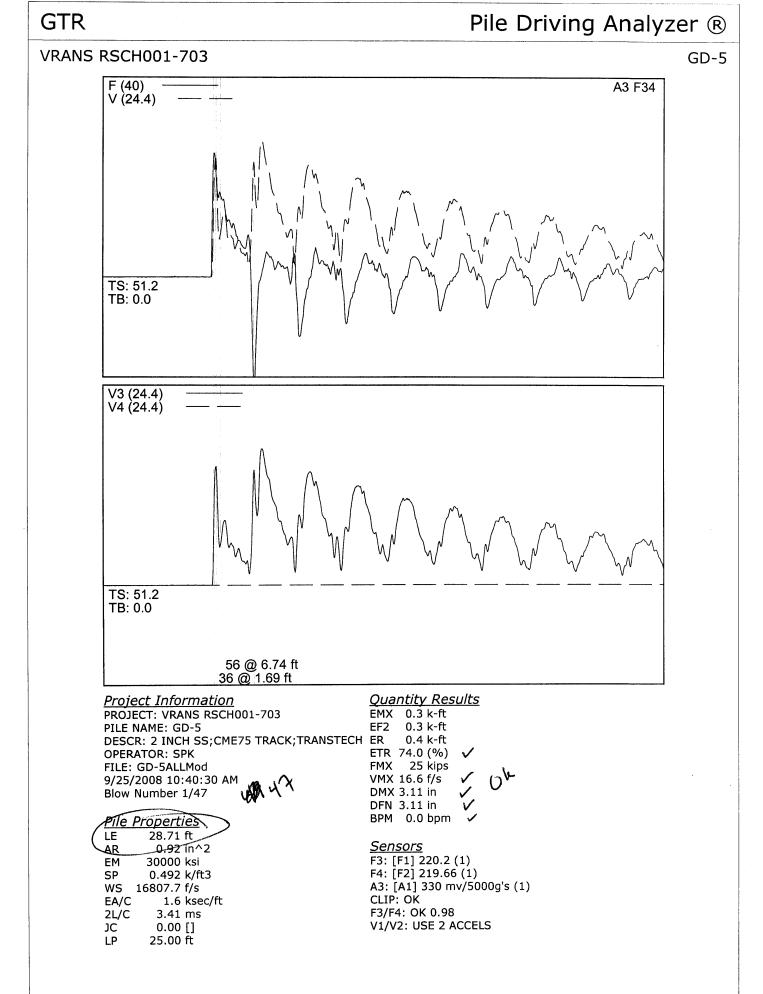
Quantity Results

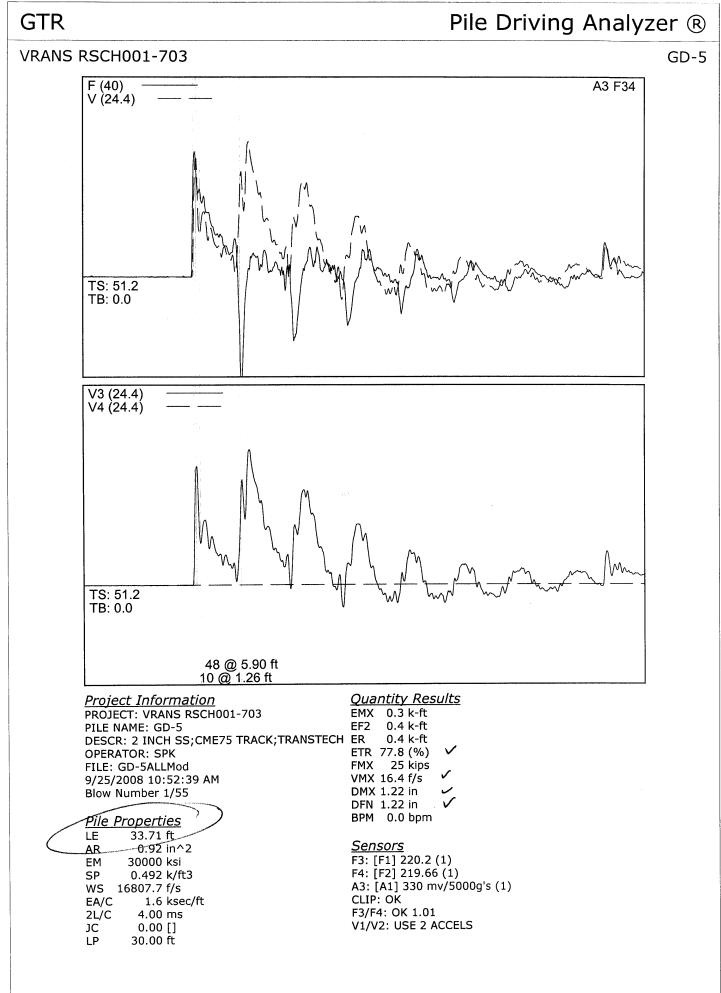
EMX 0.3 k-ft EF2 0.4 k-ft ER 0.4 k-ft ETR 79.2 (%) FMX 26 kips VMX 14.3 f/s DMX 0.73 in DFN 0.73 in BPM 57.7 bpm

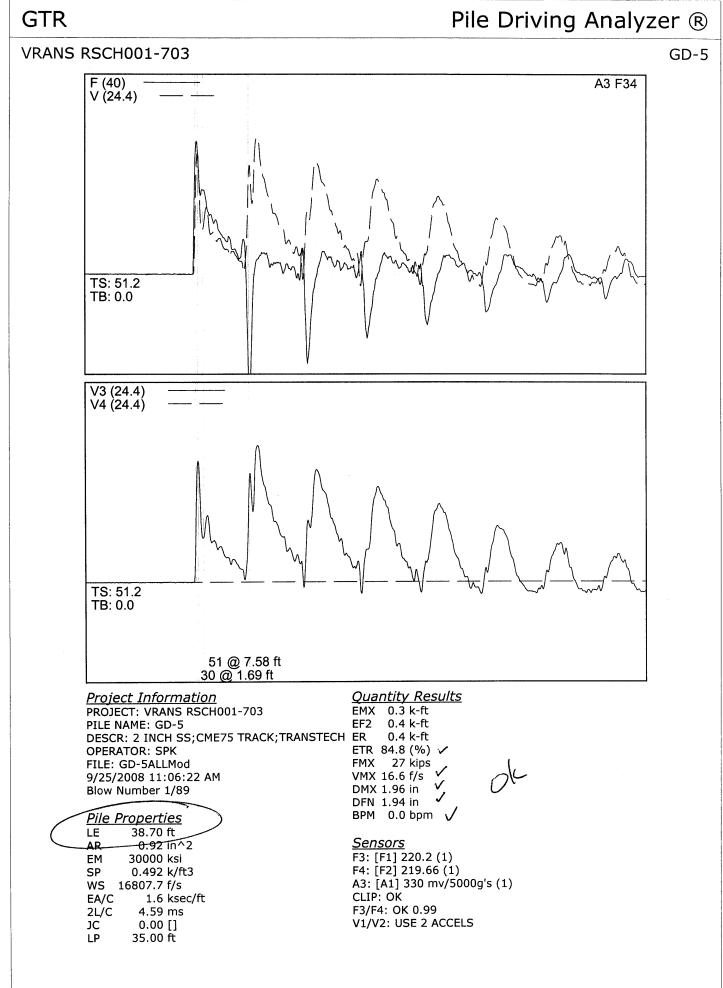

<u>Sensors</u>

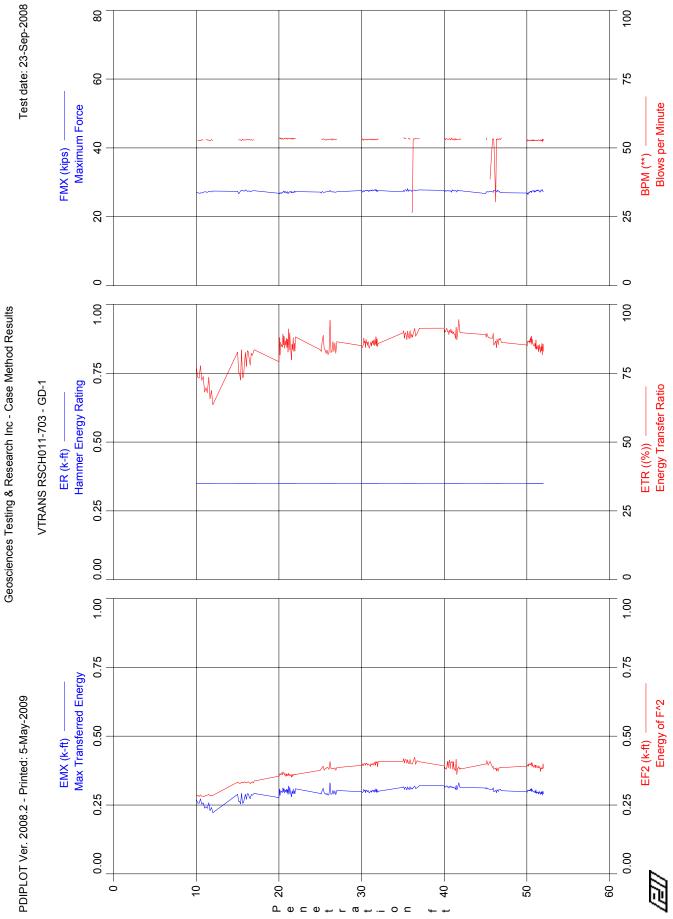

F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.01 V1/V2: USE 2 ACCELS




Pile Driving Analyzer


G





Version 2008.098.043

APPENDIX 8 – PDI PLOT OUTPUT DATA AND PLOTS

	ciences Testing Method Results		Inc				PDIPLO	T Ver. 200	Pa .2 - Printed: 2-	age 1 of 1 Apr-2009
VTRA OP: S	NS RSCH011-	703 - GD-1					2	INCH SS;	CME-55 AUTO; Test date: 23-	
	0.92 in^2 53.75 ft 16,807.7 f/s								SP: 0 EM: 30	.492 k/ft3 ,000 ksi 0.00
EF2: ER: ETR:	Max Transferre Energy of F ² Hammer Energy Energy Transfer Maximum Forc	gy Rating er Ratio						DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Minu	lacement nent
Statis	tics for entire file	e (215 blows))							
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average	0.297	0.377	0.350	85.0	27.4	16.1	0.99	0.93	52.6
	Std. Dev.	0.017	0.032	0.001	4.9	0.3	0.8	0.43	0.51	3.2
	Maximum	0.331	0.423	0.350	94.5	28.2	18.3	2.31	2.31	53.8
	@ Blow#	155	126	1	155	117	15	69	69	112
	Minimum	0.222	0.281	0.350	63.6	26.5	14.5	0.48	-0.81	26.7
	@ Blow#	13	3	1	13	187	186	179	171	122
Time	Summary									
Drive	2 minute	es 12 second	s	10:10:3	89 AM - 10:12	2:51 AM (9/23	3/2008) BN ⁻	1 - 13		
Stop	15 minu	tes 45 secon	ds	10:12:5	51 AM - 10:28	3:36 AM	,			
Drive	19 seco			10:28:3	86 AM - 10:28	3:55 AM BN	14 - 31			
Stop		tes 21 secon	ds		55 AM - 10:53					
Drive	32 seco				6 AM - 10:53		32 - 61			
Stop		tes 39 secon	ds		8 AM - 11:11		~~ ~~			
Drive	19 seco		-l		27 AM - 11:11		62 - 79			
Stop Drive	23 minu 33 seco	tes 58 secon	as		6 AM - 11:36 4 AM - 11:36		90 110			
Stop		tes 44 secon	de		7 AM - 11:36 7 AM - 12:36		00-110			
Drive	40 seco		43		1 PM - 12:36		111 - 132			
Stop		tes 42 secon	ds		1 PM - 12:58		111 102			
Drive	27 seco				3 PM - 12:58		133 - 158			
Stop		tes 23 second	ds		0 PM - 1:30:					
Drive	43 seco	nds			PM - 1:30:5		9 - 185			
O (·							

 Stop
 19 hours 15 minutes 27 seconds
 1:30:56 PM - 8:46:23 AM

 Drive
 49 seconds
 8:46:23 AM - 8:47:12 AM BN 186 - 230

	ciences Testing Method Result		ch Inc					PDIPLOT	/er. 2008.2	Pa - Printed: 2-/	ge 1 of 1 Apr-2009
VTRA OP: S	NS RSCH011	-703 - GD-1						2 IN		E-55 AUTO; st date: 23-5	
AR: LE: WS: 1	0.92 in^2 53.75 ft 16,807.7 f/s									EM: 30,	492 k/ft3 000 ksi).00
EF2: ER: ETR:	Max Transfer Energy of F ² Hammer Ener Energy Trans Maximum For	rgy Rating fer Ratio							DMX: Ma: DFN: Fin	ximum Veloo ximum Displ al Displacen ws per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	6	0.270	0.282	0.350	77.2	27.0	16.3	1.36	1.36	0.0
2	10.17	6	0.258	0.286	0.350	73.6	27.0	15.0	0.88	0.54	52.5
3	10.33	6	0.256	0.281	0.350	73.2	26.8	15.4	1.03	0.90	52.7
4	10.50	6	0.272	0.287	0.350	77.7	26.9	16.3	1.25	1.23	52.6
5	10.67	6	0.253	0.282	0.350	72.4	26.9	16.2	1.25	1.06	52.9
6	10.83	6	0.258	0.281	0.350	73.8	27.1	15.8	1.67	1.67	52.9
7	11.00	6	0.239	0.282	0.350	68.2	27.2	16.3	1.63	1.56	0.0
8	11.17	6	0.244	0.285	0.350	69.7	27.2	16.6	1.93	1.92	53.0
9 10	11.33 11.50	6	0.238	0.286	0.350	68.0	27.1	17.0	2.26	2.26	52.9
10	11.67	6	0.258	0.288	0.350	73.6	27.3	16.9	2.09	2.09	52.8
12	11.83	6 6	0.230 0.241	0.284 0.285	0.350 0.350	65.8 68.7	27.3 27.2	17.1	1.99	1.99	52.5
12	12.00	6	0.241	0.285	0.350	63.6	27.2	16.6 16.6	1.95 2.03	1.95	53.0
										2.03	52.7
		Average td. Dev.	0.249	0.284 0.002	0.350 0.000	71.2 4.1	27.1 0.2	16.3	1.64	1.58	52.8
	-	aximum	0.014 0.272	0.002	0.350	4.1 77.7	27.5	0.6 17.1	0.43	0.51	0.2
) Blow#	0.272	0.200	0.350	4	27.5	11	2.26	2.26	53.0
		linimum	0.222	0.281	0.350	63.6	26.8	15.0	9 0.88	9 0.54	8 52.5
) Blow#	13	0.201	0.000	13	20.0	2	0.00	0.54	52.5 2
	e e	S DIOM#	15	5	Total num	ber of blows	•		2	2	2
	_				rota nam		s analyzea.	10			
Time S	Summary										
Drive	2 minut	es 12 seco	nds	1	0:10:39 AM	- 10:12:51 A	M (9/23/20	08) BN 1 -	13		
Stop		utes 45 sec	onds	1	0:12:51 AM	- 10:28:36 A	M				
Drive	19 seco				0:28:36 AM			31			
Stop		ites 21 sec	onds	1	0:28:55 AM	- 10:53:16 A	M				
Drive	32 seco			1	0:53:16 AM	- 10:53:48 A	M BN 32 -	61			
Stop	17 minւ	ites 39 sec	onds	1	0:53:48 AM	- 11:11:27 A	M				

10:53:48 AM - 11:11:27 AM Stop Drive 17 minutes 39 seconds 11:11:27 AM - 11:11:46 AM BN 62 - 79 11:11:46 AM - 11:35:44 AM 19 seconds Stop 23 minutes 58 seconds Drive 33 seconds 11:35:44 AM - 11:36:17 AM BN 80 - 110 11:36:17 AM - 12:36:01 PM Stop 59 minutes 44 seconds Drive 40 seconds 12:36:01 PM - 12:36:41 PM BN 111 - 132 12:36:41 PM - 12:58:23 PM Stop 21 minutes 42 seconds Drive 27 seconds 12:58:23 PM - 12:58:50 PM BN 133 - 158 Stop 31 minutes 23 seconds 12:58:50 PM - 1:30:13 PM 1:30:13 PM - 1:30:56 PM BN 159 - 185 1:30:56 PM - 8:46:23 AM Drive 43 seconds Stop 19 hours 15 minutes 27 seconds Drive 49 seconds 8:46:23 AM - 8:47:12 AM BN 186 - 230

Geosciences Testing & Research Inc Case Method Results

VTRANS RSCH011-703 - GD-1

OP: SPK AR: 0.92 in^2

53.75 ft LE:

WS: 16,807.7 f/s

EMX: Max Transferred Energy EF2: Energy of F² ER: Hammer Energy Rating

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS;CME-55 AUTO;VTRANS

Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

ETR:		ansfer Ratio								vs per Minu	
	Maximum									•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
14	15.00	0	0.289	0.333	0.350	82.7	27.4	16.9	1.54	1.54	0.0
15	15.12	9	0.264	0.330	0.350	75.3	26.7	18.3	1.86	1.86	52.8
16	15.24	9	0.263	0.329	0.350	75.0	27.0	18.0	1.71	1.71	53.0
17	15.35	9	0.254	0.329	0.350	72.6	27.5	17.9	1.74	1.73	52.9
18	15.47	9	0.292	0.333	0.350	83.5	27.6	17.8	2.11	2.11	52.7
19	15.59	9	0.257	0.330	0.350	73.5	27.7	17.7	1.57	1.57	53.1
20	15.71	9	0.258	0.332	0.350	73.7	27.5	18.0	1.56	1.53	52.9
21	15.82	9	0.275	0.334	0.350	78.5	27.4	18.0	1.64	1.64	52.9
22	15.94	9	0.289	0.331	0.350	82.5	27.8	17.7	1.49	1.49	52.9
23	16.06	9	0.271	0.331	0.350	77.5	27.7	17.6	1.30	1.30	52.9
24	16.18	9	0.291	0.333	0.350	83.2	27.4	18.2	1.41	1.41	53.0
25	16.29	9	0.290	0.334	0.350	82.7	27.4	17.8	1.49	1.49	53.1
26	16.41	9	0.279	0.332	0.350	79.8	27.6	17.0	1.00	0.99	53.0
27	16.53	9	0.273	0.328	0.350	78.0	27.3	17.1	1.03	1.03	52.8
28	16.65	9	0.288	0.331	0.350	82.2	27.4	17.1	1.08	1.08	53.0
29	16.76	9	0.285	0.334	0.350	81.5	27.5	17.7	1.21	1.21	52.8
30	16.88	9	0.289	0.330	0.350	82.5	27.5	17.2	1.22	1.22	52.9
31	17.00	9	0.292	0.337	0.350	83.5	27.6	17,7	1.17	1.15	52.9
		Average	0.278	0.332	0.350	79.3	27.4	17.6	1.45	1.45	52.9
		Std. Dev.	0.013	0.002	0.000	3.8	0.2	0.4	0.29	0.30	0.1
		Maximum	0.292	0.337	0.350	83.5	27.8	18.3	2.11	2.11	53.1
		@ Blow#	18	31	14	31	22	15	18	18	19
		Minimum	0.254	0.328	0.350	72.6	26.7	16.9	1.00	0.99	52.7
		@ Blow#	17	27	14	17	15	14	26	26	18
					Total num	ber of blows	s analyzed:	18			

Time Summary

Drive Stop	2 minutes 12 seconds 15 minutes 45 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13 10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230

	ciences Testin Method Resul		ch Inc				I	PDIPLOT	Ver. 2008.2	Pa - Printed: 2-/	ge 1 of 1 Apr-2009
VTRA OP: S	NS RSCH011	-703 - GD-1						2 IN		E-55 AUTO; st date: 23-8	
AR: LE:	0.92 in^2 53.75 ft									EM: 30,	
EMX:	I6,807.7 f/s Max Transfer Energy of F^2	rred Energy 2								JC: (ximum Velo ximum Displ	
ER: ETR:	Hammer Ene Energy Trans Maximum Fo	ergy Rating sfer Ratio								al Displacen ws per Minu	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
32 33	20.00 20.07	0 15	0.277 0.308	0.355 0.359	0.350 0.350	79.2 88.0	26.8 26.7	18.1 18.0	2.25 1.45	2.25 1.45	0.0 53.7
33	20.07	15	0.308	0.364	0.350	81.6	27.0	17.2	0.99	0.94	53.3
35	20.21	15	0.302	0.360	0.350	86.3	26.9	16.8	1.07	1.07	53.6
36	20.28	15	0.297	0.362	0.350	84.8	26.7	16.9	1.09	1.09	53.1
37	20.34	15	0.299	0.367	0.350	85.3	27.0	16.9	0.90	0.90	53.5
38	20.41	15	0.296	0.360	0.350	84.5	27.2 27.0	16.8 17.0	1.14 1.00	1.14 1.00	53.5 53.2
39 40	20.48 20.55	15 15	0.312 0.299	0.370 0.366	0.350 0.350	89.1 85.3	27.0	16.9	0.80	0.80	53.2 53.2
40	20.55	15	0.299	0.367	0.350	88.4	27.4	16.7	0.99	0.99	53.3
42	20.69	15	0.294	0.359	0.350	84.1	27.0	16.6	0.73	0.63	53.5
43	20.76	15	0.304	0.364	0.350	86.7	27.4	16.6	0.80	0.80	53.3
44	20.83	15	0.299	0.354	0.350	85.3	27.1	16.6	0.91	0.91	53.6
45	20.90	15	0.307	0.363	0.350	87.6	26.9 27.2	16.8 16.5	0.90 0.76	0.90 0.76	53.3 53.4
46 47	20.97 21.03	15 15	0.295 0.306	0.356 0.361	0.350 0.350	84.3 87.3	27.2	16.5	0.76	0.96	53.4
48	21.00	15	0.289	0.358	0.350	82.7	26.7	16.9	0.72	0.55	53.5
49	21.17	15	0.319	0.365	0.350	91.1	27.1	16.9	1.24	1.24	53.4
50	21.24	15	0.292	0.356	0.350	83.5	27.2	16.7	0.72	0.59	53.4
51	21.31	15	0.314	0.361	0.350	89.6	27.2	16.8	1.13	1.13	53.4
52 53	21.38	15 15	0.297 0.290	0.359 0.358	0.350 0.350	85.0 82.8	27.1 27.4	16.9 16.4	1.14 0.76	1.14 0.61	53.3 53.4
53 54	21.45 21.52	15	0.290	0.358	0.350	79.9	27.0	16.8	0.95	0.95	53.2
55	21.59	15	0.299	0.362	0.350	85.5	27.3	16.7	0.85	0.77	53.6
56	21.66	15	0.292	0.354	0.350	83.5	27.1	16.6	1.05	1.05	53.2
57	21.72	15	0.308	0.360	0.350	87.9	27.2	16.7	1.12	1.12	53.5
58	21.79	15	0.291	0.359	0.350 0.350	83.0 85.9	27.0 27.4	16.9 16.6	0.90 0.91	0.90 0.91	53.2 53.4
59 60	21.86 21.93	15 15	0.301 0.291	0.361 0.360	0.350	83.0	27.4	16.8	0.83	0.91	53.4
61	22.00	15	0.309	0.361	0.350	88.2	27.3	16.6	1.16	1.16	53.5
		Average	0.299	0.360	0.350	85.3	27.1	16.8	1.01	0.98	53.4
		Std. Dev.	0.010	0.004	0.000	2.7	0.2	0.4	0.29	0.31	0.2
	N	laximum	0.319	0.370	0.350	91.1	27.4	18.1	2.25	2.25	53.7
		@ Blow#	49	39	32	49	41	32	32	32	33
		Vinimum @ Blow#	0.277 32	0.352 54	0.350 32	79.2 32	26.7 33	16.4 53	0.72 48	0.55 48	53.1 36
	e e	@ DIOW#	52	54		ber of blows			-0	0	00
Time	Summary						,				
Drive	2 minu	ites 12 seco	nds		10:10:39 AM			08) BN 1 -	- 13		
Stop		utes 45 sec	onds		10:12:51 AM			24			
Drive	19 sec				10:28:36 AM			31			
Stop Drive	24 min 32 sec	utes 21 sec	onas		10:28:55 AM 10:53:16 AM			61			
Stop		onus nutes 39 sec	onds		10:53:48 AM						
Drive	19 sec				11:11:27 AM			79			
Stop		utes 58 sec	onds		11:11:46 AM						
Drive	33 sec		م س ما د		11:35:44 AM			110			
Stop		utes 44 sec	onas		11:36:17 AM 12:36:01 PM			- 132			
Drive Stop	40 sec 21 min	onas nutes 42 sec	onde		12:36:01 PM			- 152			
Drive	27 sec				12:58:23 PM			- 158			
Stop		utes 23 sec	onds		12:58:50 PM	- 1:30:13 PM	Л				
Drive	43 sec	onds			1:30:13 PM -			85			
Stop		ırs 15 minut	es 27 secor	nds	1:30:56 PM -			20			
Drive	49 sec			01 100	8:46:23 AM -	0.47:12 AM	BN 180-2	.50			

Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

	Method Resul		ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
	NS RSCH011		1						ICH SS;CME		VTRANS
AR: LE:	0.92 in^2 53.75 ft 16,807.7 f/s									EM: 30,	492 k/ft3 000 ksi 0.00
EMX: EF2: ER: ETR:	Max Transfer Energy of F^2 Hammer Ene Energy Trans Maximum For	2 rgy Rating ifer Ratio							DMX: Max DFN: Fina	imum Veloc imum Displ Il Displacen vs per Minu	city lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
UCII	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
62	25.00	0	0.292	0.376	0.350	83.5	27.2	16.0	0.95	0.92	0.0
63	25.12	9	0.290	0.382	0.350	82.9	26.9	16.7	0.82	0.74	52.9
64	25.24	9	0.303	0.387	0.350	86.6	27.3	16.4	0.94	0.94	53.0
65	25.35	9	0.311	0.391	0.350	88.8	27.1	16.8	1.03	1.03	53.3
66	25.47	9	0.294	0.376	0.350	83.9	27.1	16.4	1,13	1.13	53.2
67	25.59	9	0.292	0.382	0.350	83.5	27.2	16.4	1.28	1.28	53.0
68	25.71	9	0.288	0.383	0.350	82.2	27.2	16.2	2.16	2.16	52.8
69	25.82	9	0.292	0.387	0.350	83.4	27.2	16.9	2.31	2.31	53.1
70	25.94	9	0.286	0.385	0.350	81.8	27.3	16.2	1.70	1.68	53.1
71	26.06	9	0.289	0.380	0.350	82.5	27.3	16.3	2.07	2.07	53.1
72	26.18	9	0.330	0.407	0.350	94.2	27.6	16.3	1.96	1.95	53.1
73	26.29	9	0.289	0.384	0.350	82.6	27.3	16.4	2.01	2.01	53.3
74	26.41	9	0.290	0.382	0.350	82.9	27.3	16.4	1.54	1.54	52.8
75	26.53	9	0.303	0.383	0.350	86.4	27.1	16.3	1.48	1.48	53.3
76	26.65	9	0.290	0.381	0.350	82.9	27.2	16.4	1.47	1.47	53.0
77	26.76	9	0.301	0.385	0.350	86.0	27.1	16.5	1.52	1.52	53.1
78	26.88	9	0.288	0.376	0.350	82.3	27.1	16.4	1.41	1.41	53.1
79	27.00	9	0.303	0.386	0.350	86.4	27.3	16.3	1.40	1.40	53.1
		Average	0.296	0.384	0.350	84.6	27.2	16.4	1.51	1.50	53.1
		Std. Dev.	0.011	0.007	0.000	3.0	0.1	0.2	0.44	0.45	0.2
		laximum	0.330	0.407	0.350	94.2	27.6	16.9	2.31	2.31	53.3
		2 Blow#	72	72	62	72	72	69	69	69	65
		/linimum	0.286	0.376	0.350	81.8	26.9	16.0	0.82	0.74	52.8
	(@ Blow#	70	62	62	70	63	62	63	63	68
					Total num	ber of blows	s analyzed:	18			
Time	Summary										
Drive	=	tes 12 seco	ndo		0:10:39 AM	10.12.51	M (0/23/20)	DO DN 1	12		
	=				0:12:51 AM		•	JO) DIN 1 -	. 13		
Stop Drive	19 min 19 sec	utes 45 sec	Jonus		0:28:36 AM			31			
Stop		utes 21 sec	onde		0:28:55 AM						
Drive	32 sec		Junus		0:53:16 AM			61			
Stop		utes 39 sec	onde		0:53:48 AM			V I			
Drive	19 sec		201103		1:11:27 AM			79			
Stop		utes 58 sec	onde		1:11:46 AM						
Drive	23 mm 33 sec		Jonus		1:35:44 AM			110			
Char	55 880		! .		4.26.47 AM						

11:36:17 AM - 12:36:01 PM

12:58:50 PM - 1:30:13 PM

1:30:56 PM - 8:46:23 AM

12:36:01 PM - 12:36:41 PM BN 111 - 132 12:36:41 PM - 12:58:23 PM

12:58:23 PM - 12:58:50 PM BN 133 - 158

1:30:13 PM - 1:30:56 PM BN 159 - 185

8:46:23 AM - 8:47:12 AM BN 186 - 230

Page 1 of 1

Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

59 minutes 44 seconds

21 minutes 42 seconds

31 minutes 23 seconds

19 hours 15 minutes 27 seconds

40 seconds

27 seconds

43 seconds

49 seconds

Geosciences Testing & Research Inc

Stop

Drive

Stop

Drive

Stop

Drive

Stop

Drive

	ciences Testin Method Resul		ch Inc				I	PDIPLOT	Ver. 2008.2 -		ge 1 of 2 Apr-2009
VTRA OP: \$	ANS RSCH011	-703 - GD-1						2	NCH SS;CME Tes	-55 AUTO; at date: 23-5	
AR: LE:	0.92 in^2 53.75 ft 16,807.7 f/s				SP: 0. EM: 30,	492 k/ft3					
EMX: EF2: ER: ETR:	Max Transfer Energy of F^2 Hammer Ene Energy Trans Maximum Fo	2 ergy Rating afer Ratio							DMX: Max DFN: Fina	kimum Veloo kimum Displ al Displacen ws per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
80	30.00	0	0.298	0.394	0.350	85.0	27.6	16.0	0.86	0.84	0.0
81 82	30.07 30.13	15 15	0.295 0.297	0.394 0.400	0.350 0.350	84.3 84.8	27.1 27.3	16.1 16.3	0.99 0.76	0.98 0.69	53.1 53.3
83	30.20	15	0.297	0.393	0.350	85.2	27.6	16.0	0.78	0.86	53.3 52.7
84	30.27	15	0.307	0.399	0.350	87.8	27.4	16.2	0.98	0.97	53.1
85	30.33	15	0.301	0.399	0.350	86.1	27.3	16.3	0.99	0.98	53.2
86	30.40	15	0.303	0.401	0.350	86.5	27.6	15.9	0.80	0.75	53.1
87	30.47	15	0.295	0.395	0.350	84.4	27.6	16.0	1.07	1.07	53.0
88	30.53	15	0.305	0.400	0.350	87.2	27.6	16.2	1.02	1.02	53.1
89 90	30.60 30.67	15 15	0.301 0.302	0.402 0.400	0.350 0.350	85.9 86.2	27.7 27.6	16.1 16.2	1.15 0.90	1.15 0.90	53.0 52.9
90 91	30.73	15	0.302	0.395	0.350	85.1	27.7	16.0	0.88	0.30	53.1
92	30.80	15	0.303	0.399	0.350	86.5	27.6	16.0	0.81	0.79	53.0
93	30.87	15	0.297	0.398	0.350	84.7	27.3	16.3	0.85	0.84	53.1
94	30.93	15	0.294	0.396	0.350	84.1	27.6	15.8	0.71	0.43	53.1
95	31.00	15	0.297	0.394	0.350	84.9	27.6	16.1	0.96	0.96	53.2
96	31.07	15	0.300	0.390	0.350	85.8	27.5	15.8	0.81	0.79	53.2
97 98	31.13 31.20	15 15	0.302 0.297	0.400 0.396	0.350 0.350	86.3 84.9	27.8 27.6	16.2 16.2	0.99 0.80	0.99 0.78	52.9 53.1
99	31.20	15	0.302	0.390	0.350	86.2	27.6	16.2	0.00	0.99	53.0
100	31.33	15	0.303	0.400	0.350	86.7	27.8	16.1	0.84	0.83	53.1
101	31.40	15	0.299	0.395	0.350	85.3	27.6	16.3	0.80	0.78	52.9
102	31.47	15	0.304	0.401	0.350	87.0	27.6	16.1	0.82	0.81	53.1
103	31.53	15	0.297	0.398	0.350	85.0	27.7	16.0	0.72	0.69	53.0
104 105	31.60 31.67	15	0.305	0.406 0.394	0.350 0.350	87.1 85.5	27.9 27.6	16.1 16.2	0.82 0.81	0.82 0.81	53.2 53.1
105	31.73	15 15	0.299 0.309	0.394	0.350	88.3	27.0	16.2	0.84	0.81	52.9
107	31.80	15	0.297	0.403	0.350	85.0	27.4	16.4	0.77	0.77	53.0
108	31.87	15	0.306	0.406	0.350	87.5	27.7	16.4	0.77	0.77	53.1
109	31.93	15	0.296	0.389	0.350	84.7	27.3	16.1	0.76	0.76	53.3
110	32.00	15	0.300	0.408	0.350	85.8	27.6	16.2	0.75	0.75	53.0
		Average	0.300	0.398	0.350	85.8	27.6	16.1	0.87	0.85	53.1
	-	Std. Dev.	0.004	0.005	0.000	1.1	0.2	0.2	0.11	0.13	0.1
		laximum ② Blow#	0.309 106	0.408 106	0.350 80	88.3 106	27.9 106	16.4 107	1.15 89	1.15 89	53.3 82
		/inimum	0.294	0.389	0.350	84.1	27.1	15.8	0.71	0.43	52.7
		2) Blow#	94	109	80	94	81	94	94	94	83
					Total num	ber of blows	analyzed:	31			
Time	Summary										
Drive	•	tes 12 seco	nde	1	0:10:39 AM	- 10·12·51 A	M (9/23/200	18) BN 1 -	13		
Stop		utes 45 seco			0:12:51 AM						
Drive	19 sec				0:28:36 AM			31			
Stop		utes 21 sec	onds		0:28:55 AM						
Drive	32 sec				0:53:16 AM			61			
Stop		utes 39 sec	onds		0:53:48 AM			70			
Drive	19 sec		anda		1:11:27 AM 1:11:46 AM			19			
Stop Drive	23 min 33 sec	utes 58 sec onds	onas		1:35:44 AM			110			
Dilve	33 560	ulus			1.35.44 AIVI						

Drive	19 seconds	
Stop	24 minutes 21 seconds	
Drive	32 seconds	
Stop	17 minutes 39 seconds	
Drive	19 seconds	
Stop	23 minutes 58 seconds	
Drive	33 seconds	
Stop	59 minutes 44 seconds	
Drive	40 seconds	
Stop	21 minutes 42 seconds	
Drive	27 seconds	
Stop	31 minutes 23 seconds	
Drive	43 seconds	

49 seconds

Stop

Drive

11:35:44 AM - 11:36:17 AM BN 80 - 110 11:36:17 AM - 12:36:01 PM 12:36:01 PM - 12:36:41 PM BN 111 - 132 12:36:41 PM - 12:58:23 PM 12:58:23 PM - 12:58:50 PM BN 133 - 158 12:58:50 PM - 1:30:13 PM

1:30:13 PM - 1:30:56 PM BN 159 - 185 19 hours 15 minutes 27 seconds 1:30:56 PM - 8:46:23 AM

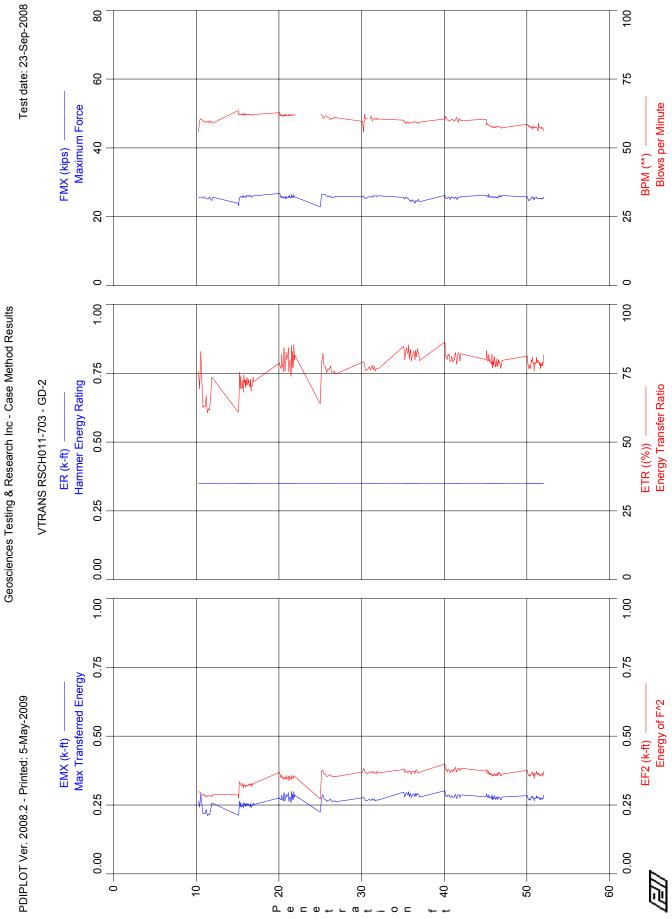
8:46:23 AM - 8:47:12 AM BN 186 - 230

	Method Resul		1				•		Ver. 2008.2 - NCH SS;CME		
OP: S		-703 - GD-						2 11		t date: 23-5	
AR: _E: NS: 1	0.92 in^2 53.75 ft 6,807.7 f/s									EM: 30,	492 k/ft3 000 ksi 0.00
EF2: ER: ETR:	Max Transfer Energy of F ^A Hammer Ene Energy Trans Maximum Fo	2 rgy Rating sfer Ratio							DMX: Max DFN: Fina	imum Veloo imum Displ Il Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
111	ft 25.00	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in 1 05	in 0.95	
112	35.00 35.10	0 11	0.314 0.316	0.409 0.419	0.350 0.350	89.7 90.4	27.2 27.6	17.0 17.1	1.05 1.21	0.85 1.21	0.0 53.8
112	35.10	11	0.316	0.419	0.350	90.4 87.7	27.6	16.8	1.08	0.97	53.5
114	35.29	11	0.307	0.403	0.350	89.7	27.4	17.1	1.08	1.15	53.5 53.4
115	35.38	11	0.314	0.415	0.350	89.2	27.8	17.1	0.91	0.88	53.5
116	35.48	11	0.312	0.415	0.350	87.1	27.4	16.7	0.69	0.00	0.0
117	35.48	11	0.305	0.402	0.350	90.3	28.2	17.0	1.02	1.02	0.0
118	35.67	11	0.309	0.414	0.350	88.4	27.4	16.5	0.66	0.65	53.6
119	35.76	11	0.309	0.401	0.350	87.5	27.6	16.6	0.61	-0.02	53.0
120	35.86	11	0.316	0.415	0.350	90.4	27.8	16.9	0.67	0.64	53.5
121	35.95	11	0.308	0.400	0.350	87.9	27.7	16.4	0.62	0.21	0.0
122	36.05	11	0.312	0.400	0.350	89.1	27.4	16.3	0.93	0.93	26.7
123	36.14	11	0.308	0.399	0.350	88.1	27.5	16.4	0.66	0.56	26.7
124	36.24	11	0.313	0.408	0.350	89.3	27.8	16.3	0.76	0.76	53.3
126	36.43	11	0.319	0.423	0.350	91.3	27.7	16.9	0.73	0.73	53.2
127	36.52	11	0.310	0.398	0.350	88.5	27.6	16.1	0.71	0.71	53.4
129	36.71	11	0.313	0.411	0.350	89.4	27.7	16.7	0.68	0.68	53.3
132	37.00	11	0.320	0.407	0.350	91.3	27.8	16.5	1.00	1.00	53.3
		Average	0.312	0.408	0.350	89.2	27.6	16.7	0.84	0.73	49.6
		Std. Dev.	0.004	0.007	0.000	1.2	0.2	0.3	0.20	0.31	9.3
		laximum	0.320	0.423	0.350	91.3	28.2	17.1	1.21	1.21	53.8
		2) Blow#	132	126	111	132	117	112	112	112	112
		Ainimum	0.305	0.398	0.350	87.1	27.2	16.1	0.61	-0.02	26.7
		2) Blow#	116	127	111	116	111	127	119	119	122
	u u	9 01011	110	127			analyzed:		110	110	,
ime S	Summary										10.7 BPN 25
)rive	2 minu	tes 12 seco	onds		10:10:39 AM -	10:12:51 A	M (9/23/200)8) BN 1-	- 13	10	m ner
top	15 min	utes 45 sec	onds		10:12:51 AM -			·		. •	A D.
)rive	19 sec	19 seconds 10:28:36 AM - 10:28:55 AM BN 14 - 31 2 ⁶							, ⁶ - 2		
top	24 min	utes 21 sec	conds		10:28:55 AM -					v	~ ~ ~
rive	32 sec	onds			10:53:16 AM -	· 10:53:48 A	M BN 32 -	61		.	out sol
top	17 min	utes 39 sec	onds		10:53:48 AM -					5). L. .
rive	19 sec				11:11:27 AM -			79			
top		utes 58 sec	onds		11:11:46 AM -						
rive	33 sec				11:35:44 AM -			110			
top		59 minutes 44 seconds 11:36:17 AM - 12:36:01 PM									
rive	40 seconds 12:36:01 PM - 12:36:41 PM BN 111 - 132										
top	-	utes 42 sec	onds		12:36:41 PM -						
rive	27 sec				12:58:23 PM -			- 158			
top		utes 23 sec	onds		12:58:50 PM -			0.F			
Prive	43 sec				1:30:13 PM - 1		BN 159 - 1	85			
itop Irive			es 27 secor	nds	1:30:56 PM - 8		D11400	~~			
	49 sec	onde			8:46:23 AM - 8						

19 hours 15 minutes 27 seconds 49 seconds Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

	ciences Testin Method Result		ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009	
VTRA OP: \$	NS RSCH011	-703 - GD-1	l					2 IN	ICH SS;CME Tes	-55 AUTO;' st date: 23-8		
AR: LE:	0.92 in^2 53.75 ft 16,807.7 f/s									SP: 0. EM: 30,	492 k/ft3	
EMX: EF2: ER: ETR:	Max Transfer Energy of F^2 Hammer Ene Energy Trans Maximum For	rgy Rating fer Ratio							DMX: Max DFN: Fina	kimum Veloo kimum Displ al Displacen ws per Minu	city lacement nent	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM	
133	ft 40.00	bl/ft 0	k-ft 0.320	k-ft 0.392	k-ft 0.350	(%) 91.4	kips 27.7	f/s 15.7	in 1.28	in 1.27	0.0	
134	40.08	13	0.315	0.383	0.350	89.9	27.4	15.7	1.19	1.16	53.4	
135	40.16	13	0.316	0.384	0.350	90.3	27.6	15.7	1.48	1.48	53.0	
136 137	40.24 40.32	13 13	0.318 0.320	0.380 0.388	0.350 0.350	91.0 91.3	27.4 27.5	15.6 15.8	1.27 1.54	1.26 1.54	53.4 53.3	
138	40.32	13	0.320	0.388	0.350	90.0	27.5	16.0	1.34	1.34	53.5 53.1	
139	40.48	13	0.316	0.385	0.350	90.3	27.5	15.6	1.35	1.33	53.2	
140	40.56	13	0.312	0.406	0.350	89.1	27.6	15.8	1.42	1.40	53.1	
141	40.64	13	0.317	0.413	0.350	90.6	27.5	15.9 15.6	1.53 1.37	1.53	53.4 53.1	
142 143	40.72 40.80	13 13	0.315 0.319	0.382 0.406	0.350 0.350	89.9 91.0	27.5 27.5	15.6	1.37	1.37 1.71	52.9	
144	40.88	13	0.314	0.404	0.350	89.7	27.1	16.0	1.32	1.32	53.6	
145	40.96	13	0.316	0.409	0.350	90.4	27.8	15.9	0.65	0.59	53.3	
146	41.04 41.12	13 13	0.313 0.315	0.380	0.350 0.350	89.3 89.9	27.5 27.6	15.8 16.1	0.74 1.03	0.73 1.03	53.0 53.0	
147 148	41.12	13	0.315	0.407 0.380	0.350	89.9 89.2	27.6	15.8	0.69	0.57	53.0 53.3	
149	41.28	13	0.312	0.381	0.350	89.1	27.5	15.7	0.67	0.51	52.8	
150	41.36	13	0.307	0.375	0.350	87.7	27.6	15.8	0.69	0.63	53.3	
151	41.44	13	0.321	0.416	0.350	91.6	27.5 27.2	15.9 15.8	1.11 1.15	1.11 1.15	53.0 53.2	
152 153	41.52 41.60	13 13	0.305 0.312	0.361 0.382	0.350 0.350	87.1 89.2	27.2	15.8	0.62	0.16	53.2 53.1	
155	41.76	13	0.331	0.389	0.350	94.5	27.6	15.9	0.98	0.98	53.1	
156	41.84	13	0.319	0.381	0.350	91.1	27.5	15.7	0.65	0.61	53.1	
157 158	41.92 42.00	13 13	0.314 0.314	0.384 0.381	0.350 0.350	89.7 89.7	27.5 27.5	15.7 15.8	0.61 0.66	0.53 0.66	53.3 53.1	
		Average	0.314	0.390	0.350	90.1	27.5	15.8	1.08	1.04	53.2	
		td. Dev.	0.005	0.014	0.000	1.4	0.1	0.1	0.35	0.41	0.2	
		aximum	0.331	0.416	0.350	94.5	27.8	16.1	1.71	1.71	53.6	
		D Blow#	155 0.305	151 0.361	133 0.350	155 87.1	145 27.1	147 15.6	143 0.61	143 0.16	144 52.8	
		linimum ⊉ Blow#	152	152	133	152	144	136	157	153	149	
	e	g D.011.				ber of blows						
Time	Summary											
Drive	-	tes 12 seco	onds		10:10:39 AM	- 10:12:51 A	M (9/23/20	08) BN 1 -	13			
Stop		utes 45 sec	conds		10:12:51 AM - 10:28:36 AM							
Drive Stop	19 seco	onds utes 21 sec	ondo		10:28:36 AM 10:28:55 AM			31				
Drive	32 sec		onus		10:53:16 AM			61				
Stop		utes 39 sec	onds		10:53:48 AM							
Drive	19 sec	19 seconds 11:11:27 AM - 11:11:46 AM BN 62 - 79										
Stop		utes 58 sec	conds		11:11:46 AM 11:35:44 AM			110				
Drive Stop	33 sec 59 min	utes 44 sec	onds		11:36:17 AM			110				
Drive	40 sec				12:36:01 PM			- 132				
Stop		utes 42 sec	onds		12:36:41 PM							
Drive	27 seco	onds utes 23 sec	onde		12:58:23 PM 12:58:50 PM		-	- 158				
Stop Drive	43 sec		Junus		1:30:13 PM -			85				
Stop			es 27 secor		1:30:56 PM -			-				
Drive	49 sec	onds			8:46:23 AM -	8:47:12 AM	BN 186 - 2	30				
Total	time [22:36:33]	= (Driving	[0:06:34] +	Stop [22:2	9:59])							

Geosciences Testing & Research Inc


	ciences Testin Method Resul		ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VTR/ OP: 5	NS RSCH011	-703 - GD-′	1					2 11	ICH SS;CME Tes	-55 AUTO;\ t date: 23-S	
AR: LE: WS:	0.92 in^2 53.75 ft 16,807.7 f/s									EM: 30,	492 k/ft3 000 ksi).00
EMX: EF2: ER: ETR:	Max Transfer Energy of F ⁴ 2 Hammer Ene Energy Trans Maximum Fo	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	imum Veloc imum Displ Il Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
159	45.00	0	0.312	0.399	0.350	89.0	26.7	15.4	2.17	2.17	0.0
160	45.08	13	0.308	0.399	0.350	88.1	27.1	15.3	1.28	1.28	52.9
161	45.15	13	0.313	0.411	0.350	89.4	27.3	14.9	0.96	0.96	53.7
163	45.31	13	0.309	0.395	0.350	88.2	27.2	15.2	0.64	0.55	0.0
166	45.54	13	0.307	0.408	0.350	87.8	27.3	15.4	0.55	0.50	38.6
170	45.85	13	0.307	0.387	0.350	87.8	27.2 27.1	15.0 15.3	0.53 0.49	-0.13 -0.81	53.3 53.2
171	45.92	13	0.313	0.390	0.350	89.5 85.2	27.1	15.5	0.49	-0.07	53.2
172	46.00	13	0.298 0.303	0.380 0.384	0.350 0.350	86.7	27.5	14.0	0.50	0.40	30.4
175 176	46.23 46.31	13 13	0.303	0.364	0.350	84.3	27.5	14.9	0.30	0.40	53.2
177	46.38	13	0.305	0.374	0.350	87.3	27.2	15.2	0.40	0.32	52.9
178	46.46	13	0.303	0.378	0.350	86.6	27.7	14.7	0.49	0.31	53.3
179	46.54	13	0.299	0.373	0.350	85.4	27.5	14.7	0.48	0.03	53.1
180	46.62	13	0.306	0.384	0.350	87.5	27.4	15.0	0.50	0.39	53.2
181	46.69	13	0.305	0.385	0.350	87.1	27.3	14.9	0.49	0.35	53.3
182	46.77	13	0.307	0.387	0.350	87.7	27.0	15.3	0.51	0.48	53.0
184	46.92	13	0.302	0.386	0.350	86.2	27.0	15.1	0.49	0.40	53.7
	· · · · · · · · · · · · · · · · · · ·	Average	0.305	0.389	0.350	87.3	27.3	15.1	0.68	0.42	50.7
		Std. Dev.	0.005	0.010	0.000	1.4	0.3	0.2	0.43	0.62	6.5
		laximum	0.313	0.411	0.350	89.5	27.7	15.4	2.17	2.17	53.7
		@ Blow#	161	161	159	171	178	159	159	159	161
		Minimum	0.295	0.373	0.350	84.3	26.7	14.7	0.48	-0.81	30.4
	(@ Blow#	176	179	159	176	159	178	179	171	175
					Total num	ber of blows	s analyzed:	17			
	Summary								40		0.1 24
Drive		ites 12 seco			10:10:39 AM			08) BN 1-	- 13	, 'Y	. g , , , , , , , , , , , , , , , , , ,
Stop		utes 45 sec	conas		10:12:51 AM			21	(Now a	, w
Drive	19 sec	iutes 21 sec	anda		10:28:36 AM 10:28:55 AM			J 1		NC I	
Stop Drive	32 sec		Jonas		10:53:16 AM			61			.,
Stop			onde					0.		APM	AUC
Drive		Total number of blows analyzed: 17 Total number of blows analyzed: 17 2 minutes 12 seconds 10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13 15 minutes 45 seconds 10:12:51 AM - 10:28:36 AM 19 seconds 10:28:36 AM - 10:28:55 AM BN 14 - 31 24 minutes 21 seconds 10:28:55 AM - 10:53:16 AM 32 seconds 10:53:16 AM - 10:53:48 AM BN 32 - 61 17 minutes 39 seconds 10:53:48 AM - 11:11:27 AM 19 seconds 11:11:27 AM - 11:11:46 AM BN 62 - 79 23 minutes 58 seconds 11:11:46 AM - 11:35:44 AM									•
Stop		utes 58 sec	conds		11:11:46 AM			-			
Drive	33 seconds 11:35:44 AM - 11:36:17 AM BN 80 - 110										
Stop	59 minutes 44 seconds 11:36:17 AM - 12:36:01 PM										
Drive	40 sec				12:36:01 PM			- 132			
Stop	21 min	utes 42 sec	conds		12:36:41 PM						
Drive	27 sec	onds			12:58:23 PM			- 158			
Stop	31 min	utes 23 sec	conds		12:58:50 PM						
Drive	43 sec				1:30:13 PM -			185			
Stop			tes 27 secor	nds	1:30:56 PM -			200			
Drive	49 sec	onds			8:46:23 AM -	5:47:12 AM	DIN 180 - 2	200			

Case	ciences Testir Method Resu	lts								- Printed: 2-	
VTRA OP: S	NS RSCH011	-703 - GD-1	1					2 1		IE-55 AUTO; est date: 23-5	
AR: LE:	0.92 in^2 53.75 ft									SP: 0. EM: 30,	492 k/ft3 000 ksi
EMX: EF2: ER: ETR:	16,807.7 f/s Max Transfer Energy of F^ Hammer Ener Energy Trans Maximum Fo	2 ergy Rating sfer Ratio							DMX: Ma DFN: Fir	JC: (aximum Veloo aximum Displ nal Displacen ows per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
186	ft 50.00	bi/ft 0	k-ft 0.298	k-ft 0.391	k-ft 0.350	(%) 85.2	kips 26.9	f/s 14.5	in 0.80	in 0.59	0.0
187	50.05	22	0.297	0.392	0.350	84.9	26.5	14.8	0.58	0.38	52.4
188	50.09	22	0.303	0.393	0.350	86.6	26.9	15.2	0.68	0.68	53.0
189 190	50.14 50.18	22 22	0.303 0.303	0.397 0.391	0.350 0.350	86.6 86.6	26.5 26.6	15.3 15.3	0.53 0.58	0.26 0.58	52.7 52.8
190	50.18	22	0.303	0.391	0.350	86.7	20.0	15.2	0.56	0.50	52.8
192	50.27	22	0.302	0.399	0.350	86.4	26.9	15.2	0.53	0.44	52.6
193	50.32	22	0.304	0.397	0.350	86.9	27.1	15.4	0.55	0.53	52.8
194 195	50.36 50.41	22 22	0.301 0.306	0.399 0.399	0.350 0.350	85.9 87.5	27.3 27.4	15.0 15.2	0.54 0.56	0.49 0.44	52.7 52.8
195	50.45	22	0.308	0.399	0.350	88.0	27.2	15.2	0.88	0.44	52.8
197	50.50	22	0.302	0.399	0.350	86.3	27.4	15.1	0.60	0.60	52.7
198	50.55	22	0.310	0.404	0.350	88.4	27.0	14.9	0.72	0.72	52.9
199 200	50.59 50.64	22 22	0.299	0.391 0.403	0.350 0.350	85.5 87.4	27.3 27.5	15.3 15.0	0.57 0.69	0.42 0.69	52.6 52.8
200	50.64 50.68	22	0.306 0.303	0.403	0.350	87.4 86.7	27.5	15.0	0.89	0.89	52.6 52.6
202	50.73	22	0.300	0.394	0.350	85.7	27.6	15.1	0.55	0.38	52.9
203	50.77	22	0.298	0.391	0.350	85.3	27.6	15.1	0.57	0.55	52.6
204 205	50.82 50.86	22 22	0.298 0.297	0.387 0.388	0.350 0.350	85.2 85.0	27.4 27.5	15.2 15.2	0.69 0.71	0.69 0.71	52.9 52.6
205	50.88	22	0.297	0.393	0.350	84.8	27.2	15.2	0.54	0.41	52.8
207	50.95	22	0.301	0.395	0.350	85.9	27.5	15.1	0.68	0.68	52.6
208	51.00	22	0.299	0.393	0.350	85.6	27.5	15.1	0.58	0.55	52.8
209 210	51.05 51.09	22 22	0.294 0.305	0.386 0.395	0.350 0.350	84.0 87.1	27.3 27.4	15.1 15.0	0.56 0.89	0.39 0.89	52.8 52.8
211	51.09	22	0.303	0.390	0.350	83.7	27.6	15.1	0.59	0.89	52.7
212	51.18	22	0.296	0.388	0.350	84.6	27.6	15.1	0.65	0.65	52.7
213	51.23	22	0.293	0.387	0.350	83.8	27.6	15.2	0.60	0.41	52.7
214 215	51.27 51.32	22 22	0.295 0.297	0.388 0.387	0.350 0.350	84.2 84.9	27.7 27.6	15.1 15.1	0.75 0.74	0.75 0.74	52.7 52.7
216	51.36	22	0.298	0.393	0.350	85.2	27.8	15.1	0.62	0.57	52.8
217	51.41	22	0.290	0.386	0.350	82.9	27.6	15.1	0.57	0.35	52.9
218	51.45	22	0.294	0.387	0.350	84.0	27.5 27.5	15.2 15.0	0.76 0.62	0.76	52.8
219 220	51.50 51.55	22 22	0.299 0.295	0.390 0.389	0.350 0.350	85.4 84.3	27.5	15.0	0.62	0.62 0.55	52.7 52.8
221	51.59	22	0.293	0.385	0.350	83.7	27.2	15.1	0.57	0.56	52.7
222	51.64	22	0.289	0.372	0.350	82.6	27.2	15.2	0.61	0.49	52.9
223	51.68	22	0.296	0.382	0.350	84.5 84.6	27.7	15.3 15.1	0.64	0.61 0.63	52.7 52.9
224 225	51.73 51.77	22 22	0.296 0.291	0.386 0.382	0.350 0.350	83.1	27.5 27.7	15.1	0.65 0.63	0.63	52.9 52.6
226	51.82	22	0.300	0.384	0.350	85.8	27.9	15.5	0.61	-0.06	52.5
227	51.86	22	0.286	0.383	0.350	81.7	27.9	15.1	0.54	0.20	53.2
228 229	51.91 51.95	22 22	0.294 0.299	0.383 0.399	0.350 0.350	83.9 85.5	27.4 27.3	15.2 15.1	0.52 0.52	-0.45 0.41	52.3 53.2
230	52.00	22	0.295	0.384	0.350	83.0	27.3	15.0	0.52	0.29	52.7
		Average	0.298	0.391	0.350	85.2	27.4	15.1	0.63	0.52	52.8
		td. Dev.	0.005	0.006	0.000	1.5	0.3	0.2	0.10	0.23	0.2
		laximum @ Blow#	0.310 198	0.404 198	0.350 186	88.4 198	27.9 226	15.5 196	0.89 210	0.89 210	53.2 227
		/inimum	0.286	0.372	0.350	81.7	26.5	14.5	0.51	-0.45	52.3
		② Blow#	227	222	186	227	187	186	230	228	228
					Total num	ber of blows	s analyzed:	45			

Time Summary

Drive 2 minutes 12 seconds

Stop 15 minutes 45 seconds Drive 19 seconds 10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13 10:12:51 AM - 10:28:36 AM 10:28:36 AM - 10:28:55 AM BN 14 - 31

	ciences Testing Method Results		Inc				PDIPLO	T Ver. 200	Pa 08.2 - Printed: 3-	age 1 of 1 Apr-2009
VTRA OP: S	NS RSCH011-7 PK	703 - GD-2						2 INC	H SS;CME-45C Test date: 23-	
AR: LE: WS: 1	0.92 in^2 53.83 ft 6,807.7 f/s								EM: 30	.492 k/ft3 ,000 ksi 0.00
EF2: ER: ETR:	Max Transferre Energy of F ² Hammer Energ Energy Transfer Maximum Ford	gy Rating er Ratio						DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Minu	lacement nent
Statis	ics for entire file	e (214 blows)								
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average	0.271	0.353	0.350	77.4	25.5 0.5	14.7 0.5	0.95 0.40	0.81 0.71	59.8 1.8
	Std. Dev. Maximum	0.018 0.302	0.026 0.399	0.001 0.350	5.0 86.4	26.8	0.5 17.0	3.08	3.08	63.6
	@ Blow#	141	141	0.350	141	20.8	82	3.08	83	18
	Minimum	0.212	0.272	0.350	60.6	22.9	12.8	0.45	-4.75	55.8
	@ Blow#	11	81	3	11	81	19	155	11	97
Time	Summary									
Drive	19 seco	nds		1:22:40) PM - 1:22:5	9 PM (9/23/2	008) BN 1 -	16		
Stop	19 hours	s 15 minutes	11 seconds		PM - 8:38:1		,			
Drive	31 seco) AM - 8:38:4		- 49			
Stop		tes 16 secon	ds		I AM - 8:57:5					
Drive	28 seco				7 AM - 8:58:2		- 80			
Stop		tes 22 secon	ds		5 AM - 9:17:4 7 AM - 9:17:5		04			
Drive Stop	12 secor	nas tes 22 secon	de		AM - 9:17:5 AM - 9:36:2		- 94			
Drive	26 seco		15		AM - 9:36:4		- 112			
Stop		tes 47 secon	ds		7 AM - 9:59:3					
Drive	26 secor			9:59:34	AM - 10:00:	00 AM BN 1	13 - 139			
Stop	1 hour 6	minutes 37 s	seconds		00 AM - 11:06					
Drive	22 secor				87 AM - 11:06		140 - 163			
Stop		tes 18 secon	ds		59 AM - 11:38					
Drive	31 seco		4		7 AM - 11:38		164 - 195			
Stop Drive	25 minut 35 secor	tes 49 secon	JS		18 AM - 12:04 37 PM - 12:05		196 - 230			
Dive	35 58001			12.04.0	7 T'IVI - 12.00		100 - 200			

Total time [22:42:32] = (Driving [0:03:50] + Stop [22:38:42])

	iences Test Method Res	ing & Researd ults	ch Inc					PDIPLOT	Ver. 2008.2	Pa - Printed: 3-/	ge 1 of 1 Apr-2009
VTRA OP: S		11-703 - GD-2	l							S;CME-45C;\ st date: 23-S	
AR: LE: WS: 1	0.92 in^2 53.83 ft 6,807.7 f/s	2								EM: 30,	492 k/ft3 000 ksi).00
EMX: EF2: ER: ETR:	Max Transf Energy of F	nergy Rating nsfer Ratio							DMX: Ma DFN: Fin	ximum Veloo ximum Displ al Displacen ws per Minu	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
DL#	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
3	10.27	8	0.265	0.299	0.350	75.7	25.4	16.0	2.17	2.17	55.9
4	10.40	ě 8	0.243	0.297	0.350	69.4	25.6	15.7	1.47	1.47	60.1
5	10.53	8	0.290	0.294	0.350	82.9	25.5	15.3	2.43	2.43	60.5
7	10.80	8	0.219	0.285	0.350	62.6	25.4	15.9	1.15	0.72	60.0
. 8	10.93	8	0.221	0.289	0.350	63.2	25.8	15.2	1.06	0.33	59.3
9	11.07	8	0.219	0.280	0.350	62.7	25.5	15.6	1.08	0.50	59.5
10	11.20	8	0.234	0.285	0.350	66.9	25.3	15.7	1.14	0.64	59.6
11	11.33	8	0.212	0.281	0.350	60.6	25.2	14.9	0.74	-4.75	59.3
12	11.47	8	0.217	0.284	0.350	62.1	25.2	15.1	0.75	-2.37	59.8
13	11.60	8	0.215	0.283	0.350	61.6	25.8	14.9	0.71	-3.68	59.1
14	11.73	8	0.232	0.283	0.350	66.3	25.0	15.1	0.75	-0.74	59.8
15	11.87	8	0.257	0.280	0.350	73.6	24.7	15.0	0.84	0.30	59.3
16	12.00	8	0.256	0.288	0.350	73.2	25.7	15.0	0.82	-0.31	59.0
Proventing and		Average	0.237	0.287	0.350	67.7	25.4	15.3	1.16	-0.25	59.3
		Std. Dev.	0.023	0.006	0.000	6.5	0.3	0.4	0.53	2.07	1.1
		Maximum	0.290	0.299	0.350	82.9	25.8	16.0	2.43	2.43	60.5
		@ Blow#	5	3	3	5	8	3	5	5	5
		Minimum	0.212	0.280	0.350	60.6	24.7	14.9	0.71	-4.75	55.9
		@ Blow#	11	9	3	11	15	11	13	11	3
		~			Total num	ber of blows	s analyzed	: 13			

Geosciences	Testing	&	Research Inc	
Case Method	Results			

VTRANS RSCH011-703 - GD-2 OP: SPK

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

Page 1 of 1

0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s

AR:

EMX: Max Transferred Energy

EF2: Energy of F² ER: Hammer Energy Rating ETR: Energy Transfer Ratio

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

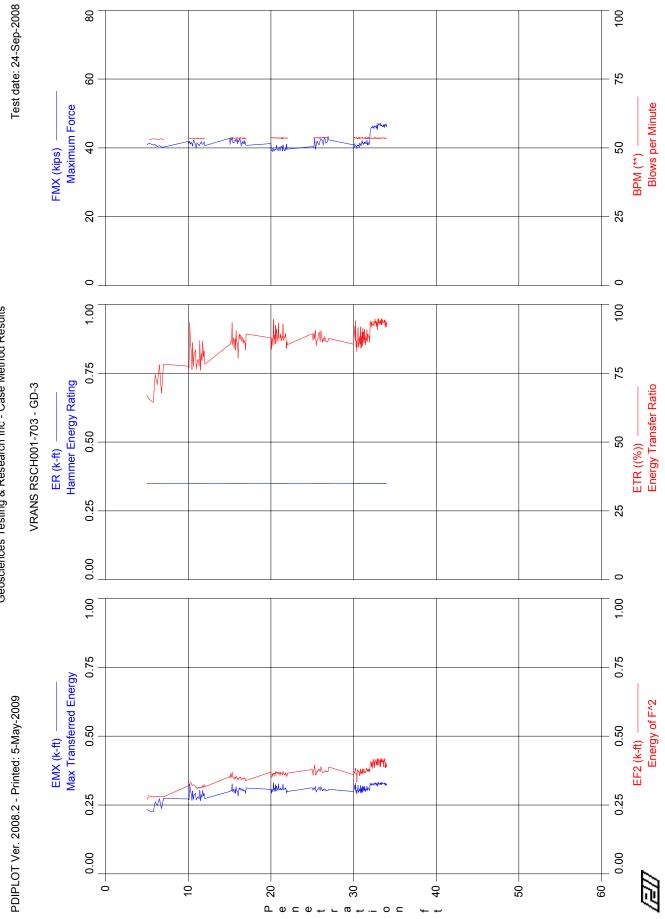
BPM: Blows per Minute

	Maximum Fo									və per minu	le
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ŕft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
20	15.19	16	0.244	0.329	0.350	69.7	25.3	14.5	0.92	0.92	62.4
21	15.25	16	0.264	0.335	0.350	75.3	25.5	15.4	1.42	1.42	62.3
22	15.31	16	0.243	0.327	0.350	69.4	25.8	14.4	0.73	0.27	62.3
23	15.38	16	0.259	0.326	0.350	74.0	25.7	14.5	1.18	1.18	62.2
24	15.44	16	0.243	0.321	0.350	69.5	25.6	14.7	0.73	0.65	62.2
25	15.50	16	0.244	0.320	0.350	69.7	25.9	14.9	0.96	0.96	61.9
26	15.56	16	0.244	0.321	0.350	69.8	25.7	14.8	0.72	0.63	62.4
27	15.63	16	0.253	0.329	0.350	72.4	26.1	15.1	1.16	1.16	62.0
28	15.69	16	0.239	0.312	0.350	68.1	25.6	14.9	1.16	1.16	61.9
29	15.75	16	0.260	0.321	0.350	74.3	25.9	14.7	1.16	1.16	62.6
30	15.81	16	0.250	0.323	0.350	71.5	25.9	14.5	0.68	0.35	61.8
31	15.88	16	0.254	0.323	0.350	72.6	25.9	14.7	0.73	0.73	62.2
32	15.94	16	0.245	0.316	0.350	69.9	25.7	14.7	0.66	0.57	62.0
33	16.00	16	0.254	0.319	0.350	72.5	25.6	14.9	1.08	1.08	62.3
34	16.06	16	0.248	0.321	0.350	70.8	26.2	14.7	0.67	0.38	62.0
35	16.13	16	0.257	0.319	0.350	73.5	26.0	14.8	1.03	1.03	62.2
36	16.19	16	0.252	0.320	0.350	72.0	26.1	15.0	0.97	0.97	62.0
37	16.25	16	0.247	0.321	0.350	70.6	26.1	14.9	0.74	0.74	62.0
38	16.31	16	0.254	0.323	0.350	72.7	25.9	14.7	0.87	0.87	62.2
39	16.38	16	0.250	0.326	0.350	71.5	26.1	15.2	0.73	0.49	62.1
40	16.44	16	0.247	0.322	0.350	70.5	26.0	15.1	0.96	0.96	62.0
41	16.50	16	0.245	0.325	0.350	70.0	26.2	15.0	0.72	0.43	62.1
42	16.56	16	0.255	0.328	0.350	72.7	26.0	15.1	0.99	0.99	62.0
43	16.63	16	0.240	0.318	0.350	68.6	25.8	15.0	0.94	0.94	61.8
44	16.69	16	0.247	0.321	0.350	70.6	25.7	15.1	0.74	0.74	62.0
45	16.75	16	0.247	0.328	0.350	70.6	25.9	15.1	0.72	0.72	62.0
46	16.81	16	0.247	0.322	0.350	70.6	26.0	14.9	1.07	1.07	61.9
47 48	16.88 16.94	16 16	0.258	0.327	0.350	73.7 71.9	26.0 26.1	15.3 15.4	0.92 0.66	0.92 0.53	62.1
40	10.94		0.252	0.328	0.350						62.1
		Average	0.250	0.323	0.350	71.3	25.9	14.9	0.90	0.83	62.1
		Std. Dev.	0.006	0.005	0.000	1.8	0.2	0.3	0.20	0.29	0.2
		Maximum	0.264	0.335	0.350	75.3	26.2	15.4	1.42	1.42	62.6
		@ Blow#	21	21	20	21	41	48	21	21	29
		Minimum	0.239	0.312	0.350	68.1	25.3	14.4	0.66	0.27	61.8
		@ Blow#	28	28	20	28	20	22	32	22	30

TR/	Method Resu		2					PDIPLOT		;CME-45C;	VTRANS
R: ≣:	<u>59K</u> 0.92 in^2 53.83 ft 16,807.7 f/s			,,					Tes	EM: 30	492 k/ft3
F2: R: TR:	Max Transfe Energy of F^ Hammer Ene Energy Trans Maximum Fo	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	kimum Velo kimum Displ al Displacen ws per Minu	lacement nent
3L#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
51	20.07	15	0.276	0.369	0.350	78.8	26.8	15.1	1.76	1.76	62.8
52	20.13	15	0.272	0.362	0.350	77.7	26.6	14.8	1.29	1.16	61.6
53	20.20	15	0.270	0.352	0.350	77.0	25.8	14.3	1.37	1.37	62.3
54	20.27	15	0.269	0.349	0.350	76.7	25.5	13.9	1.07	1.05	61.9
55	20.33	15	0.287	0.359	0.350	82.0	26.0	14.1	1.55	1.55	61.6
56	20.40	15	0.272	0.350	0.350	77.6	25.7	14.3	0.92	0.92	62.0
57	20.47	15	0.272	0.348	0.350	77.7	25.6	14.0	0.91	0.91	61.3
58	20.53	15	0.264	0.343	0.350	75.5	25.4	14.4	0.78	0.72	61.8
59	20.60	15	0.295	0.351	0.350	84.2	26.0	13.9	1.54	1.54	61.7
60	20.67	15	0.287	0.346	0.350	82.1	25.6	13.8	0.90	0.90	62.0
61	20.73	15	0.265	0.348	0.350	75.8	25.7	14.4	0.66	0.07	61.6
62	20.80	15	0.276	0.346	0.350	78.8	25.2	14.1	0.93	0.93	62.2
63	20.87	15	0.289	0.357	0.350	82.5	26.0	14.1	0.89	0.89	61.6
64	20.93	15	0.280	0.343	0.350	80.1	25.3	14.0	0.95	0.95	61.7
66	21.07	15	0.284	0.349	0.350	81.3	25.5	14.0	0.63	0.38	62.1
67	21.13	15	0.295	0.356	0.350	84.2	25.9	14.1	0.93	0.93	61.7
68	21.20	15	0.264	0.339	0.350	75.5	25.6	14.5	0.57	-0.02	62.1
69	21.27	15	0.275	0.353	0.350	78.7	26.2	14.4	0.59	0.47	61.7
70	21.33	15	0.280	0.348	0.350	79.9	25.5	14.2	1.06	1.06	61.9
71 72	21.40	15	0.265	0.348	0.350	75.7	25.6	14.2	0.57	0.30	62.0
73	21.47 21.53	15 15	0.259 0.298	0.342 0.357	0.350	74.0 85.1	25.4 26.5	14.4 14.2	0.56	0.47	61.7
74	21.53	15	0.298	0.357	0.350 0.350	77.0	26.5 25.6	14.2	1.08 0.57	1.08	62.1 61.9
75	21.60	15	0.270	0.350	0.350	82.8	25.0	14.4	0.99	0.38 0.99	61.8
76	21.07	15	0.290	0.352	0.350	82.8 77.2	25.9	14.3	0.99	0.99	62.0
77	21.80	15	0.299	0.345	0.350	85.4	26.4	14.2	1.19	1.19	61.9
78	21.80	15	0.299	0.353	0.350	79.8	25.7	14.2	0.56	0.21	62.1
79	21.93	15	0.275	0.353	0.350	81.5	25.8	14.2	0.96	0.21	61.8
			0.233	0.351	0.350	79.5	25.8	14.2	0.90	0.90	
		Average Std. Dev.	0.278	0.351	0.350	79.5 3.2	25.8 0.4	0.3	0.94	0.83	61.9 0.3
		laximum	0.299	0.008	0.350	3.2 85.4	26.8	0.3 15.1	0.33 1.76	0.45	62.8
		@ Blow#	0.299	0.369	0.350	85.4 77	20.8	51	51	51	62.6 51
		-									61.3
											57
	Ň	@ Blow# @ Blow#	0.259 72	0.339 68	0.350 51	74.0 72	25.2 62	13.8 60	(0.56 72	0.56 -0.02

	ciences Tes Method Res	ting & Resea sults	rch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VTRA <u>OP: S</u>		11-703 - GD-2	2							;CME-45C;' t date: 23-5	
AR: LE:	0.92 in^2 53.83 ft	2								SP: 0. EM: 30,	492 k/ft3 000 ksi
	6,807.7 f/s										0.00
		erred Energy							VMX: Max	imum Velo	citv
	Energy of F									imum Displ	
		nergy Rating							DFN: Fina	I Displacen	nent
	Energy Tra								BPM: Blov	vs per Minu	te
	Maximum F										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
82	25.15	7	0.275	0.375	0.350	78.6	26.4	17.0	2.82	2.82	62.3
83	25.31	7	0.288	0.376	0.350	82.3	26.5	16.6	3.08	3.08	60.9
84	25.46	7	0.272	0.362	0.350	77.6	26.5	16.0	1.99	1.94	60.8
85	25.62	7	0.271	0.364	0.350	77.5	26.4	15.0	1.92	1.92	61.7
86	25.77	7	0.263	0.354	0.350	75.0	26.1	14.9	1.52	1.52	61.5
87	25.92	7	0.268	0.355	0.350	76.7	25.8	14.7	1.56	1.56	61.1
88	26.08	7	0.267	0.358	0.350	76.2	26.1	14.6	1.34	1.18	60.8
89	26.23	7	0.272	0.360	0.350	77.6	25.7	14.7	1.45	1.45	60.3
90	26.38	7	0.264	0.354	0.350	75.4	25.8	14.4	1.22	1.16	60.8
91	26.54	7	0.263	0.354	0.350	75.1	25.5	14.5	1.13	0.95	60.6
92	26.69	7	0.266	0.354	0.350	75.9	25.6	14.6	1.49	1.49	61.0
93	26.85	7	0.262	0.353	0.350	74.7	25.9	14.1	0.98	0.81	61.0
		Average	0.269	0.360	0.350	76.9	26.0	15.1	1.71	1.66	61.1
		Std. Dev.	0.007	0.008	0.000	2.0	0.3	0.9	0.62	0.67	0.5
		Maximum	0.288	0.376	0.350	82.3	26.5	17.0	3.08	3.08	62.3
		@ Blow#	83	83	82	83	84	82	83	83	82
		Minimum	0.262	0.353	0.350	74.7	25.5	14.1	0.98	0.81	60.3
		@ Blow#	93	93	82	93	91	93	93	93	89
					Total num	ber of blows	s analyzed	: 12			

	iences Testi Method Resu		rch Inc					PDIPLOT	Ver. 2008.2		ge 1 of 1 Apr-2009
VTRA	NS RSCH01 PK	1-703 - GD-2	2							;CME-45C; st date: 23-S	
AR: LE: WS: 1	0.92 in^2 53.83 ft 6,807.7 f/s									EM: 30,	492 k/ft3 000 ksi).00
EMX: EF2: ER: ETR:	Max Transfe Energy of F ^A Hammer Ene Energy Tran Maximum Fo	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	kimum Veloo kimum Displ al Displacem ws per Minu	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
96	30.12	9	0.276	0.370	0.350	79.0	25.8	16.3	1.47	1.47	59.6
97	30.24	9	0.277	0.383	0.350	79.2	26.1	15.1	0.99	0.89	55.8
98	30.35	9	0.274	0.375	0.350	78.3	25.4	15.8	1.14	1.14	62.2
99	30.47	9	0.266	0.368	0.350	76.0	25.2	15.5	0.95	0.93	60.5
101	30.71	9	0.267	0.363	0.350	76.3	25.6	14.7	1.07	1.07	60.6
103	30.94	9	0.271	0.371	0.350	77.3	25.8	14.3	0.91	0.91	0.0
104	31.06	9	0.267	0.369	0.350	76.2	25.7	14.2	0.72	0.60	60.5
105	31.18	9	0.268	0.366	0.350	76.7	2 5.7	14.2	0.71	0.68	61.7
106	31.29	9	0.273	0.373	0.350	78.0	26.1	14.1	0.71	0.61	59.8
107	31.41	9	0.267	0.368	0.350	76.3	25.7	14.3	0.72	0.68	60.4
108	31.53	9	0.272	0.371	0.350	77.6	26.1	14.1	0.70	0.61	60.7
109	31.65	9	0.265	0.366	0.350	75.8	26.1	14.3	0.69	0.63	60.4
110	31.76	9	0.268	0.363	0.350	76.7	26.0	14.5	0.80	0.78	60.9
111	31.88	9	0.268	0.373	0.350	76.6	25.8	14.4	0.75	0.73	60.2
112	32.00	9	0.268	0.367	0.350	76.5	26.1	13.8	0.67	0.51	60.5
		Average	0.270	0.370	0.350	77.1	25.8	14.7	0.87	0.81	60.3
		Std. Dev.	0.004	0.005	0.000	1.0	0.3	0.7	0.22	0.25	1.4
		laximum	0.277	0.383	0.350	79.2	26.1	16.3	1.47	1.47	62.2
		@ Blow#	97	97	96	97	106	96	96	96	98
		Minimum	0.265	0.363	0.350	75.8	25.2	13.8	0.67	0.51	55.8
		@ Blow#	109	101	96	109	99	112	112	112	97
					Total num	bor of blow	analyzad	. 15			


0.350 75.8 25.2 13.8 96 109 99 112 Total number of blows analyzed: 15

	ciences Testi Method Resu							PDIPLOT	Ver. 2008.2 -		age 1 of 1 Apr-2009
VTRA OP: S	NS RSCH01 PK	1-703 - GD-2	2							;CME-45C; st date: 23-5	
AR: LE:	0.92 in^2 53.83 ft	•								EM: 30,	.492 k/ft3 ,000 ksi
	6,807.7 f/s										0.00
EF2: ER:	Max Transfe Energy of F ⁴ Hammer Energy	2 ergy Rating							DMX: Max	timum Velo timum Displ al Displacen	lacement
	Energy Tran Maximum Fo								BPM: Blov	vs per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
114	35.08	13	0.297	0.379	0.350	84.7	25.6	16.7	1.44	1.44	60.1
115	35.15	13	0.292	0.381	0.350	83.4	25.3	14.9	0.93	0.72	59.3
116	35.23	13	0.279	0.368	0.350	79.8	25.1	14.2	0.90	0.79	59.6
117	35.31	13	0.287	0.370	0.350	82.1	25.5	14.3	1.14	1.14	58.9
118	35.38	13	0.293	0.374	0.350	83.7	25.7	14.5	1.35	1.35	59.1
119	35.46	13	0.295	0.375	0.350	84.2	25.5	14.5	0.89	0.82	59.0
120	35.54	13	0.288	0.368	0.350	82.3	25.5	14.5	1.10	1.10	59.4
121	35.62	13	0.289	0.368	0.350	82.5	25.2	14.4	1.04	1.04	59.1
122	35.69	13	0.298	0.373	0.350	85.3	25.2	14.6	1.15	1.15	58.9
123	35.77	13	0.280	0.371	0.350	80.1	24.8	14.5	0.72	0.57	59.4
124	35.85	13	0.288	0.371	0.350	82.2	24.8	14.6	1.05	1.05	59.1
125	35.92	13	0.292	0.371	0.350	83.5	24.8	14.6	1.22	1.22	59.1
126	36.00	13	0.278	0.361	0.350	79.4	24.3	14.6	1.26	1.26	59.1
127	36.08	13	0.283	0.371	0.350	80.8	24.6	14.8	0.78	0.61	59.1
128	36.15	13	0.284	0.371	0.350	81.2	24.9	14.9	0.96	0.96	59.1
129	36.23	13	0.288	0.370	0.350	82.4	24.6	14.6	1.24	1.24	59.1
130	36.31	13	0.291	0.373	0.350	83.0	24.6	14.7	1.04	1.04	59.5
131	36.38	13	0.287	0.372	0.350	82.0	24.2	15.1	0.89	0.87	59.4
132	36.46	13	0.280	0.364	0.350	79.9	23.9	14.9	1.09	1.09	59.3
133	36.54	13	0.292	0.374	0.350	83.4	24.7	14.9	1.21	1.21	59.5
134	36.62	13	0.283	0.378	0.350	81.0	24.4	15.2	0.80	0.80	59.3
135	36.69	13	0.290	0.375	0.350	82.8	24.5	14.8	0.96	0.96	59.4
136	36.77	13	0.293	0.371	0.350	83.8	24.7	14.6	1.16	1.16	59.2
137	36.85	13	0.288	0.366	0.350	82.4	25.1	14.7	0.77	0.71	59.0
138	36.92	13	0.288	0.369	0.350	82.3	24.6	14.9	1.16	1.16	58.8
139	37.00	13	0.279	0.369	0.350	79.6	24.3	15.2	0.68	0.49	59.4
		Average	0.288	0.371	0.350	82.2	24.9	14.8	1.04	1.00	59.2
	9	Std. Dev.	0.006	0.004	0.000	1.6	0.5	0.4	0.20	0.24	0.3
	Ν	/laximum	0.298	0.381	0.350	85.3	25.7	16.7	1.44	1.44	60.1
		@ Blow#	122	115	114	122	118	114	114	114	114
	I	Minimum	0.278	0.361	0.350	79.4	23.9	14.2	0.68	0.49	58.8
	(@ Blow#	126	126	114	126	132	116	139	139	138
	(@ Blow#	126	126		126 ber of blows		: :			

	ciences Testi Method Resu		rch Inc					PDIPLOT	Ver. 2008.2 -		ige 1 of 1 Apr-2009
VTRA OP: S	NS RSCH01	1-703 - GD-2	2						2 INCH SS	;CME-45C; at date: 23-8	VTRANS
AR: LE:	0.92 in^2 53.83 ft										492 k/ft3
	6,807.7 f/s									JC: (0.00
	Max Transfe								VMX: Max	imum Velo	city
EF2:	Energy of F	^2								imum Displ	
ER:	Hammer En	ergy Rating								I Displacen	
EIR:	Energy Tran	isfer Ratio							BPM: Blov	vs per Minu	te
BL#	Maximum F						(T) 4)/			DEN	
BL#	depth ft	BLC bl/ft	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
141	40.09		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in 1 CF	
141	40.09	12 12	0.302 0.283	0.399 0.379	0.350 0.350	86.4 80.8	26.2 25.4	15.9	1.66 1.63	1.65	60.5
142	40.17	12	0.283			80.8		15.3		1.63	61.5
143	40.26	12	0.285	0.379 0.369	0.350 0.350	80.8	25.4 25.3	14.9 14.9	1.60 1.83	1.60	60.7 60.2
145	40.35	12	0.280	0.369	0.350	80.0	25.3 25.6	14.9	2.17	1.83 2.17	
145	40.43	12	0.285	0.379	0.350	81.7	25.6	15.5	1.32	1.23	60.0
140	40.52	12	0.285	0.380	0.350	81.4	25.5 25.7	14.5	1.32	1.23	59.9 59.7
148	40.70	12	0.287	0.367	0.350	79.3	25.0	14.5	1.49	1.49	
149	40.78	12	0.278	0.307	0.350	79.3	25.0 25.4	14.4	0.99	0.99	60.0 60.1
150	40.87	12	0.278	0.372	0.350	81.1	25.4	14.5	0.99	0.99	60.1
151	40.96	12	0.282	0.374	0.350	80.6	25.6	14.3	1.03	1.03	60.2
152	41.04	12	0.277	0.370	0.350	79.0	25.4	14.3	0.69	0.69	60.3
153	41.13	12	0.279	0.379	0.350	79.8	25.5	14.6	0.46	0.03	59.7
154	41.22	12	0.279	0.375	0.350	79.8	25.3	14.2	0.45	0.24	59.8
155	41.30	12	0.286	0.383	0.350	81.9	25.7	14.6	0.45	0.24	59.9
156	41.39	12	0.289	0.387	0.350	82.5	25.7	14.7	0.49	0.49	60.4
157	41.48	12	0.274	0.370	0.350	78.4	25.2	14.6	0.58	0.58	61.1
158	41.57	12	0.278	0.374	0.350	79.4	24.9	14.4	0.48	0.21	60.5
159	41.65	12	0.287	0.380	0.350	82.0	25.7	14.3	0.50	0.48	59.8
160	41.74	12	0.288	0.384	0.350	82.4	25.7	14.3	0.50	0.36	59.4
161	41.83	12	0.285	0.378	0.350	81.5	25.6	14.5	0.92	0.92	60.7
162	41.91	12	0.278	0.375	0.350	79.4	25.6	14.5	0.59	0.59	60.3
163	42.00	12	0.287	0.384	0.350	82.1	25.9	14.3	0.66	0.66	59.9
		Average	0.283	0.378	0.350	80.9	25.5	14.6	1.00	0.95	60.2
		Std. Dev.	0.006	0.007	0.000	1.7	0.3	0.4	0.53	0.57	0.5
		Maximum	0.302	0.399	0.350	86.4	26.2	15.9	2.17	2.17	61.5
		@ Blow#	141	141	141	141	141	14 1	145	145	142
		Minimum	0.274	0.367	0.350	78.4	24.9	14.2	0.45	0.21	59.4
		@ Blow#	157	148	141	157	158	154	155	158	160
					Total num	her of blows	analyzad				

	ciences Tes Method Res	iting & Resea sults	rch Inc					PDIPLOT	Ver. 2008.2 -		age 1 of 1 Apr-2009
VTRA OP: S		11-703 - GD-	2							;CME-45C; st date: 23-9	
AR: LE: WS: 1	0.92 in^ 53.83 ft 16,807.7 f/s	2								SP: 0. EM: 30,	.492 k/ft3 ,000 ksi
EMX:	Max Trans	ferred Energy	,		*,** <u>*</u> ; ****					imum Velo	
EF2: ER:	Energy of I	F^2 nergy Rating								imum Displ	
	Energy Tra									al Displacen vs per Minu	
FMX:	Maximum I	Force									····
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
165	45.06	16	0.280	0.373	0.350	80.0	26.2	14.4	1.21	1.21	60.4
166	45.13	16	0.291	0.380	0.350	83.3	26.3	14.5	1.26	1.26	58.3
167	45.19	16	0.283	0.374	0.350	80.8	26.0	14.4	0.98	0.94	58.8
168	45.26	16	0.278	0.365	0.350	79.3	25.7	14.5	1.00	0.99	58.5
169 170	45.32	16	0.278	0.364	0.350	79.5	25.6	14.5	0.98	0.98	58.3
170	45.39 45.45	16	0.287	0.374	0.350	82.0	26.6	14.7	0.79	0.67	58.3
172	45.45 45.52	16 16	0.277 0.280	0.361	0.350	79.2 80.0	25.7	14.4	0.87	0.87	58.1
173	45.52	16	0.280	0.366 0.361	0.350 0.350	78.9	25.8 25.6	14.7 14.7	0.74 0.80	0.63 0.80	57.9
174	45.65	16	0.276	0.361	0.350	78.9 79.0	25.8	14.7	0.80	0.80	57.7
175	45.71	16	0.274	0.359	0.350	79.0	25.8	14.8	0.74	0.64	57.6 57.8
176	45.77	16	0.274	0.364	0.350	81.9	25.9	14.6	0.75	0.75	57.8 57.9
177	45.84	16	0.269	0.355	0.350	76.9	25.6	14.6	0.85	0.65	57.9 57.5
178	45.90	16	0.203	0.358	0.350	79.2	25.6	14.5	0.78	0.07	57.5
179	45.97	16	0.272	0.356	0.350	77.8	25.5	14.7	0.72	0.72	57.4
180	46.03	16	0.283	0.361	0.350	80.8	25.8	14.6	0.72	0.72	57.7
181	46.10	16	0.283	0.364	0.350	80.9	25.8	14.5	0.80	0.80	57.4
182	46.16	16	0.271	0.359	0.350	77.3	25.7	14.6	0.64	0.49	57.7
183	46.23	16	0.271	0.357	0.350	77.4	25.6	14.5	0.74	0.74	57.4
184	46.29	16	0.281	0.364	0.350	80.3	25.8	14.4	0.88	0.88	57.8
185	46.35	16	0.272	0.357	0.350	77.6	25.5	14.6	0.60	0.56	57.5
186	46.42	16	0.277	0.362	0.350	79.2	25.7	14.3	0.73	0.73	57.7
187	46.48	16	0.270	0.356	0.350	77.3	25.3	14.6	0.63	0.63	57.6
188	46.55	16	0.280	0.369	0.350	80.0	25.8	14.5	0.63	0.63	57.8
189	46.61	16	0.276	0.364	0.350	78.8	26.0	14.6	0.57	0.53	57.9
190	46.68	16	0.277	0.364	0.350	79.3	25.8	14.5	0.73	0.73	57.8
191	46.74	16	0.276	0.367	0.350	78.9	26.2	14.9	0.49	0.35	57.6
192	46.81	16	0.269	0.360	0.350	76.8	25.9	14.9	0.47	0.34	57.5
193	46.87	16	0.271	0.355	0.350	77.5	25.7	14.8	0.55	0.55	57.4
194	46.94	16	0.272	0.358	0.350	77.8	25.9	14.9	0.49	0.46	57.1
195	47.00	16	0.279	0.362	0.350	79.7	26.2	14.7	0.74	0.74	57.3
		Average	0.277	0.363	0.350	79.2	25.8	14.6	0.76	0.73	57.8
		Std. Dev.	0.005	0.006	0.000	1.6	0.3	0.1	0.18	0.21	0.6
		Maximum	0.291	0.380	0.350	83.3	26.6	14.9	1.26	1.26	60.4
		@ Blow#	166	166	165	166	170	194	166	166	165
		Minimum	0.269	0.355	0.350 165	76.8 192	25.3 187	14.3	0.47	0.34	57.1
		@ Blow#	177	177		ber of blows		186 31	192	192	194
					rotarnum		anaiyzeu.	51			

	S RSCH011-	703 - GD-2	,							Printed: 3-, ;CME-45C;'	
P: SPI		/ 00 - OD-2	•							t date: 23-8	
र:	0.92 in^2							· · · · · · · · · · · · · · · · · · ·			492 k/ft3
:	53.83 ft									EM: 30,	
	807.7 f/s										0.00
MX: N	lax Transfern	ed Energy							VMX: Max	imum Velo	city
F2: E	nergy of F^2									imum Displ	
	lammer Ener									I Displacen	
	nergy Transf								BPM: Blov	vs per Minu	te
	laximum For					••••••					
L#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
07	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
97	50.06	17	0.284	0.376	0.350	81.3	25.8	14.8	0.86	0.82	58.6
98	50.12	17	0.276	0.365	0.350	78.8	25.3	14.7	0.77	0.71	58.3
99 00	50.18 50.24	17 17	0.271 0.268	0.358	0.350	77.4 76.6	25.1	14.6	0.76	0.72	57.9
00	50.24 50.29	17	0.268	0.357	0.350	76.6	24.7	14.2	0.71	0.62	58.2
02	50.29 50.35	17	0.270	0.354	0.350 0.350	77.2 78.0	24.7 24.9	13.8 14.8	0.75 0.72	0.75 0.72	57.6 57.8
03	50.55	17	0.275	0.356	0.350	76.7	24.9	14.0	0.72	0.72	
04	50.47	17	0.200	0.364	0.350	78.1	25.0	14.4	0.69	0.52	57.3 57.6
05	50.53	17	0.279	0.366	0.350	79.7	25.4	14.0	0.68	0.61	57.6 57.6
06	50.59	17	0.277	0.367	0.350	79.1	25.7	14.7	0.66	0.45	57.6
07	50.65	17	0.283	0.371	0.350	81.0	25.8	14.9	0.70	0.69	56.7
08	50.71	17	0.276	0.363	0.350	79.0	25.5	14.6	0.80	0.80	57.9
09	50.76	17	0.275	0.358	0.350	78.7	25.2	14.8	0.68	0.68	57.4
10	50.82	17	0.276	0.364	0.350	78.8	25.5	14.3	0.65	0.63	57.6
11	50.88	17	0.265	0.346	0.350	75.8	24.9	14.6	0.61	0.54	57.3
12	50.94	17	0.276	0.367	0.350	78.9	25.5	14.9	0.64	0.64	57.2
13	51.00	17	0.274	0.359	0.350	78.2	25.6	14.7	0.63	0.50	57.6
14	51.06	17	0.276	0.364	0.350	78.9	25.5	14.9	0.74	0.74	57.3
15	51.12	17	0.276	0.363	0.350	78.8	25.4	14.4	0.67	0.62	57.4
16	51.18	17	0.283	0.372	0.350	80.8	25.7	14.3	0.59	-0.06	57.4
17	51.24	17	0.275	0.362	0.350	78.7	25.5	14.4	0.72	0.70	57.3
18	51.29	17	0.278	0.363	0.350	79.4	25.4	14.3	0.77	0.77	56.8
19 20	51.35	17	0.279	0.361	0.350	79.8	25.4	14.7	0.89	0.89	56.1
20 21	51.41 51.47	17	0.276	0.367	0.350	79.0	25.3	14.7	0.69	0.53	59.0
22	51.47	17 17	0.276 0.273	0.359 0.361	0.350	78.8 77.9	25.4 25.3	14.6	0.68	0.57	57.5
22	51.55	17	0.273	0.361	0.350 0.350	77.9 79.0	25.3 25.2	14.6 14.8	0.61 0.69	0.56 0.69	57.3 57.2
24	51.65	17	0.278	0.356	0.350	79.0	25.2	14.0	0.69	0.69	57.2 57.1
25	51.71	17	0.209	0.359	0.350	78.3	25.5	14.7	0.89	0.69	57.1
26	51.76	17	0.272	0.360	0.350	77.7	25.2	14.2	0.75	0.68	57.5
27	51.82	17	0.274	0.359	0.350	78.4	25.4	14.4	0.80	0.79	57.0
28	51.88	17	0.276	0.365	0.350	79.0	25.2	14.9	0.82	0.82	57.3
29	51.94	17	0.271	0.355	0.350	77.5	25.2	15.1	0.67	0.58	57.1
30	52.00	17	0.286	0.372	0.350	81.7	25.8	14.6	0.82	0.82	56.1
	A	verage	0.275	0.362	0.350	78.6	25.3	14.6	0.71	0.65	57.4
		d. Dev.	0.005	0.006	0.000	1.3	0.3	0.3	0.07	0.16	0.6
	Ма	ximum	0.286	0.376	0.350	81.7	25.8	15.1	0.89	0.89	59.0
	@	Blow#	230	197	197	230	207	229	219	219	220
		nimum	0.265	0.346	0.350	75.8	24.7	13.8	0.59	-0.06	56.1
	Q	Blow#	211	211	197	211	200	201	216	216	219

Geosciences Testing & Research Inc - Case Method Results

Geosciences Testing & Research Inc Case Method Results

VRANS RSCH001-703 - GD-3 OP: SPK Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

> 2 INCH SS;CME55 AUTO;VTRANS Test date: 24-Sep-2008 SP: 0.492 k/ft3

01.011	<u>\</u>								C31 Uate. 24-0	066-2000
AR:	1.45 in^2								SP: 0	.492 k/ft3
LE:	37.08 ft								EM: 30	,000 ksi
WS: 16,	807.7 f/s								JC:	0.00
EMX: M	lax Transferre	ed Energy						VMX: M	laximum Velo	city
EF2: E	nergy of F^2							DMX: M	laximum Disp	lacement
ER: H	ammer Energ	gy Rating							inal Displacer	
ETR: E	nergy Transfe	er Ratio						BPM: B	lows per Minu	ute
FMX: M	laximum Ford	e								
Statistics	s for entire file	e (205 blows))							
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average	0.306	0.364	0.350	87.4	42.2	15.4	0.91	0.86	53.6
	Std. Dev.	0.019	0.031	0.001	5.4	2.3	1.2	0.39	0.42	0.2
1	Maximum	0.332	0.420	0.350	94.9	47.1	17.8	2.72	2.68	53.9
	@ Blow#	189	18 9	1	200	198	16	1	1	69
	Minimum	0.225	0.270	0.350	64.4	39.0	13.1	0.48	-0.11	53.0
	@ Blow#	4	1	1	4	71	174	161	72	9
Time Su	mmary									
Drive	9 secon	ds		10:57:4	43 AM - 10:57	7:52 AM (9/2-	4/2008) BN	1 - 9		
Stop	27 minu	tes 39 secon	lds	10:57:5	52 AM - 11:28	5:31 AM	,			
Drive	26 seco	nds		11:25:3	31 AM - 11:28	5:57 AM BN	10 - 33			

Drive	26 seconds	11:25:31 AM - 11:25:57 AM BN 10 - 33
Stop	28 minutes 57 seconds	11:25:57 AM - 11:54:54 AM
Drive	36 seconds	11:54:54 AM - 11:55:30 AM BN 34 - 67
Stop	55 minutes 16 seconds	11:55:30 AM - 12:50:46 PM
Drive	36 seconds	12:50:46 PM - 12:51:22 PM BN 68 - 101
Stop	27 minutes 43 seconds	12:51:22 PM - 1:19:05 PM
Drive	23 seconds	1:19:05 PM - 1:19:28 PM BN 102 - 123
Stop	25 minutes 22 seconds	1:19:28 PM - 1:44:50 PM
Drive	44 seconds	1:44:50 PM - 1:45:34 PM BN 124 - 164
Stop	26 minutes 23 seconds	1:45:34 PM - 2:11:57 PM
Drive	56 seconds	2:11:57 PM - 2:12:53 PM BN 165 - 216

Total time [3:15:10] = (Driving [0:03:50] + Stop [3:11:20])

	ciences Testin Method Resul		ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
	IS RSCH001-								NCH SS;CM		VTRANS
AR: LE: WS: 1	1.45 in^2 37.08 ft 6,807.7 f/s									EM: 30,	492 k/ft3 000 ksi 0.00
	Max Transfer Energy of FA Hammer Ene Energy Trans Maximum Fo	2 rgy Rating ifer Ratio							DMX: Max DFN: Fina	imum Veloo imum Displ Il Displacem vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	5.00	4	0.234	0.270	0.350	66.9	40.9	16.8	2.72	2.68	0.0
2	5.25	4	0.229	0.284	0.350	65.6	41.4	16.8	2.32	2.22	53.1
4	5.75	4	0.225	0.279	0.350	64.4	40.9	16.1	2.10	2.10	53.3
5	6.00	4	0.261	0.281	0.350	74.6	40.9	16.3	2.63	2.63	53.2
6	6.25	4	0.248	0.281	0.350	70.9	40.4	15.8	2.42	2.42	53.2
7	6.50	4	0.273	0.281	0.350	78.1	40.7	15.8	2.27	2.27	53.2
8	6.75	4	0.237	0.282	0.350	67.8	40.3	16.0	2.07	2.07	53.3
9	7.00	4	0.274	0.280	0.350	78.3	40.2	15.8	1.93	1.93	53.0
		Average	0.248	0.280	0.350	70.8	40.7	16.2	2.31	2.29	53.2
		Std. Dev.	0.018	0.004	0.000	5.2	0.4	0.4	0.26	0.25	0.1
		laximum	0.274	0.284	0.350	78.3	41.4	16.8	2.72	2.68	53.3
		2 Blow#	9	2	1	9	2	2	1	1	4
		Ainimum	0.225	0.270	0.350	64.4	40.2	15.8	1.93	1.93	53.0
		D Blow#	4	1	1	4	9	9	9	9	9
	,		•		Total nun	her of blow	e analyze	d. 8	-	-	-

	ciences Testi Method Resu		ch Inc						/er. 2008.2 -		ge 1 of 1 Apr-2009
VRAN <u>OP:</u> S	IS RSCH001- PK	703 - GD-3						2	NCH SS;CM Tes	E55 AUTO;' st date: 24-5	
AR:	1.45 in^2										492 k/ft3
	37.08 ft 6,807.7 f/s									EM: 30, JC: (000 ksi).00
	Max Transfe	rred Energy		· · · · ,					VMX Max	imum Velo	
EF2:	Energy of F ⁴									imum Displ	
ER:	Hammer En									I Displacen	
ETR:	Energy Tran								BPM: Blov	vs per Minu	te
	Maximum Fo	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
10	10.00	0	0.272	0.320	0.350	77.6	41.9	16.8	1.85	1.85	0.0
11	10.09	12	0.269	0.320	0.350	76.9	41.3	17.6	1.01	0.79	53.7
12	10.17	12	0.327	0.328	0.350	93.5	41.9	16.8	1.50	1.50	53.5
13	10.26	12	0.300	0.332	0.350	85.7	41.0	16.7	1.19	1.19	53.4
14	10.35	12	0.292	0.330	0.350	83.3	41.6	16.6	1.23	1.22	53.4
15	10.43	12	0.267	0.322	0.350	76.3	41.2	16.2	1.13	1.09	53.5
16 17	10.52 10.61	12 12	0.301 0.271	0.322 0.324	0.350 0.350	86.1 77.5	40.5 42.3	17.8 16.7	1.30 1.10	1.30 1.08	53.5 53.4
18	10.61	12	0.271	0.324	0.350	81.6	42.3	17.1	1.10	1.00	53.4 53.4
20	10.70	12	0.286	0.321	0.350	83.5	42.1	17.1	1.13	1.12	53.4 53.4
20	10.87	12	0.292	0.319	0.350	76.4	39.9	15.3	1.11	1.11	53.6
22	11.04	12	0.200	0.311	0.350	78.4	41.5	15.6	0.91	0.82	53.3
22	11.13	12	0.274	0.314	0.350	79.8	41.2	15.6	1.03	1.03	53.6
23	11.13	12	0.279	0.310	0.350	80.0	41.1	15.6	1.03	1.03	53.3
25	11.30	12	0.272	0.311	0.350	77.6	40.6	15.7	1.15	1.15	53.5
26	11.39	12	0.304	0.314	0.350	86.8	41.1	15.6	1.21	1.21	53.5
27	11.48	12	0.266	0.312	0.350	76.1	41.2	15.6	1.08	1.05	53.4
28	11.57	12	0.288	0.315	0.350	82.3	41.8	16.0	1.07	1.05	53.4
29	11.65	12	0.279	0.313	0.350	79.7	41.1	15.9	1.26	1.26	53.6
30	11.74	12	0.303	0.321	0.350	86.7	41.1	15.8	1.06	1.06	53.5
31	11.83	12	0.283	0.314	0.350	81.0	41.3	15.8	1.18	1.18	53.3
32	11.91	12	0.291	0.324	0.350	83.1	41.7	15.8	0.93	0.86	53.5
33	12.00	12	0.274	0.316	0.350	78.3	40.6	15.4	1.13	1.13	53.6
		Average	0.284	0.319	0.350	81.2	41.3	16.2	1.15	1.13	53.5
	:	Std. Dev.	0.015	0.006	0.000	4.3	0.6	0.7	0.19	0.22	0.1
	Ν	/laximum	0.327	0.332	0.350	93.5	42.3	17.8	1.85	1.85	53.7
		@ Blow#	12	13	10	12	17	16	10	10	11
		Minimum	0.266	0.310	0.350	76.1	39.9	15.3	0.91	0.79	53.3
		@ Blow#	27	23	10 T-t-1 mum	27	21	21	22	11	22

	ciences Testi Method Resu							PDIPLOT	Ver. 2008.2 -		age 1 of 1 Apr-2009
VRAN OP: S	IS RSCH001 PK	-703 - GD-3						21	NCH SS;CMI Tes	E55 AUTO; t date: 24-\$	
AR:	1.45 in^2									SP: 0	.492 k/ft3
LE:	37.08 ft									EM: 30	,000 ksi
	6,807.7 f/s									JC:	0.00
EMX:	Max Transfe	rred Energy							VMX: Max	imum Velo	city
	Energy of F'									imum Disp	
ER:	Hammer En									I Displacen	
EIR:	Energy Tran	sfer Ratio							BPM: Blov	vs per Minu	te
	Maximum Fo										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
~ ~ ~	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	
34	15.00	0	0.299	0.353	0.350	85.4	42.8	15.7	1.01	1.01	0.0
35	15.06	17	0.299	0.348	0.350	85.4	41.0	15.5	0.72	0.72	53.8
36	15.12	17	0.302	0.363	0.350	86.4	42.7	16.3	0.65	0.54	53.4
37	15.18	17	0.302	0.352	0.350	86.2	42.2	16.6	0.71	0.70	53.6
38	15.24	17	0.303	0.356	0.350	86.7	42.4	16.2	0.89	0.89	53.6
39 40	15.30	17	0.327	0.370	0.350	93.4	43.1	16.5	0.76	0.70	53.6
40	15.36 15.42	17	0.299	0.352	0.350	85.4	41.8	15.9	0.79	0.77	53.3
41	15.42 15.48	17 17	0.308 0.305	0.351 0.350	0.350 0.350	88.1 87.1	41.5 41.5	16.1 16.2	1.03 0.83	1.03	53.6
42	15.46	17	0.305		0.350		41.5 41.6	16.2 16.5	0.83	0.83	53.6
43	15.65	17		0.343 0.350	0.350	84.1	41.0			0.74	53.5
44	15.67	17	0.305 0.306	0.349	0.350	87.1 87.5	41.7	16.8 16.9	0.81 0.92	0.81 0.92	53.5 53.7
40	15.67	17	0.308	0.349	0.350	83.3	42.3	16.6	0.92	0.92	53.5
40	15.79	17	0.292	0.340	0.350	90.4	41.8	16.9	1.08	1.08	53.6
48	15.85	17	0.304	0.350	0.350	86.8	42.6	16.7	0.97	0.97	53.6
49	15.91	17	0.304	0.346	0.350	86.0	42.3	16.7	0.90	0.90	53.8
50	15.97	17	0.300	0.347	0.350	85.7	41.2	16.2	0.82	0.78	53.5
51	16.03	17	0.282	0.341	0.350	80.5	42.2	16.7	0.89	0.89	53.5
52	16.09	17	0.300	0.346	0.350	85.7	41.8	16.1	0.84	0.84	53.5
53	16.15	17	0.311	0.351	0.350	88.9	42.3	16.4	0.93	0.93	53.7
54	16.21	17	0.312	0.350	0.350	89.1	42.7	16.4	1.00	1.00	53.3
55	16.27	17	0.305	0.350	0.350	87.2	42.3	16.1	0.77	0.77	53.8
56	16.33	17	0.311	0.352	0.350	88.9	41.9	16.4	0.76	0.76	53.4
57	16.39	17	0.309	0.342	0.350	88.2	40.5	16.2	0.95	0.95	53.6
58	16.45	17	0.305	0.345	0.350	87.1	41.4	16.2	0.82	0.82	53.7
59	16.52	17	0.302	0.345	0.350	86.4	41.3	16.2	0.73	0.73	53.7
60	16.58	17	0.308	0.346	0.350	88.0	41.9	16.3	0.87	0.87	53.4
61	16.64	17	0.306	0.344	0.350	87.4	41.3	16.1	0.83	0.83	53.3
62	16.70	17	0.301	0.349	0.350	85.9	41.3	15.8	0.61	0.52	53.7
63	16.76	17	0.304	0.348	0.350	87.0	42.1	16.5	0.67	0.67	53.4
64	16.82	17	0.301	0.344	0.350	86.1	41.2	15.7	0.76	0.76	53.7
65	16.88	17	0.301	0.346	0.350	85.9	41.8	16.6	0.56	0.34	53.5
66	16.94	17	0.292	0.338	0.350	83.5	40.9	15.7	0.78	0.78	53.5
67	17.00	17	0.312	0.339	0.350	89.2	40.7	16.0	0.58	0.56	53.2
		Average	0.304	0.349	0.350	86.8	41.8	16.3	0.82	0.80	53.5
		Std. Dev.	0.008	0.006	0.000	2.2	0.6	0.4	0.13	0.15	0.2
		/laximum	0.327	0.370	0.350	93.4	43.1	16.9	1.08	1.08	53.8
		@ Blow#	39	39	34	39	39	45	47	47	35
		Minimum	0.282	0.338	0.350	80.5	40.5	15.5	0.56	0.34	53.2
		@ Blow#	51	66	34	51	57	35	65	65	67

	ciences Test Method Res	ing & Resear ults	ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VRAN OP: S		1-703 - GD-3						2	NCH SS;CMI Tes	E55 AUTO; at date: 24-8	-
AR: LE: WS: 1	1.45 in^2 37.08 ft 16,807.7 f/s	2								SP: 0. EM: 30,	492 k/ft3
EF2: ER: ETR:	Energy of F	nergy Rating nsfer Ratio							DMX: Max DFN: Fina	imum Veloo imum Displ Il Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
68	20.00	0	0.307	0.370	0.350	87.8	41.3	15.7	1.35	1.07	0.0
69	20.06	17	0.293	0.351	0.350	83.7	39.2	15.2	0.90	0.84	53.9
70	20.12	17	0.307	0.351	0.350	87.7	39.2	15.1	0.79	0.72	53.7
71	20.18	17	0.305	0.364	0.350	87.1	39.0	15.0	0.79	0.36	53.7
72	20.24	17	0.298	0.358	0.350	85.1	39.9	14.9	0.77	-0.11	53.6
73	20.30	17	0.331	0.366	0.350	94.6	39.7	15.0	1.47	1.47	53.7
74	20.36	17	0.306	0.363	0.350	87.5	39.0	14.9	0.89	0.78	53.6
75	20.42	17	0.311	0.365	0.350	89.0	39.4	14.7	1.02	1.02	53.5
76	20.48	17	0.300	0.355	0.350	85.7	39.7	15.2	1.09	1.09	53.8
77	20.55	17	0.324	0.371	0.350	92.5	39.4	15.0	0.94	0.94	53.7
78	20.61	17	0.300	0.365	0.350	85.8	39.5	15.1	0.85	0.83	53.6
79 81	20.67 20.79	17 17	0.319 0.308	0.371 0.368	0.350 0.350	91.1 87.9	40.7 39.5	15.2 15.1	1.03 0.78	1.03 0.61	53.6 53.5
82	20.79	17	0.308	0.362	0.350	86.6	39.5	15.1	0.78	0.87	53.5 53.8
83	20.85	17	0.303	0.362	0.350	93.3	39.3	15.0	0.87	0.87	53.6 53.6
84	20.91	17	0.327	0.365	0.350	93.3 87.8	40.0	15.0	0.80	0.90	53.6
85	20.37	17	0.307	0.368	0.350	87.7	40.0	15.4	0.80	0.80	53.5
86	21.00	17	0.307	0.358	0.350	87.8	39.2	15.1	1.05	1.05	53.6
87	21.15	17	0.312	0.369	0.350	89.3	39.7	15.3	0.83	0.83	53.6
88	21.21	17	0.305	0.365	0.350	87.2	40.4	15.5	0.66	0.63	53.4
89	21.27	17	0.304	0.364	0.350	86.8	40.4	15.5	0.67	0.67	53.7
90	21.33	17	0.310	0.364	0.350	88.5	40.2	15.3	0.73	0.73	53.3
91	21.39	17	0.307	0.359	0.350	87.8	39.1	15.0	0.61	0.56	53.8
92	21.45	17	0.325	0.372	0.350	92.9	40.9	15.3	0.99	0.99	53.4
93	21.52	17	0.305	0.370	0.350	87.0	40.4	15.2	0.59	0.37	53.7
94	21.58	17	0.307	0.362	0.350	87.8	39.4	15.1	0.66	0.66	53.7
95	21.64	17	0.309	0.359	0.350	88.3	39.4	15.2	0.74	0.74	53.5
96	21.70	17	0.308	0.360	0.350	88.1	39.2	15.1	0.92	0.92	53.5
97	21.76	17	0.313	0.367	0.350	89.4	39.9	15.2	0.58	0.43	53.6
98	21.82	17	0.307	0.362	0.350	87.8	39.5	15.1	0.85	0.85	53.6
99	21.88	17	0.294	0.354	0.350	83.9	41.1	15.7	0.72	0.72	53.5
100	21.94	17	0.302	0.356	0.350	86.4	40.0	15.2	0.66	0.66	53.7
_101	22.00	17	0.299	0.366	0.350	85.4	39.7	15.6	0.57	0.50	53.4
		Average	0.308	0.363	0.350	88.0	39.8	15.2	0.85	0.77	53.6
		Std. Dev.	0.009	0.006	0.000	2.5	0.6	0.2 15.7	0.20	0.27	0.1
		Maximum	0.331 73	0.372 92	0.350 68	94.6 73	41.3 68	15.7	1.47 73	1.47 73	53.9 69
		@ Blow# Minimum	0.293	92 0.351	0.350	83.7	39.0	00 14.7	0.57	-0.11	53.3
		@ Blow#	0.293	69	0.350	63.7 69	39.0 71	75	101	-0.11	53.3 90
		C DIOW#	03	03		ber of blows				14	30

Geosciences Testing & Research Inc Case Method Results

VRANS RSCH001-703 - GD-3 OP: SPK

EMX: Max Transferred Energy

1.45 in^2 37.08 ft

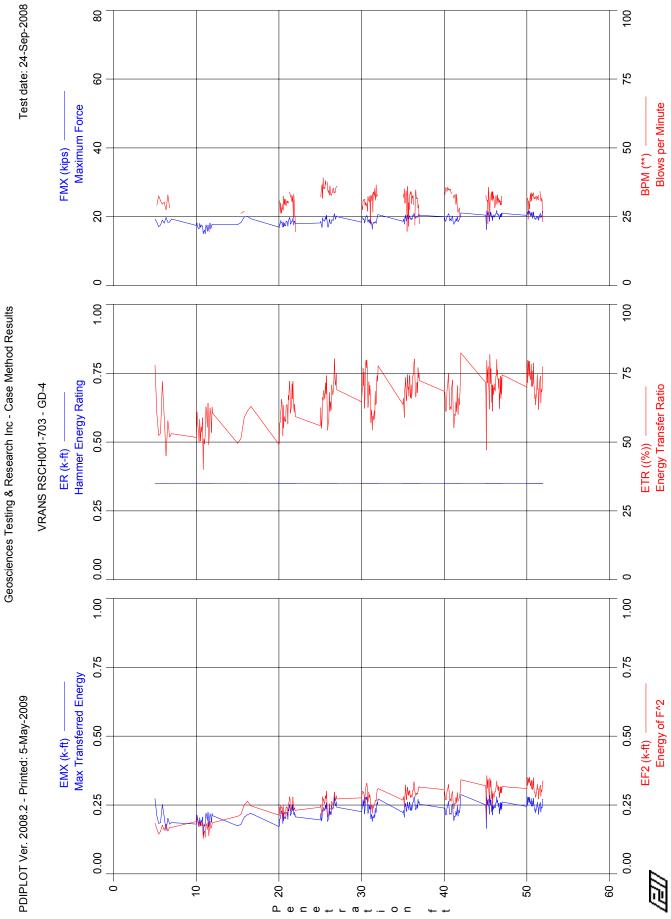
WS: 16,807.7 f/s

AR: LE:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

•

2 INCH SS;CME55 AUTO;VTRANS


Test date: 24-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

ENIX: EF2: ER: ETR: FMX:	Energy of F Hammer E Energy Tra	nergy Rating Insfer Ratio							DMX: Maxi DFN: Fina	mum Veloci mum Displa I Displaceme s per Minute	cement ent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
102	25.00	0	0.313	0.379	0.350	89.4	40.4	15.5	0.88	0.87	0.0
103	25.10	11	0.304	0.358	0.350	87.0	40.2	15.6	0.65	0.61	53.6
104	25.19	11	0.313	0.377	0.350	89.6	40.3	15.0	0.72	0.57	53.7
105	25.29	11	0.307	0.396	0.350	87.6	42.8	15.1	0.72	0.44	53.7
106	25.38	11	0.317	0.359	0.350	90.6	39.6	15.1	1.29	1.29	53.6
107	25.48	11	0.297	0.360	0.350	85.0	40.9	15.2	1.27	1.21	53.8
108	25.57	11	0.304	0.375	0.350	86.9	42.0	15.6	1.75	1.74	53.5
109	25.67	11	0.306	0.370	0.350	87.3	41.4	15.3	1.36	1.30	53.9
110	25.76	11	0.312	0.381	0.350	89.3	41.0	15.3	1.42	1.42	53.8
111	25.86	11	0.315	0.380	0.350	90.0	41.0	15.5	1.49	1.46	53.4
112	25.95	11	0.303	0.371	0.350	86.6	42.1	15.2	1.72	1.72	53.9
113	26.05	11	0.316	0.389	0.350	90.4	42.7	15.2	1.84	1.84	53.7
114	26.14	11	0.308	0.378	0.350	88.1	42.2	15.2	1.31	1.27	53.7
115	26.24	11	0.302	0.368	0.350	86.3	42.0	14.9	1.16	1.12	53.7
116	26.33	11	0.307	0.368	0.350	87.7	40.8	15.2	1.18	1.18	53.8
117	26.43	11	0.303	0.371	0.350	86.7	42.5	15.1	1.19	1.19	53.8
118	26.52	11	0.309	0.370	0.350	88.4	43.0	15.4	1.44	1.44	53.7
119	26.62	11	0.303	0.375	0.350	86.6	41.4	15.3	0.97	0.90	53.7
120	26.71	11	0.303	0.370	0.350	86.7	41.6	15.4	0.95	0.93	53.8
121	26.81	11	0.302	0.371	0.350	86.3	41.7	15.5	1.06	1.06	53.8
122	26.91	11	0.303	0.372	0.350	86.7	43.3	16.0	1.00	1.00 🛶	53.8
123	27.00	11	0.307	0.388	0.350	87.6	42.3	16.3	0.86	0.83	53.6
		Average	0.307	0.374	0.350	87.8	41.6	15.4	1.19	1.15	53.7
		Std. Dev.	0.005	0.009	0.000	1.5	1.0	0.3	0.33	0.36	0.1
		Maximum	0.317	0.396	0.350	90.6	43.3	16.3	1.84	1.84	53.9
		@ Blow#	106	105	102	106	122	123	113	113	109
		Minimum	0.297	0.358	0.350	85.0	39.6	14.9	0.65	0.44	53.4
		@ Blow#	107	103	102	107	106	115	103	105	111
					Total num	has of blaus	analyzadi	22			

	ciences Tes Method Re	sting & Resear sults	ch Inc					PDIPLOT	Ver. 2008.2	Pa - Printed: 3-	age 1 of 1 Apr-2009
VRAN OP: S)1-703 - GD-3							NCH SS;CN	AE55 AUTO; est date: 24-	VTRANS
AR: LE:	1.45 in^ 37.08 ft 16,807.7 f/s							An		SP: 0 EM: 30	.492 k/ft3 ,000 ksi 0.00
EMX: EF2: ER: ETR:	Max Trans Energy of Hammer E	ferred Energy F^2 Energy Rating ansfer Ratio							DMX: Ma DFN: Fir	aximum Velo aximum Disp nal Displacer ows per Minu	city lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
124	30.00	0	0.299	0.360	0.350	85.5	40.9	16.3	0.78	0.50	0.0
125 126	30.05	21	0.310	0.369	0.350	88.5	40.0	16.0	1.43	1.43	53.9
120	30.10 30.15	21 21	0.313 0.322	0.366 0.372	0.350 0.350	89.3 92.1	40.5 41.2	16.5 16.5	0.86 1.14	0.34 1.14	53.6
128	30.20	21	0.304	0.381	0.350	86.9	40.6	16.5	0.81	0.78	53.9 53.5
129	30.24	21	0.329	0.384	0.350	94.1	40.5	16.3	1.05	1.05	53.7
130	30.29	21	0.296	0.362	0.350	84.5	40.5	16.4	0.86	0.86	53.5
131	30.34	21	0.304	0.365	0.350	86.8	40.5	16.7	0.75	0.75	53.6
132	30.39	21	0.290	0.333	0.350	82.9	39.8	16.5	0.94	0.94	53.8
133 134	30.44	21	0.304	0.373	0.350	86.8	40.8	16.7	0.65	0.47	53.4
134	30.49 30.54	21 21	0.304 0.321	0.379 0.372	0.350 0.350	86.9 91.6	40.8 40.8	16.6	0.96	0.96	53.4
136	30.54	21	0.296	0.372	0.350	91.6 84.5	40.8 40.5	16.5 16.2	0.98 0.70	0.98 0.56	53.6 53.8
137	30.63	21	0.301	0.374	0.350	85.9	40.9	16.4	0.73	0.61	53.3
138	30.68	21	0.303	0.366	0.350	86.7	40.0	16.2	0.96	0.96	53.8
139	30.73	21	0.309	0.356	0.350	88.3	41.4	16.8	0.84	0.84	53.4
140	30.78	21	0.300	0.371	0.350	85.6	41.0	16.5	0.73	0.71	53.7
141 142	30.83 30.88	21	0.321	0.381	0.350	91.9	41.2	16.2	0.90	0.90	53.7
142	30.88	21 21	0.294 0.309	0.362 0.370	0.350 0.350	84.1 88.2	40.7 40.6	16.6 16.4	0.69 0.98	0.59 0.98	53.5
144	30.98	21	0.295	0.366	0.350	84,4	40.0	16.5	0.98	0.96	53.8 53.5
145	31.02	21	0.315	0.378	0.350	89.9	42.1	16.6	0.74	0.74	53.4
146	31.07	21	0.297	0.364	0.350	85.0	41.4	16.5	0.68	0.67	53.7
147	31.12	21	0.320	0.382	0.350	91.3	41.6	16.3	0.80	0.80	53.5
148	31.17	21	0.301	0.365	0.350	85.9	40.9	16.4	0.84	0.84	53.6
149 150	31.22 31.27	21 21	0.315 0.305	0.379 0.380	0.350 0.350	90.1 87.2	41.3	16.7	0.72	0.72	53.5
150	31.32	21	0.305	0.368	0.350	90.9	41.4 41.7	16.6 16.4	0.65 0.77	0.65 0.77	53.6 53.6
152	31.37	21	0.301	0.369	0.350	86.1	41.2	16.6	0.59	0.59	53.6
153	31.41	21	0.309	0.370	0.350	88.4	41.8	16.7	0.70	0.70	53.2
154	31.46	21	0.299	0.368	0.350	85.4	41.3	16.7	0.55	0.39	53.8
155	31.51	21	0.307	0.375	0.350	87.6	41.3	16.8	0.56	0.56	53.4
156 157	31.56 31.61	21 21	0.304	0.384	0.350	86.9	41.4	16.5	0.61	0.61	53.5
158	31.66	21	0.318 0.303	0.379 0.373	0.350 0.350	90.8 86.6	42.2 40.8	17.2 16.6	0.79 0.53	0.79 0.50	53.4 53.5
159	31.71	21	0.312	0.378	0.350	89.2	41.1	16.5	0.56	0.56	53.8
160	31.76	21	0.312	0.371	0.350	89.0	41.6	17.1	0.89	0.89	53.3
161	31.80	21	0.308	0.380	0.350	88.1	41.2	16.7	0.48	0.20	53.8
162	31.85	21	0.309	0.375	0.350	88.3	40.9	16.4	0.51	0.51	53.5
163 164	31.90	21	0.308	0.380	0.350	88.0	41.3	16.5	0.52	0.52	53.8
164	31.95	21	0.302	0.370	0.350	86.2	41.5	16.5	0.50	0.50	53.4
		Average Std. Dev.	0.307 0.009	0.371 0.009	0.350 0.000	87.7 2.5	41.0 0.5	16.5	0.77	0.72	53.6
		Maximum	0.329	0.009	0.350	∠.5 94.1	42.2	0.2 17.2	0.19 1.43	0.23 1.43	0.2 53.9
		@ Blow#	129	129	124	129	157	157	125	125	125
		Minimum	0.290	0.333	0.350	82.9	39.8	16.0	0.48	0.20	53.2
		@ Blow#	132	132	124	132	132	125	161	161	153
					Total num	ber of blows	s analyzed:	41			

/RANS DP: SP	RSCH001-	703 - GD-3						21	NCH SS;CM		
\R: .E:	1.45 in^2 37.08 ft ,807.7 f/s								1e:	EM: 30	5ep-2008 .492 k/ft3 ,000 ksi 0.00
MX: N F2: E R: F TR: E	Max Transfer Energy of F^2 Hammer Ene Energy Trans Maximum Fo	2 rgy Rating fer Ratio							DMX: Max DFN: Fina	kimum Velo kimum Disp al Displacen ws per Minu	lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
165	ft 32.00	bl/ft 21	k-ft 0.329	k-ft 0.398	k-ft 0.350	(%) 94.0	kips 44.6	f/s 13.7	in 0.56	in 0.24	** 0.0
167	32.08	26	0.324	0.409	0.350	92.6	45.6	13.3	0.55	0.24	53.5
168	32.12	26	0.321	0.403	0.350	91.7	45.9	13.3	0.58	0.58	53.6
169	32.16	26	0.328	0.388	0.350	93.6	46.1	13.4	0.73	0.73	53.4
171	32.24	26	0.324	0.405	0.350	92.5	45.9	13.4	0.57	0.57	53.4
173	32.31	26	0.324	0.383	0.350	92.5	46.4	13.5	0.73	0.73	53.5
174 175	32.35 32.39	26 26	0.329 0.324	0.417 0.411	0.350 0.350	93.9 92.6	45.9 46.1	13.1 13.2	0.56 0.60	0.07 0.51	53.6 53.5
175	32.39 32.47	26 26	0.324	0.411	0.350	92.6 92.1	46.1 45.6	13.2	0.60	0.51	53.5 53.5
178	32.51	26	0.327	0.392	0.350	93.5	46.3	13.3	0.62	0.60	53.4
179	32.55	26	0.327	0.385	0.350	93.5	46.4	13.3	0.79	0.79	53.8
180	32.59	26	0.331	0.415	0.350	94.6	46.4	13.4	0.75	0.75	53.5
181	32.63	26	0.326	0.407	0.350	93.2	46.1	13.3	0.79	0.79	53.8
183 185	32.71 32.78	26 26	0.329 0.322	0.408 0.396	0.350 0.350	93.9 92.0	46.2 45.7	13.4 13.5	0.85 0.55	0.85 0.47	53.5 53.5
186	32.82	26	0.328	0.390	0.350	92.0 93.6	46.7	13.5	0.55	0.47	53.5
187	32.86	26	0.325	0.406	0.350	92.9	45.3	13.3	0.69	0.69	53.4
188	32.90	26	0.318	0.395	0.350	90.8	45.9	13.6	0.58	0.36	53.6
189	32.94	26	0.332	0.420	0.350	94.9	47.1	13.6	0.66	0.66	53.4
190	32.98	26	0.328	0.396	0.350	93.6	47.0	13.7	0.68	0.68	53.6
191 192	33.02 33.06	26 26	0.326 0.331	0.414 0.415	0.350 0.350	93.2 94.7	46.9 46.6	13.7 13.7	0.57 0.62	0.55 0.62	53.4 53.7
193	33.10	26	0.327	0.415	0.350	94.7 93.3	46.7	13.7	0.62	0.82	53.5
195	33.18	26	0.324	0.391	0.350	92.5	47.0	13.8	0.52	0.44	53.5
196	33.22	26	0.330	0.413	0.350	94.3	46.6	13.6	0.54	0.42	53.5
197	33.25	26	0.326	0.390	0.350	93.2	46.5	13.5	0.70	0.70	53.7
198 199	33.29	26	0.329	0.420	0.350	93.9	47.1	13.9	0.53	0.48	53.4
200	33.33 33.37	26 26	0.325 0.332	0.408 0.416	0.350 0.350	92.7 94.9	46.4 46.6	13.6 13.6	0.54 0.55	0.51 0.38	53.5 53.5
200	33.41	26	0.324	0.406	0.350	92.6	46.4	13.4	0.55	0.57	53.6
202	33.45	26	0.330	0.417	0.350	94.1	46.6	13.7	0.60	0.60	53.5
203	33.49	26	0.330	0.406	0.350	94.4	46.1	13.4	0.77	0.77	53.6
205	33.57	26	0.327	0.411	0.350	93.4	46.2	13.4	0.68	0.68	53.6
206 207	33.61 33.65	26 26	0.327 0.328	0.389 0.410	0.350 0.350	93.4 93.8	46.7 46.3	13.6 13.5	0.54 0.65	0.42 0.65	53.7 53.6
208	33.69	26	0.328	0.410	0.350	93.8 93.5	46.6	13.5	0.65	0.65	53.6
209	33.73	26	0.330	0.409	0.350	94.4	45.9	13.4	0.65	0.65	53.4
210	33.76	26	0.330	0.419	0.350	94.2	46.9	13.5	0.62	0.62	53.6
211	33.80	26	0.321	0.385	0.350	91.7	46.8	13.6	0.55	0.55	53.6
212 213	33.84 33.88	26	0.329	0.406 0.387	0.350 0.350	94.0 92.5	46.8	13.5	0.64	0.64	53.6
213	33.88 33.92	26 26	0.324 0.326	0.387 0.396	0.350	92.5 93.2	46.4 46.7	13.7 13.5	0.53 0.54	0.53 0.54	53.5 53.6
215	33.96	26	0.320	0.388	0.350	93.2 91.9	46.1	13.6	0.54	0.10	53.5
216	34.00	26	0.328	0.402	0.350	93.6	47.0	13.6	0.68	0.68	53.6
		Average	0.327	0.404	0.350	93.3	46.3	13.5	0.62	0.56	53.5
	S	td. Dev.	0.003	0.011	0.000	0.9	0.5	0.2	0.09	0.17	0.1
		aximum	0.332	0.420	0.350	94.9	47.1	13.9	0.85	0.85	53.8
		D Blow#	189	189	165	200	198	198	183	183	179
		linimum ୬ Blow#	0.318 188	0.383 173	0.350 165	90.8 188	44.6 165	13.1 174	0.50 215	0.07 174	53.4 169
	le l	5 DIOW#	100	115		ber of blows		1/4	210	1/4	109

	ciences Testing Method Results		Inc				PDIPLO ⁻	T Ver. 200	Pa 8.2 - Printed: 3	age 1 of 1 -Apr-2009
VRAN OP: S	NS RSCH001-70)3 - GD-4					2 INC	CH SS;CN	IE45C SAFETY Test date: 24-	
AR: LE: <u>WS:</u> ^	0.92 in^2 53.83 ft 16,807.7 f/s								EM: 30).492 k/ft3),000 ksi 0.00
EF2: ER: ETR: FMX:	Max Transferre Energy of F ² Hammer Energ Energy Transfe Maximum Forc	gy Rating er Ratio ce						DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Mino	placement ment
Statis	tics for entire file	e (289 blows)								
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	A	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average Std. Dev.	0.232 0.027	0.267	0.350 0.001	66.3 7.7	19.2 1.3	12.0 1.0	0.92 0.46	0.88 0.48	31.1
	Maximum	0.027	0.049 0.357	0.001	82.4	21.8	16.4	3.20	3.20	3.4 39.1
	@ Blow#	208	212	0.000	208	238	5	5.20	5.20	87
	Minimum	0.140	0.128	0.350	40.0	15.0	9.2	0.42	0.14	19.4
	@ Blow#	21	21	1	21	21	211	69	204	30
Time	Summary									
Drive	19 seco	nds		1:33:10) PM - 1:33:2	9 PM (9/24/2	008) BN 1 -	10		
Stop	19 minu	tes 26 second	ls		PM - 1:52:5		,			
Drive	1 minute	e 42 seconds				7 PM BN 11	- 35			
Stop		tes 16 second	ls		7 PM - 2:21:5					
Drive	36 seco					9 PM BN 36	- 41			
Stop Drive		tes 7 seconds 23 seconds	5		PM - 2:42:3	6 PM 9 PM BN 42	91			
Stop		tes 31 seconds	ls		9 PM - 2:58:3		- 01			
Drive	51 seco					1 PM BN 82	- 111			
Stop	15 minu	tes 11 second	ls		PM - 3:14:3					
Drive		8 seconds				0 PM BN 11	2 - 146			
Stop		tes 51 second	ls) PM - 3:32:3					
Drive		16 seconds				7 PM BN 14	7 - 183			
Stop Drive	18 minu 57 secol	tes 20 second	IS		PM - 3:52:0		4 209			
Stop		tes 41 second	le		PIVI - 3.53.04 PM - 4:12:4	4 PM BN 18 5 PM	4 - 200			
Drive		es 4 seconds	13			9 PM BN 20	9 - 252			
Stop		tes 7 seconds	;		PM - 4:33:5					
Drive		38 seconds				4 PM BN 25	3 - 291			

1 minute 38 seconds 4:33:56 PM - 4:35:34 PM BN 253 - 291

Total time [3:02:24] = (Driving [0:12:54] + Stop [2:49:30])

	iences Test Method Res	ing & Resear ults	ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VRAN OP: SI		-703 - GD-4						2 INCH	I SS;CME450 Tes	C SAFETY; t date: 24-8	
AR: LE:	0.92 in^2 53.83 ft	2									492 k/ft3
WS: 1	6,807.7 f/s									JC: (00.00
EMX:	Max Transfe	erred Energy							VMX: Max	imum Velo	city
EF2:	Energy of F								DMX: Max	imum Displ	acement
	Hammer Er	nergy Rating								I Displacen	
	Energy Trai								BPM: Blov	vs per Minu	te
FMX:	Maximum F	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	5.00	5	0.273	0.184	0.350	78.0	19.3	16.3	2.14	2.14	0.0
2	5.22	5	0.211	0.164	0.350	60.4	18.4	14.6	1.79	1.79	29.2
3	5.44	5	0.183	0.144	0.350	52.4	17.1	13.9	1.77	1.77	32.6
4	5.67	5	0.186	0.154	0.350	53.2	17.6	14.9	1.88	1.88	30.8
5	5.89	5	0.252	0.177	0.350	72.0	19.1	16.4	3.20	3.20	29.6
6	6.11	5	0.207	0.158	0.350	59.2	18.1	15.8	2.97	2.97	30.3
7	6.33	5	0.158	0.180	0.350	45.0	19.8	15.9	2.53	2.35	27.5
8	6.56	5	0.202	0.155	0.350	57.7	18.4	15.5	3.10	3.10	32.9
9	6.78	5	0.181	0.170	0.350	51.8	18.5	14.6	2.50	2.50	28.2
10	7.00	5	0.186	0.169	0.350	53.0	19.3	15.7	2.64	2.64	0.0
		Average	0.204	0.165	0.350	58.3	18.5	15.4	2.45	2.43	30.1
		Std. Dev.	0.033	0.012	0.000	9.4	0.8	0.8	0.51	0.51	1.8
		Maximum	0.273	0.184	0.350	78.0	19.8	16.4	3.20	3.20	32.9
		@ Blow#	1	1	1	1	7	5	5	5	8
		Minimum	0.158	0.144	0.350	45.0	17.1	13.9	1.77	1.77	27.5
		@ Blow#	7	3	1	7	3	3	3	3	7
					Total num	her of blows	e analyzed	· 10			

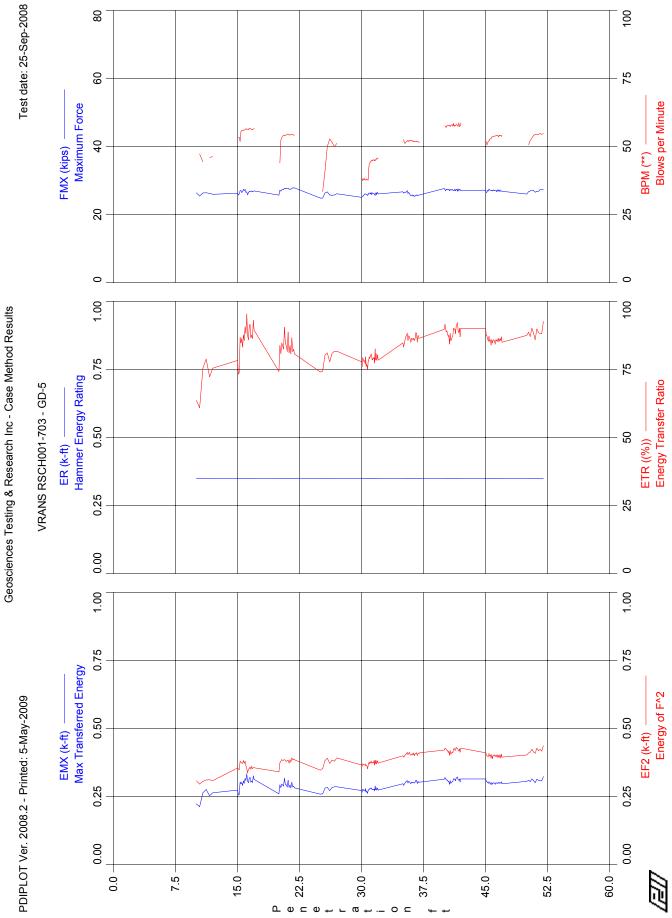
1 of 1 r-2009		/er. 2008.2 -	PDIPLOT V					ch Inc		iences Testin Method Resul	
RANS		SS;CME45C							703 - GD-4	S RSCH001-3 PK	VRAN OP: S
	SP: 0.4									0.92 in^2	AR:
	EM: 30,0									53.83 ft	LE:
	JC: 0									6,807.7 f/s	
	imum Veloc	VMX Max							red Energy	Max Transfer	
	imum Displa								2	Energy of F^2	EF2:
	I Displacem									Hammer Ene	ER:
	s per Minut									Energy Trans	ETR:
										Maximum Fo	
BPM	DFN	DMX	VMX	FMX	ETR	ER	EF2	EMX	BLC	depth	BL#
**	in	in	f/s	kips	(%)	k-ft	k-ft	k-ft	bl/ft	ft	
0.0	1.42	1.45	13.9	17.5	51.7	0.350	0.190	0.181	0	10.00	11
0.0	1.93	1.93	13.9	18.1	60.9	0.350	0.205	0.213	12	10.08	12
0.0	1.56	1.57	13.6	17.2	56.9	0.350	0.192	0.199	12	10.17	13
0.0	1.20	1.21	12.7	16.4	53.7	0.350	0.174	0.188	12	10.25	14
0.0	1.00	1.02	12.8	16.5	50.2	0.350	0.171	0.176	12	10.33	15
0.0	1.33	1.33	13.8	18.0	58.3	0.350	0.191	0.204	12	10.42	16
0.0	0.85	0.96	14.1	16.9	50.4	0.350	0.174	0.176	12	10.50	17
0.0	0.87	0.96	13.0	17.6	55.5	0.350	0.186	0.194	12	10.58	18
0.0	1.14	1.14	13.0	17.3	53.7	0.350	0.174	0.188	12	10.67	19
0.0	1.20	1.20	12.6	17.3	58.8	0.350	0.186	0.206	12	10.75	20
20.8	0.30	0.68	11.7	15.0	40.0	0.350	0.128	0.140	12	10.83	21
0.0	1.03	1.03	12.6	15.7	51.1	0.350	0.151	0.179	12	10.92	22
0.0	0.28	0.87	13.2	16.1	49.3	0.350	0.156	0.173	12	11.00	23
0.0	1.43	1.43	12.2	15.0	52.8	0.350	0.133	0.185	12	11.08	24
0.0	1.33	1.33	12.6	17.6	62.7	0.350	0.182	0.220	12	11.17	25
0.0	1.01	1.01	11.7	17.1	60.7	0.350	0.179	0.213	12	11.25	26
0.0	1.07	1.07	12.4	15.8	55.4	0.350	0.161	0.194	12	11.33	27
0.0	0.98	0.98	11.7	17.6	64.1	0.350	0.190	0.224	12	11.42	28
20.3	0.99	0.99	10.2	16.0	49.0	0.350	0.139	0.172	12	11.50	29
19.4	0.92	0.92	11.8	16.8	54.2	0.350	0.164	0.190	12	11.58	30
0.0	1.14	1.15	13.0	18.2	62.4	0.350	0.192	0.218	12	11.67	31
0.0	1.41	1.41	11.8	16.4	59.8	0.350	0.165	0.209	12	11.75	32
0.0	0.92	0.96	12.0	17.4	53.4	0.350	0.171	0.187	12	11.83	33
0.0	1.33	1.33	12.5	17.7	62.7	0.350	0.181	0.219	12	11.92	34
0.0	1.33	1.33	12.5	17.8	60.4	0.350	0.186	0.211	12	12.00	35
20.2	1.12	1.17	12.6	16.9	55.5	0.350	0.173	0.194	Average		
0.6	0.34	0.26	0.9	0.9	5.6	0.000	0.019	0.019	td. Dev.		
20.8	1.93	1.93	14.1	18.2	64.1	0.350	0.205	0.224	laximum		
21	12	12	17	31	28	11	12	28	D Blow#		
19.4	0.28	0.68	10.2	15.0	40.0	0.350	0.128	0.140	/linimum		
30	23	21	29	21	21 ber of blows	11	21	21	2) Blow#	(

	ences Test /lethod Res	ing & Resear ults	ch Inc					PDIPLOT	/er. 2008.2 -		ge 1 of 1 Apr-2009
VRANS OP: SF		-703 - GD-4						2 INCH	SS;CME450 Tes	C SAFETY; t date: 24-S	
AR: LE: WS: 16	0.92 in^2 53.83 ft 5,807.7 f/s									SP: 0. EM: 30,	492 k/ft3
EMX: EF2: ER: ETR:	Max Transfe Energy of F	ergy Rating sfer Ratio							DMX: Max DFN: Fina	timum Veloc timum Displ Il Displacen vs per Minu	city acement ient
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
36	15.00	0	0.174	0.209	0.350	49.6	17.7	13.4	2.03	1.99	0.0
37	15.40	3	0.180	0.216	0.350	51.3	18.3	13.0	1.82	1.82	26.2
38	15.80	3	0.206	0.251	0.350	59.0	19.9	14.0	2.75	2.75	27.0
39	16.20	3	0.215	0.263	0.350	61.3	20.1	13.4	2.48	2.48	0.0
40	16.60	3	0.220	0.247	0.350	63.0	19.4	13.2	1.63	1.48	21.2
		Average	0.199	0.237	0.350	56.8	19.1	13.4	2.14	2.10	24.8
		Std. Dev.	0.019	0.021	0.000	5.4	0.9	0.3	0.41	0.46	2.6
	Maximum 0.220				0.350	63.0	20.1	14.0	2.75	2.75	27.0
	@ Blow# 40				36	40	39	38	38	38	38
		Minimum	0.174	0.209	0.350	49.6	17.7	13.0	1.63	1.48	21.2
		@ Blow#	36	36	36	36	36	37	40	40	40
					Total au	ببيماط كمع ممطم		al. 17			

	ciences Testing Method Result		ch inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
/RAI	NS RSCH001-7 SPK	03 - GD-4						2 INCH	I SS;CME450 Tes	C SAFETY;\ t date: 24-S	
AR: E:	0.92 in^2 53.83 ft										492 k/ft3
	16,807.7 f/s										000 KSI).00
MX: F2: R: TR:	Max Transferr Energy of F^2 Hammer Ener Energy Transf Maximum For	gy Rating er Ratio	м						DMX: Max DFN: Fina	imum Veloc imum Displ Il Displacem vs per Minut	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
42	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	
42	20.00 20.05	0 20	0.172	0.213	0.350	49.2	17.0	11.6	1.89	1.87	0.0
43	20.05		0.174	0.213	0.350	49.8	16.9	11.2	1.62	1.62	0.0
44 45	20.10	20	0.199	0.242	0.350	56.8	17.9	12.2	1.78	1.78	30.8
		20	0.200	0.219	0.350	57.3	17.8	11.3	1.47	1.47	26.2
46	20.21	20	0.212	0.248	0.350	60.7	18.9	11.6	1.33	1.33	29.9
47	20.26	20	0.218	0.238	0.350	62.2	18.5	11.8	1.04	1.04	27.3
48	20.31	20	0.229	0.240	0.350	65.5	18.2	11.3	1.14	1.14	26.3
49	20.36	20	0.225	0.243	0.350	64.4	18.3	11.8	0.95	0.95	28.3
50	20.41	20	0.215	0.232	0.350	61.5	18.1	11.7	0.76	0.74	27.7
51	20.46	20	0.183	0.201	0.350	52.3	17.0	11.0	0.61	0.58	29.5
52	20.51	20	0.222	0.250	0.350	63.4	18.5	12.1	0.68	0.68	27.3
53	20.56	20	0.193	0.200	0.350	55.1	17.1	11.4	0.68	0.68	32.4
54	20.62	20	0.206	0.222	0.350	58.7	17.8	11.7	0.62	0.62	29.6
55	20.67	20	0.207	0.225	0.350	59.2	18.1	11.8	0.55	0.55	31.4
56	20.72	20	0.202	0.217	0.350	57.7	17.3	11.2	0.67	0.67	29.4
57	20.77	20	0.203	0.220	0.350	58.1	17.4	11.0	0.49	0.37	31.3
58	20.82	20	0.201	0.223	0.350	57.4	17.4	11.6	0.51	0.51	29.4
59	20.87	20	0.221	0.244	0.350	63.1	18.7	12.1	0.66	0.66	29.0
60	20.92	20	0.222	0.241	0.350	63.4	18.7	12.0	0.73	0.73	30.0
61	20.97	20	0.223	0.242	0.350	63.6	18.5	11.9	0.69	0.69	30.8
62	21.03	20	0.213	0.237	0.350	61.0	18.2	11.7	0.46	0.43	30.0
63	21.08	20	0.198	0.209	0.350	56.6	17.3	11.1	0.62	0.62	30.6
64	21.13	20	0.234	0.252	0.350	67.0	18.8	12.3	1.07	1.07	30.5
65	21.18	20	0.229	0.256	0.350	65.4	19.0	12.1	0.54	0.54	29.9
66	21.23	20	0.241	0.264	0.350	68.9	19.4	11.6	0.48	0.20	0.0
67	21.28	20	0.252	0.280	0.350	72.1	19.8	11.8	0.66	0.66	34.0
68	21.33	20	0.240	0.270	0.350	68.5	19.3	11.5	0.49	0.48	33.1
69	21.38	20	0.212	0.228	0.350	60.5	17.8	11.9	0.42	0.35	32.8
70	21.44	20	0.216	0.235	0.350	61.8	18.0	12.1	0.51	0.51	32.1
71	21.49	20	0.218	0.239	0.350	62.4	18.3	12.3	0.43	0.14	32.8
72	21.54	20	0.226	0.241	0.350	64.5	18.6	12.2	0.65	0.65	31.3
73	21.59	20	0.249	0.251	0.350	71.1	18.8	12.4	1.23	1.23	30.5
74	21.64	20	0.230	0.253	0.350	65.7	18.7	12.4	0.44	0.16	32.4
75	21.69	20	0.252	0.279	0.350	72.1	19.5	12.6	0.50	0.39	30.2
76	21.74	20	0.227	0.240	0.350	64.8	18.2	12.1	0.60	0.60	24.5
77	21.79	20	0.219	0.231	0.350	62.6	17.6	12.2	0.53	0.53	33.2
78	21.85	20	0.213	0.239	0.350	60.9	18.6	11.6	0.44	0.32	30.5
79	21.90	20	0.223	0.240	0.350	63.8	18.7	11.5	0.66	0.66	25.9
80	21.95	20	0.214	0.230	0.350	61.1	18.3	11.8	0.63	0.63	25.0
81	22.00	20	0.207	0.231	0.350	59.2	18.0	12.0	0.43	0.15	19.5
		verage	0.216	0.237	0.350	61.7	18.2	11.8	0.76	0.72	29.6
		d. Dev.	0.018	0.018	0.000	5.2	0.7	0.4	0.38	0.42	2.9
		iximum	0.252	0.280	0.350	72.1	19.8	12.6	1.89	1.87	34.0
		Blow#	67	67	42	67	67	75	42	42	67
		nimum	0.172	0.200	0.350	49.2	16.9	11.0	0.42	0.14	19.5
			42	53		42					
		Blow#	<u>A</u>)		42	A.)	43	51	69	71	81

	ciences Tes Method Re	sting & Resear sults	ch Inc					PDIPLOT	Ver. 2008.2 -		ige 1 of 1 Apr-2009
VRAN OP: S		1-703 - GD-4						2 INCH	I SS;CME450 Tes	C SAFETY; st date: 24-8	
AR: LE:	0.92 in^ 53.83 ft 16,807.7 f/s	2								SP: 0. EM: 30,	492 k/ft3
EF2: ER: ETR:	Energy of Hammer E	inergy Rating ansfer Ratio							DMX: Max DFN: Fina	kimum Velok kimum Displ al Displacen ws per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
82	25.00	0	0.196	0.242	0.350	55.9	18.2	13.6	1.78	1.71	0.0
83	25.07	15	0.219	0.251	0.350	62.5	18.7	11.4	1.14	1.14	32.2
84	25.14	15	0.192	0.223	0.350	55.0	17.5	10.6	0.86	0.86	35.3
85	25.21	15	0.203	0.212	0.350	58.0	16.9	10.2	1.00	1.00	36.6
86	25.28	15	0.232	0.280	0.350	66.2	19.6	12.2	0.81	0.63	31.7
87	25.34	15	0.228	0.267	0.350	65.2	18.9	11.6	0.95	0.95	39.1
88	25.41	15	0.241	0.271	0.350	68.7	19.1	11.8	1.27	1.27	35.2
89 90	25.48	15	0.234	0.254	0.350	66.8	18.7	11.7	1.03	1.03	35.6
90 91	25.55 25.62	15	0.230	0.261	0.350	65.6	19.0	12.1	0.84	0.84	35.1
92	25.62	15	0.250	0.284	0.350	71.5	19.9	12.5	0.86	0.86	38.1
92	25.69	15 15	0.236 0.259	0.274 0.300	0.350 0.350	67.5	19.2	12.1	0.69	0.47	36.6
93 94	25.76	15	0.259	0.300	0.350	74.1 62.5	20.4 18.5	12.2 10.9	1.07 1.03	1.01	0.0
94 95	25.83	15	0.219	0.243	0.350	62.5 54.3	17.1	10.9	0.78	1.03	37.7
96	25.90	15	0.190	0.208	0.350	54.5 57.0	17.1	10.2	0.78	0.75 0.83	35.0
97	26.03	15	0.204	0.210	0.350	58.3	17.8	10.3	0.83	0.83	33.8
98	26.03	15	0.238	0.222	0.350	68.0	19.3	11.8	0.84	0.82	34.5 32.9
99	26.10	15	0.230	0.237	0.350	61.2	18.6	11.0	0.99	0.99	36.2
100	26.24	15	0.226	0.235	0.350	64.6	18.1	11.0	0.97	0.75	33.4
101	26.31	15	0.216	0.236	0.350	61.7	18.0	10.8	0.87	0.84	32.7
102	26.38	15	0.248	0.264	0.350	70.7	19.0	11.4	1.02	1.02	33.0
103	26.45	15	0.239	0.256	0.350	68.2	19.2	11.4	1.06	1.06	34.0
104	26.52	15	0.235	0.254	0.350	67.1	18.9	11.4	0.97	0.97	35.0
105	26.59	15	0.241	0.250	0.350	68.8	19.0	11.4	1.08	1.08	35.4
106	26.66	15	0.258	0.278	0.350	73.6	20.4	12.3	1.01	1.00	33.6
107	26.72	15	0.281	0.297	0.350	80.3	20.9	12.4	1.22	1.22	34.1
108	26.79	15	0.251	0.274	0.350	71.8	19.9	11.7	1.12	1.12	33.8
109	26.86	15	0.247	0.266	0.350	70.6	19.3	11.3	1.17	1.17	35.1
110	26.93	15	0.262	0.284	0.350	74.9	20.2	11.7	1.25	1.25	35.9
111	27.00	15	0.242	0.272	0.350	69.0	20.0	11.5	1.18	1.18	36.1
		Average	0.231	0.255	0.350	66.0	18.9	11.5	1.02	0.99	34.9
		Std. Dev.	0.022	0.024	0.000	6.3	1.0	0.7	0.20	0.22	1.7
		Maximum	0.281	0.300	0.350	80.3	20.9	13.6	1.78	1.71	39.1
		@ Blow#	107	93	82	107	107	82	82	82	87
		Minimum	0.190	0.208	0.350	54.3	16.9	10.2	0.69	0.47	31.7
		@ Blow#	95	95	82	95	85	95	92	92	86
					Total num	ber of blows	s analyzed:	30			

.


	SAFETY;V	•	2 INCH						703 - GD-4	IS RSCH001	
	t date: 24-S	Tes								0.92 in^2	<u>)P: S</u> \R:
	SP: 0.4 EM: 30,0									53.83 ft	E:
00 131	· ·									6,807.7 f/s	
	mum Veloci	VMX Maxi							red Energy	Max Transfe	
	mum Displa									Energy of F	F2:
	I Displacem									Hammer En	ER:
÷	s per Minute	BPM: Blow								Energy Tran	
									**************************************	Maximum F	
BPM	DFN	DMX	VMX	FMX	ETR	ER	EF2	EMX	BLC	depth	BL#
**	in	in	f/s	kips	(%)	k-ft	k-ft	k-ft	bl/ft	ft	
0.0	1.72	1.72	12.4	18.4	64.6	0.350	0.276	0.226	0	30.00	112
28.8	1.30	1.42	12.7	19.7	67.7	0.350	0.290	0.237	17	30.06	113
27.5	0.59	0.94	12.6	19.6	69.6 76 0	0.350	0.300	0.244	17	30.12	114
30.9	1.27	1.27	12.5	19.6	76.9	0.350	0.298	0.269	17	30.18	115
30.9	0.74	0.84	12.2	19.2	70.4	0.350	0.295	0.246	17	30.24 30.29	116
31.3	1.18	1.18	12.4	19.3	75.4	0.350	0.290	0.264 0.218	17 17	30.29	117 118
31.3	0.83	0.83	11.4	18.2	62.3	0.350	0.255		17	30.35	119
29.3	0.75	0.77	12.0	18.6	67.1 78.1	0.350 0.350	0.282 0.307	0.235 0.273	17	30.41	120
30.2	1.12	1.12 1.17	12.6 12.4	19.9 20.2	78.1 79.7	0.350	0.307	0.273	17	30.47	121
29.0 29.2	1.17 0.65	0.83	12.4	20.2	79.7	0.350	0.318	0.279	17	30.55	22
29.2	0.85	0.83	12.4	20.2	79.7	0.350	0.327	0.270	17	30.65	123
29.0	0.91	0.92	12.8	20.3 19.8	74.6	0.350	0.325	0.279	17	30.00	24
32.3	0.94	0.95	11.2	18.4	62.6	0.350	0.260	0.201	17	30.76	125
31.4	0.55	0.72	11.8	18.9	64.2	0.350	0.278	0.225	17	30.82	126
30.9	0.84	0.84	12.2	19.1	71.9	0.350	0.297	0.252	17	30.88	127
30.4	0.69	0.71	11.8	18.3	67.1	0.350	0.277	0.235	17	30.94	128
32.4	0.79	0.79	12.0	19.2	70.6	0.350	0.286	0.247	17	31.00	129
22.3	0.47	0.70	11.7	19.3	66.9	0.350	0.271	0.234	17	31.06	130
32.7	0.48	0.59	10.7	18.1	57.0	0.350	0.236	0.200	17	31.12	131
32.4	0.66	0.66	10.9	18.5	61.7	0.350	0.248	0.216	17	31.18	132
30.8	0.68	0.68	10.9	17.9	60.2	0.350	0.250	0.211	17	31.24	133
33.4	0.74	0.74	10.5	16.4	54.4	0.350	0.220	0.190	17	31.29	34
26.7	0.56	0.61	10.8	18.0	59.4	0.350	0.247	0.208	17	31.35	135
34.0	0.61	0.61	10.7	18.0	58.0	0.350	0.238	0.203	17	31.41	136
33.9	0.37	0.52	10.9	18.4	59.6	0.350	0.245	0.208	17	31.47	137
32.7	0.60	0.60	11.3	18.4	61.3	0.350	0.251	0.215	17	31.53	138
35.2	0.43	0.55	11.3	18.2	58.2	0.350	0.252	0.204	17	31.59	39
31.0	0.83	0.83	11.8	18.6	68.4	0.350	0.267	0.239	17	31.65	40
31.9	0.52	0.61	11.3	18.5	63.6	0.350	0.265	0:223	17	31.71	141
36.5	0.61	0.61	11.6	18.0	63.9	0.350	0.265	0.224	17	31.76	142
32.2	0.84	0.84	12.0	19.1	72.0	0.350	0.288	0.252	17	31.82	143
33.1	0.73	0.73	12.3	19.6	74.1	0.350	0.304	0.259	17	31.88	44
32.7	0.48	0.63	12.5	20.3	72.1	0.350	0.306	0.252	17	31.94	145
0.0	0.83	0.83	12.3	20.6	77.7	0.350	0.310	0.272	17	32.00	46
31.0	0.78	0.83	11.8	18.9	67.7	0.350	0.278	0.237	Average		
2.7	0.28	0.26	0.7	0.9	7.1	0.000	0.027	0.025	td. Dev.		
36.5	1.72	1.72	12.8	20.6	79.7	0.350	0.329	0.279	aximum		
142	112	112	123	146	121	112	123	121	9 Blow#		
22.3	0.37	0.52	10.5	16.4	54.4	0.350	0.220	0.190	linimum		
130	137	137	134	134 analyzed: 3	134	112	134	134	D Blow#		

vran: Op: Sf	S RSCH001- ⊃K	703 - GD-4						2 INCH	I SS;CME45	C SAFETY; st date: 24-	
AR: LE:	0.92 in^2 53.83 ft 6,807.7 f/s								16	SP: 0 EM: 30	.492 k/f
EMX: EF2: ER: ETR:	Max Transfe Energy of F^ Hammer Ene Energy Trans Maximum Fc	2 ergy Rating sfer Ratio							DMX: Ma DFN: Fin	ximum Velo ximum Disp al Displacer ws per Minu	city laceme nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BP
4 4 7	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	_
147	35.00	0	0.223	0.268	0.350	63.7	18.7	11.6	0.62	0.61	0
148	35.06	18	0.230	0.280	0.350	65.8	19.2	12.1	0.78	0.78	33
149	35.11	18	0.219	0.271	0.350	62.7	18.9	11.6	0.60	0.52	32
150	35.17	18	0.206	0.243	0.350	58.9	17.9	10.7	0.68	0.68	35
151	35.22	18	0.241	0.278	0.350	68.9	19.8	11.5	0.76	0.76	29
152	35.28	18	0.248	0.300	0.350	71.0	19.6	12.2	0.78	0.78	30
153	35.33	18	0.257	0.323	0.350	73.4	20.5	12.7	0.67	0.59	31
154	35.39	18	0.231	0.278	0.350	66.1	18.8	11.4	0.70	0.70	34
155	35.44	18	0.227	0.269	0.350	64.9	19.3	11.3	0.71	0.71	33
156	35.50	18	0.247	0.304	0.350	70.5	20.1	12.7	0.59	0.53	19
157	35.56	18	0.261	0.315	0.350	74.5	20.5	13.1	0.59	0.40	36
158	35.61	18	0.242	0.288	0.350	69.2	19.5	12.3	0.64	0.64	31
159	35.67	18	0.245	0.299	0.350	70.1	19.7	12.3			
160	35.72	18	0.245	0.289	0.350	66.7			0.58	0.54	21
161	35.72						19.3	12.0	0.58	0.57	30
		18	0.259	0.298	0.350	73.9	20.3	11.9	0.86	0.86	27
162	35.83	18	0.260	0.304	0.350	74.3	20.1	13.0	0.77	0.77	32
163	35.89	18	0.233	0.278	0.350	66.5	19.3	11.5	0.61	0.60	34
164	35.94	18	0.231	0.280	0.350	66.1	19.6	11.1	0.57	0.56	33
165	36.00	18	0.248	0.287	0.350	70.8	19.6	11.9	0.78	0.78	34
166	36.06	18	0.230	0.279	0.350	65.7	19.2	11.5	0.56	0.52	29
167	36.11	18	0.239	0.280	0.350	68.3	19.3	11.8	0.63	0.62	32
168	36.17	18	0.258	0.304	0.350	73.9	20.3	12.4	0.68	0.67	31
169	36.22	18	0.260	0.303	0.350	74.3	20.4	12.0	0.72	0.72	32
170	36.28	18	0.262	0.306	0.350	74.8	20.4	12.1	0.85	0.85	29
171	36.33	18	0.276	0.335	0.350	78.8	20.9	12.8	0.77	0.77	0
172	36.39	18	0.280	0.324	0.350	80.1	20.4	12.8	0.90	0.90	ō
173	36.44	18	0.264	0.298	0.350	75.5	19.5	12.0	1.02	1.02	21
174	36.50	18	0.238	0.293	0.350	67.9	19.9	12.1	0.65	0.54	33
175	36.56	18	0.232	0.282	0.350	66.4	19.6	11.9	0.65	0.64	34
176	36.61	18	0.240	0.292	0.350	68.6	19.8	12.4	0.76	0.76	31
177	36.67	18	0.249	0.289	0.350	71.2	20.0	11.5	0.92	0.92	31
178	36.72	18	0.249	0.289	0.350	71.2	20.0	11.5			31
179	36.72	18	0.231	0.293		67.9	20.0 19.9		0.92	0.92	
180					0.350			11.5	0.64	0.34	31
	36.83	18	0.270	0.300	0.350	77.0	20.3	11.8	1.20	1.20	28.
181	36.89	18	0.257	0.311	0.350	73.4	20.6	12.3	0.68	0.51	29.
182	36.94	18	0.262	0.317	0.350	74.8	20.7	12.3	0.71	0.71	25.
183	37.00	18	0.253	0.315	0.350	72.3	20.4	12.2	0.73	0.59	22.
		Average	0.246	0.293	0.350	70.3	19.8	12.0	0.73	0.69	30.
	5	Std. Dev.	0.016	0.018	0.000	4.6	0.6	0.5	0.14	0.17	4.
	N	laximum	0.280	0.335	0.350	80.1	20.9	13.1	1.20	1.20	36.
	(2) Blow#	172	171	147	172	171	157	180	180	15
		Ainimum	0.206	0.243	0.350	58.9	17.9	10.7	0.56	0.34	19.
		2) Blow#	150	150	147	150	150				15

	ciences Test Method Res	ing & Resear ults	ch Inc					PDIPLOT	Ver. 2008.2 -		age 1 of 1 Apr-2009
VRAN OP: S	IS RSCH001	I-703 - GD-4							SS;CME45		VTRANS
AR: LE:	0.92 in^2 53.83 ft 16,807.7 f/s	2								SP: 0. EM: 30,	.492 k/ft3 ,000 ksi 0.00
EF2: ER:	Energy of F Hammer Er Energy Trar	nergy Rating nsfer Ratio							DMX: Max DFN: Fina	timum Velo timum Displ I Displacen vs per Minu	lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
184	40.00	0	0.239	0.306	0.350	68.4	20.0	12.5	1.57	1.56	0.0
185	40.08	12	0.238	0.286	0.350	68.0	19.1	12.5	1.85	1.85	33.1
186	40.17	12	0.214	0.269	0.350	61.1	18.7	11.2	1.01	0.92	35.5
187	40.25	12	0.215	0.270	0.350	61.3	19.3	11.1	1.12	1.05	35.2
188 189	40.33 40.42	12	0.240	0.299	0.350	68.6	20.0	11.5	1.28	1.24	34.2
190	40.42	12 12	0.246 0.263	0.305	0.350	70.3	20.2	12.3	1.68	1.68	35.7
190	40.50	12	0.263	0.325 0.301	0.350 0.350	75.0 68.9	20.9	12.8	1.71	1.70	34.8
192	40.58	12	0.241	0.301	0.350	60.9 61.7	20.5 18.9	12.2 10.7	1.49	1.48	35.2
193	40.07	12	0.210	0.203	0.350	62.8	19.3	10.7	1.03 1.23	1.00 1.23	34.6
194	40.83	12	0.220	0.273	0.350	61.9	18.8	10.9	1.23	1.23	35.0 33.5
195	40.92	12	0.245	0.203	0.350	69.9	19.6	11.1	1.03	1.18	33.5 33.6
196	41.00	12	0.254	0.299	0.350	72.5	20.2	12.1	0.91	0.91	0.0
197	41.08	12	0.210	0.258	0.350	60.1	18.2	11.3	0.75	0.65	32.7
198	41.17	12	0.193	0.236	0.350	55.2	17.8	10.2	0.72	0.69	31.7
199	41.25	12	0.210	0.256	0.350	60.1	18.6	10.3	0.68	0.68	32.7
200	41.33	12	0.208	0.254	0.350	59.5	18.5	10.4	0.61	0.57	33.1
201	41.42	12	0.226	0.278	0.350	64.5	19.4	10.7	0.69	0.69	29.5
202	41.50	12	0.213	0.258	0.350	60.9	18.8	10.6	0.55	0.52	33.2
203	41.58	12	0.247	0.295	0.350	70.5	20.1	11.1	0.84	0.84	28.2
204	41.67	12	0.210	0.264	0.350	60.0	18.5	10.9	0.48	0.14	26.6
205	41.75	12	0.231	0.270	0.350	65.9	19.0	10.7	0.87	0.87	27.5
206	41.83	12	0.222	0.278	0.350	63.6	19.2	10.8	0.52	0.31	28.2
207	41.92	12	0.240	0.292	0.350	68.6	19.8	11.5	0.57	0.47	24.7
208	42.00	12	0.288	0.342	0.350	82.4	21.1	13.1	0.80	0.80	0.0
	•	Average	0.230	0.281	0.350	65.7	19.4	11.3	1.01	0.96	32.2
		Std. Dev.	0.021	0.024	0.000	5.9	0.8	0.8	0.39	0.44	3.2
		Maximum	0.288	0.342	0.350	82.4	21.1	13.1	1.85	1.85	35.7
		@ Blow#	208	208	184	208	208	208	185	185	189
		Minimum	0.193	0.236	0.350	55.2	17.8	10.2	0.48	0.14	24.7
		@ Blow#	198	198	184	198	198	198	204	204	207
					Lotal num	ber of blows	sanaivzed	25			

Case Method Results CPIPLOT Ver. 2002.4 : DApr.2009 VRANS RSCHO01:703 - GD.4 21NCH SS:CME4SC SAFETY VTRANS OP: SPK SP 0.422 km2 AR: 0.92 in'2 SP 0.422 km2 LE: 53.83 ft JC: 0.00 EMS: 1.8607.7 fs JC: 0.00 EMS: Maximum Velocity JC: 0.00 EMS: Maximum Velocity DPM: Blows per Minute C10 450 C224 0.224 0.350 77.5 21.0 13.0 0.86 22.0 212 45.14 22 0.227 0.350 77.5 21.1 13.0 0.82 0.850 212 45.14 22 0.220 0.350 77.5 21.4 12.5 0.71 0.73 0.73 214 45.23 22 0.220		ciences Test Method Res	ing & Researd ults	ch Inc					PDIPLOT	Ver. 2008.2		age 1 of 1 Apr-2009
AR: 0.92 in*2 SP: 0.462 km3 LE: 53.38 ft EMX: Max Transferred Energy UXS: 16.807.7 fts UXK: Maximum Displacement EMX: Max Transferred Energy UXK: Maximum Displacement DMX Maximum Displacement ETR: Framme Energy Rating UXK: Maximum Displacement DFN: Framme Energy EVX: Maximum Force EMX Maximum Displacement DFN: Framme Energy 210 45.05 22.0165 0.320 0.350 71.6 20.5 13.5 11.3 0.99 0.0 211 45.03 22.2 0.165 0.201 0.350 77.6 21.0 13.3 0.99 0.0 213 45.19 22.0 0.267 0.330 75.9 21.1 12.2 0.77.0	VRAN	NS RSCH001								SS;CME45	C SAFETY;	VTRANS
EMX: Max Transferred Energy of F/2 VMX. Maximum Velocity ER: Hamme Energy Rating DMX. Maximum Velocity ER: Hamme Energy Rating DMX. Maximum Velocity FMX: Maximum Force DMX. Maximum Force BL# depth BLC EMX. K+1 k+7 (%) kips fis in in m	AR: LE:	0.92 in^2 53.83 ft	2							• •	SP: 0 EM: 30	.492 k/ft3 ,000 ksi
BL# depth BLC EMX EFX ER FMX VMX DMX DFN BPM 209 45.00 0 0.251 0.320 0.350 67.0 19.9 13.1 0.89 0.80 0.87 210 45.05 22 0.234 0.296 0.350 67.0 19.9 13.1 0.89 0.85 30.8 212 45.14 22 0.226 0.341 0.350 77.6 21.0 13.0 0.82 0.82 0.42 45.14 22 0.226 0.331 0.350 77.5 21.4 12.2 0.73 0.73 3.310 216 45.33 22 0.226 0.330 0.350 77.5 21.4 12.6 0.76 0.78 33.6 216 45.37 22 0.247 0.360 63.6 20.0 11.7 0.70 0.70 53.7 218 45.42 22 0.247 0.360 76	EMX: EF2: ER: ETR:	Max Transfe Energy of F Hammer Er Energy Tra	hergy Rating							DMX: Ma DFN: Fin	ximum Velo ximum Disp al Displacer	city lacement nent
209 45.00 0 0.251 0.320 0.350 67.16 20.5 13.1 0.89 0.80 0.27 211 45.05 22 0.165 0.201 0.350 67.0 19.9 13.1 0.89 0.65 30.8 212 45.14 22 0.255 0.341 0.350 75.7 21.0 13.0 0.82 0.82 30.4 214 45.23 22 0.256 0.331 0.350 77.5 21.4 12.2 0.73 0.73 33.10 216 45.23 22 0.226 0.339 0.350 77.5 21.4 12.6 0.78 0.73 33.6 216 45.23 22 0.247 0.360 70.5 20.5 11.7 0.70 0.70 33.6 216 45.42 22 0.247 0.360 76.8 21.4 12.6 0.68 0.62 32.3 220 45.60 22 0.247		depth	BLC									
210 45.05 22 0.224 0.234 0.350 67.0 19.9 13.1 0.189 0.85 32.7 211 45.14 22 0.279 0.357 0.350 77.1 15.3 92 0.59 0.55 0.68 0.06 213 45.19 22 0.220 0.250 0.311 0.350 77.7 71.0 13.0 0.82 0.82 0.32 0.341 0.350 77.5 21.4 12.6 0.71 0.47 22.0 0.73 0.73 310 215 45.37 22 0.221 0.3360 77.5 21.4 12.6 0.76 0.78 33.6 216 45.47 22 0.242 0.340 0.350 67.5 20.4 11.7 0.70 0.70 0.76 32.8 220 45.51 22 0.242 0.340 0.350 76.6 21.4 12.6 0.88 0.82 22.8 22.4 45.61 22.0 </td <td>209</td> <td></td>	209											
211 45.09 22 0.165 0.201 0.350 77.6 21.7 13.9 0.966 0.96 0.06 213 45.19 22 0.265 0.341 0.350 75.7 21.0 13.0 0.82 0.82 0.04 214 45.23 22 0.260 0.331 0.350 75.9 21.1 12.5 0.71 0.47 22.4 216 45.33 22 0.247 0.340 0.350 77.5 21.4 12.6 0.78 0.78 33.6 218 45.47 22 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.244 0.350 62.0 11.7 0.70 0.70 35.7 21.4 13.0 0.89 25.4 220 45.51 22 0.242 0.244 0.350 67.6 21.4 12.6 0.68 0.62 32.3 221 45.65 22 0.240 0.337 0.350 71.6 2												
213 45.19 22 0.265 0.341 0.350 75.7 21.0 13.0 0.82 0.30.4 214 45.23 22 0.266 0.339 0.350 75.9 21.1 12.25 0.71 0.73 0.73 31.0 216 45.33 22 0.247 0.340 0.350 77.5 21.4 12.6 0.78 0.78 33.6 217 45.37 22 0.242 0.242 0.350 62.0 18.7 10.7 0.78 0.52 28.9 220 45.61 22 0.242 0.342 0.350 81.8 21.4 13.0 0.89 0.82 32.3 221 45.61 22 0.269 0.342 0.350 71.5 20.4 11.7 0.83 0.63 0.0 221 45.61 22 0.269 0.342 0.350 76.6 21.2 12.4 0.66 0.58 32.4 224 45.67 22 0.250 0.288 0.350 70.7 20.1 12.0 0.71			22	0.165	0.201							
214 45.23 22 0.260 0.311 0.360 715 20.4 12.2 0.73 0.73 310 215 45.28 22 0.260 0.339 0.350 77.5 21.1 12.6 0.78 0.47 22.4 216 45.37 22 0.242 0.342 0.350 77.5 21.4 11.5 0.70 0.70 0.73 35.6 219 45.47 22 0.242 0.294 0.350 62.0 18.7 10.7 0.59 0.52 28.9 220 45.61 22 0.286 0.342 0.350 62.0 18.7 10.7 0.59 0.52 28.9 221 45.66 22 0.286 0.337 0.350 76.6 21.2 12.4 0.66 0.68 32.4 224 45.60 22 0.248 0.330 70.7 20.1 12.0 0.72 0.72 34.2 226 45.79 22 0.247 0.259 0.350 70.7 20.1 12.0 0.66 <												
215 45.28 22 0.266 0.339 0.350 775 211 12.5 0.71 0.47 22.4 216 45.33 22 0.247 0.342 0.350 77.5 214 12.6 0.78 0.78 0.357 218 45.42 22 0.242 0.294 0.350 69.1 20.4 11.5 0.90 0.90 31.1 219 45.47 22 0.242 0.294 0.350 68.2 11.7 10.7 0.59 0.52 28.9 220 45.51 22 0.286 0.347 0.350 76.8 21.4 12.6 0.66 0.62 32.3 222 45.66 22 0.289 0.350 71.3 20.3 11.8 0.63 0.62 32.4 225 45.74 22 0.228 0.238 75.6 21.2 12.4 0.66 0.58 32.4 226 45.79 22 0.247 0.299 0.350 70.7 20.1 11.7 0.83 0.83 33.8 <td></td>												
216 45.33 22 0.271 0.342 0.350 77.5 21.4 1.26 0.78 0.78 0.356 217 45.37 22 0.242 0.294 0.350 62.0 11.7 0.70 0.70 35.7 218 45.42 22 0.242 0.294 0.350 62.0 18.7 10.7 0.59 0.52 28.9 220 45.51 22 0.260 0.342 0.350 62.0 18.7 10.7 0.59 0.52 28.9 221 45.66 22 0.299 0.342 0.350 76.8 21.4 13.0 0.89 25.4 224 45.65 22 0.298 0.350 76.6 21.2 12.4 0.66 0.58 33.8 225 45.74 22 0.226 0.273 0.350 64.4 19.9 0.9 0.71 0.71 31.1 226 45.74 22 0.247 0.250 70.7 20.2 11.3 0.79 0.79 34.0 227 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
217 45.37 22 0.247 0.306 0.350 70.5 20.5 11.7 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.77 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72												
218 45.42 22 0.224 0.284 0.350 69.1 20.4 11.5 0.90 0.90 31.1 219 45.51 22 0.226 0.347 0.350 81.8 21.4 13.0 0.89 0.89 22.4 220 45.66 22 0.249 0.314 0.350 76.8 21.4 12.6 0.68 0.62 32.3 221 45.66 22 0.249 0.314 0.350 76.6 21.2 12.4 0.66 0.58 32.4 224 45.70 22 0.225 0.273 0.350 67.6 21.2 12.4 0.66 0.58 33.8 225 45.74 22 0.227 0.273 0.350 67.6 21.2 12.4 0.71 0.71 31.1 226 45.78 22 0.247 0.290 0.350 67.2 20.4 11.7 0.83 0.83 33.8 230 45.98 22 0.248 0.289 0.350 67.2 20.5 11.4 0.61												
220 45.51 22 0.286 0.347 0.350 81.8 21.4 13.0 0.85 0.55 22.4 221 45.56 22 0.269 0.342 0.350 76.8 21.4 12.6 0.68 0.62 32.3 222 45.66 22 0.249 0.314 0.350 76.6 21.2 12.4 0.66 0.58 32.4 224 45.70 22 0.225 0.273 0.350 76.6 21.2 12.4 0.66 0.58 32.4 226 45.74 22 0.225 0.273 0.350 64.4 19.9 10.9 0.71 0.71 31.1 226 45.79 22 0.247 0.299 0.350 70.7 20.2 1.12 0.72 0.72 34.2 227 45.88 22 0.244 0.278 0.350 67.2 20.0 11.1 0.55 0.52 32.6 231 46.02									11.5	0.90		31.1
221 45.56 22 0.269 0.342 0.350 76.8 21.4 12.6 0.68 0.62 52.3 222 45.60 22 0.249 0.314 0.350 77.3 20.3 11.8 0.633 0.63 0.03 223 45.65 22 0.280 0.337 0.350 77.15 20.4 11.7 0.83 0.83 33.8 225 45.74 22 0.226 0.273 0.350 70.7 20.1 12.0 0.72 0.72 34.2 226 45.79 22 0.247 0.290 0.350 70.7 20.5 11.3 0.79 0.79 34.0 226 45.93 22 0.248 0.292 0.350 69.5 20.0 11.1 0.55 0.52 32.2 33.1 16.02 0.244 0.278 0.350 69.2 20.0 11.1 0.55 0.55 35.2 32.3 46.12 2 0.244 0.2												
222 45 60 22 0 249 0 314 0 350 713 20.3 11.8 0.63 0.63 0.63 223 45 65 22 0 268 0.337 0.350 76.6 21.2 12.4 0.66 0.58 32.4 224 45.70 22 0.225 0.273 0.350 76.6 21.2 12.4 0.66 0.58 32.4 226 45.74 22 0.247 0.299 0.350 70.7 20.1 12.0 0.72 0.72 34.2 227 45.84 22 0.244 0.247 0.350 70.7 20.2 11.3 0.79 0.79 34.0 228 45.88 22 0.244 0.278 0.350 69.2 20.5 11.4 0.61 0.61 31.6 231 46.02 2 0.244 0.278 0.350 69.0 20.1 11.3 0.59 0.58 30.0 233 46.12												
223 45.65 22 0.268 0.337 0.350 76.6 21.2 12.4 0.66 0.58 32.4 224 45.70 22 0.225 0.273 0.350 71.5 20.4 11.7 0.83 0.83 33.8 225 45.74 22 0.227 0.350 64.4 19.9 10.9 0.71 0.71 31.1 226 45.79 22 0.247 0.350 61.2 18.9 10.5 0.87 0.87 0.39 227 45.84 22 0.248 0.289 0.350 70.7 20.2 11.3 0.79 0.79 34.0 229 45.93 22 0.243 0.292 0.350 69.5 20.5 11.4 0.61 0.81 31.1 320 46.02 22 0.244 0.278 0.350 69.0 20.1 11.3 0.55 0.58 30.0 233 46.12 22 0.240												
224 45.70 22 0.250 0.298 0.350 71.5 20.4 11.7 0.83 0.83 33.8 225 45.74 22 0.225 0.273 0.350 70.7 20.1 12.0 0.72 0.72 34.2 227 45.84 22 0.247 0.299 0.350 70.7 20.1 12.0 0.72 0.72 34.2 227 45.84 22 0.248 0.289 0.350 70.7 20.2 11.3 0.79 34.0 228 45.93 22 0.243 0.292 0.350 69.5 20.5 11.4 0.61 0.61 31.6 230 45.98 22 0.244 0.276 0.350 69.8 19.9 11.2 0.81 0.81 31.1 232 46.07 22 0.244 0.297 0.350 69.0 20.1 11.3 0.55 0.54 28.3 234 46.12 2												
226 45.79 22 0.247 0.299 0.350 70.7 20.1 12.0 0.72 0.72 0.42 227 45.84 22 0.214 0.247 0.350 61.2 11.89 10.5 0.87 0.87 30.9 228 45.88 22 0.248 0.229 0.350 69.5 20.5 11.4 0.61 0.61 31.6 230 45.98 22 0.235 0.281 0.350 67.2 20.0 11.1 0.55 0.52 32.6 231 46.02 22 0.244 0.278 0.350 69.8 19.9 11.2 0.81 0.81 31.1 232 46.07 22 0.244 0.285 0.350 71.1 20.5 11.5 0.56 0.54 28.3 30.0 233 46.16 22 0.259 0.300 0.350 71.4 20.5 11.7 0.61 0.61 31.0 236			22		0.298	0.350	71.5	20.4				
227 45.84 22 0.214 0.247 0.350 61.2 18.9 10.5 0.87 0.17 30.9 228 45.88 22 0.248 0.292 0.350 70.7 20.2 11.3 0.79 0.79 34.0 229 45.93 22 0.243 0.292 0.350 69.5 20.5 11.4 0.61 0.61 31.6 230 45.98 22 0.244 0.278 0.350 69.5 20.5 11.4 0.61 0.81 0.31.1 232 46.07 22 0.244 0.285 0.350 71.1 20.5 11.7 0.61 0.61 31.0 234 46.16 22 0.240 0.297 0.350 68.5 20.4 11.4 0.53 0.20 29.1 235 46.21 22 0.250 0.313 0.350 74.0 20.9 12.0 0.61 0.61 31.0 236 46.22												
228 45.88 22 0.248 0.289 0.350 70.7 20.2 11.3 0.79 0.79 34.0 229 45.93 22 0.243 0.292 0.350 69.5 20.5 11.4 0.61 0.61 31.6 230 45.98 22 0.235 0.281 0.350 67.2 20.0 11.1 0.55 0.52 32.6 231 46.02 22 0.244 0.278 0.350 69.0 20.1 11.3 0.56 0.54 28.3 233 46.16 22 0.249 0.297 0.350 68.5 20.4 11.4 0.53 0.20 29.1 235 46.26 22 0.252 0.300 0.350 74.0 20.9 12.0 0.61 0.61 32.6 236 46.35 22 0.260 0.321 0.350 74.5 21.0 12.4 0.72 0.72 29.9 239 46.40												
229 45.93 22 0.243 0.292 0.350 69.5 20.5 11.4 0.61 0.61 31.6 230 45.98 22 0.235 0.281 0.350 67.2 20.0 11.1 0.55 0.52 32.6 231 46.07 22 0.241 0.285 0.350 69.0 20.1 11.3 0.59 0.58 30.0 233 46.12 22 0.244 0.298 0.350 71.1 20.5 11.5 0.56 0.54 28.3 234 46.16 22 0.240 0.298 0.350 71.9 20.5 11.7 0.61 0.61 31.0 235 46.21 22 0.252 0.300 0.350 74.2 21.1 12.2 0.55 0.46 31.5 236 46.35 22 0.260 0.337 0.350 80.0 21.8 12.4 0.72 0.72 29.9 234 46.40												
230 45.98 22 0.235 0.281 0.350 67.2 20.0 11.1 0.55 0.52 32.6 231 46.02 22 0.244 0.278 0.350 69.8 19.9 11.2 0.81 0.81 31.1 232 46.07 22 0.244 0.285 0.350 69.0 20.1 11.3 0.59 0.58 30.0 233 46.12 22 0.249 0.298 0.350 71.1 20.5 11.5 0.56 0.54 28.3 234 46.16 22 0.240 0.297 0.350 74.0 20.9 11.7 0.61 0.61 31.0 236 46.26 22 0.259 0.313 0.350 74.0 20.9 12.0 0.61 0.61 32.6 238 46.30 22 0.260 0.327 0.350 74.5 21.0 12.4 0.54 0.41 29.6 240 46.44												
232 46.07 22 0.241 0.285 0.350 69.0 20.1 11.3 0.55 0.58 30.1 233 46.12 22 0.249 0.298 0.350 71.1 20.5 11.5 0.56 0.54 28.3 234 46.16 22 0.240 0.297 0.350 68.5 20.4 11.4 0.53 0.20 29.1 235 46.21 22 0.259 0.313 0.350 74.0 20.9 12.0 0.61 0.61 32.6 237 46.30 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.40 22 0.261 0.322 0.350 74.5 21.0 12.4 0.54 0.41 29.6 240 46.44 22 0.267 0.322 0.350 72.8 20.7 11.8 0.54 0.48 30.1 241 46.53 22 0.255 0.319 0.350 72.9 20.7 11.8 0.54	230											
233 46.12 22 0.249 0.298 0.350 71.1 20.5 11.5 0.56 0.54 28.3 234 46.16 22 0.240 0.297 0.350 68.5 20.4 11.4 0.53 0.20 29.1 235 46.21 22 0.252 0.300 0.350 71.9 20.5 11.7 0.61 0.61 31.0 236 46.26 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.30 22 0.261 0.322 0.350 74.2 21.1 12.4 0.72 0.72 29.9 239 46.40 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 241 46.53 22 0.255 0.306 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.53										0.81	0.81	31.1
234 46.16 22 0.240 0.297 0.350 68.5 20.4 11.4 0.53 0.20 29.1 235 46.21 22 0.252 0.300 0.350 71.9 20.5 11.7 0.61 0.61 31.0 236 46.26 22 0.259 0.313 0.350 74.0 20.9 12.0 0.61 0.61 32.6 237 46.30 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.35 22 0.260 0.337 0.350 74.5 21.0 12.4 0.72 0.72 29.9 239 46.40 22 0.255 0.306 0.350 72.8 20.7 11.8 0.54 0.41 29.6 240 46.49 22 0.255 0.319 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.53												
235 46.21 22 0.252 0.300 0.350 71.9 20.5 11.7 0.61 0.61 31.0 236 46.26 22 0.259 0.313 0.350 74.0 20.9 12.0 0.61 0.61 32.6 237 46.30 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.35 22 0.260 0.337 0.350 80.0 21.8 12.4 0.72 0.72 29.9 239 46.40 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 241 46.53 22 0.255 0.306 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 67.2 19.2 11.5 0.48 0.27 30.3 244 46.63												
236 46.26 22 0.259 0.313 0.350 74.0 20.9 12.0 0.61 0.61 32.6 237 46.30 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.35 22 0.260 0.327 0.350 80.0 21.8 12.4 0.72 0.72 29.9 239 46.40 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 240 46.44 22 0.255 0.306 0.350 72.8 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 73.0 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 73.0 20.4 12.3 0.65 0.65 31.0 244 46.67												
237 46.30 22 0.260 0.321 0.350 74.2 21.1 12.2 0.55 0.46 31.5 238 46.35 22 0.280 0.337 0.350 80.0 21.8 12.4 0.72 0.72 29.9 239 46.40 22 0.267 0.322 0.350 74.5 21.0 12.4 0.54 0.41 29.6 240 46.44 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 241 46.49 22 0.255 0.306 0.350 72.8 20.5 12.0 0.67 0.67 31.4 243 46.58 22 0.243 0.302 0.350 76.2 20.7 11.8 0.54 0.48 30.1 244 46.63 22 0.243 0.302 0.350 69.6 20.3 12.2 0.55 0.55 30.9 245 46.67 22 0.218 0.277 0.350 67.2 19.7 11.3 0.55												
239 46.40 22 0.261 0.322 0.350 74.5 21.0 12.4 0.54 0.41 29.6 240 46.44 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 241 46.49 22 0.255 0.306 0.350 72.8 20.5 12.0 0.67 0.67 31.4 242 46.53 22 0.243 0.302 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.243 0.302 0.350 73.0 20.4 12.3 0.65 0.65 31.0 245 46.67 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77				0.260		0.350		21.1	12.2			
240 46.44 22 0.267 0.322 0.350 76.2 20.7 12.3 0.56 0.56 32.9 241 46.49 22 0.255 0.306 0.350 72.8 20.5 12.0 0.67 0.67 31.4 242 46.53 22 0.255 0.319 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.53 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.67 22 0.218 0.277 0.350 62.2 19.2 11.5 0.48 0.27 30.3 246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 67.2 19.7 11.3 0.50												
241 46.49 22 0.255 0.306 0.350 72.8 20.5 12.0 0.67 0.67 31.4 242 46.53 22 0.255 0.319 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.243 0.302 0.350 67.2 19.7 11.5 0.48 0.27 30.3 246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49												
242 46.53 22 0.255 0.319 0.350 72.9 20.7 11.8 0.54 0.48 30.1 243 46.58 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.256 0.314 0.350 73.0 20.4 12.3 0.65 0.65 31.0 245 46.67 22 0.218 0.277 0.350 62.2 19.2 11.5 0.48 0.27 30.3 246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.259 0.316 0.350 74.0 20.8 11.8 0.68 0.68 29.3 249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49												
243 46.58 22 0.243 0.302 0.350 69.6 20.3 12.2 0.53 0.49 31.6 244 46.63 22 0.256 0.314 0.350 73.0 20.4 12.3 0.65 0.65 31.0 245 46.67 22 0.218 0.277 0.350 62.2 19.2 11.5 0.48 0.27 30.3 246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.259 0.316 0.350 74.0 20.8 11.8 0.68 0.68 29.3 249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.236 0.295 0.350 67.3 20.2 11.8 0.50												
245 46.67 22 0.218 0.277 0.350 62.2 19.2 11.5 0.48 0.27 30.3 246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.259 0.316 0.350 74.0 20.8 11.8 0.68 0.68 29.3 249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57		46.58			0.302	0.350	69.6		12.2	0.53	0.49	31.6
246 46.72 22 0.235 0.290 0.350 67.2 19.7 11.3 0.55 0.55 30.9 247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.259 0.316 0.350 65.9 20.0 11.7 0.49 0.30 30.7 249 46.86 22 0.257 0.315 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.261 0.317 0.350 73.4 21.0 12.2 0.57 0.57 32.1 252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 <												
247 46.77 22 0.239 0.298 0.350 68.4 20.1 11.9 0.52 0.46 29.6 248 46.81 22 0.259 0.316 0.350 74.0 20.8 11.8 0.68 0.68 29.3 249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3												30.3
248 46.81 22 0.259 0.316 0.350 74.0 20.8 11.8 0.68 0.68 29.3 249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow												
249 46.86 22 0.231 0.294 0.350 65.9 20.0 11.7 0.49 0.30 30.7 250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.236 0.295 0.350 67.3 20.2 11.8 0.50 0.38 32.4 252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238												
250 46.91 22 0.257 0.315 0.350 73.4 21.0 12.4 0.54 0.51 29.3 251 46.95 22 0.236 0.295 0.350 67.3 20.2 11.8 0.50 0.38 32.4 252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20		46.86	22	0.231	0.294	0.350	65.9	20.0	11.7	0.49	0.30	30.7
252 47.00 22 0.261 0.317 0.350 74.5 21.0 12.2 0.57 0.57 32.1 Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20 22.4 @ Blow# 211 211 209 211 211 211 245 234 215												29.3
Average 0.248 0.305 0.350 70.9 20.4 11.9 0.67 0.62 31.0 Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20 22.4 @ Blow# 211 211 209 211 211 211 245 234 215												
Std. Dev. 0.020 0.028 0.000 5.8 0.9 0.8 0.14 0.18 2.3 Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20 22.4 @ Blow# 211 211 209 211 211 211 245 234 215	202	47.00										
Maximum 0.286 0.357 0.350 81.8 21.8 13.9 1.03 0.96 35.7 @ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20 22.4 @ Blow# 211 211 209 211 211 245 234 215												
@ Blow# 220 212 209 220 238 212 209 212 217 Minimum 0.165 0.201 0.350 47.1 16.3 9.2 0.48 0.20 22.4 @ Blow# 211 211 209 211 211 211 245 234 215												
@ Blow# 211 211 209 211 211 211 245 234 215			@ Blow#	220	212	209	220	238	212		212	217
			C BIOM#	211	211					245	234	215

RAN	IS RSCH001	-703 - GD-4						2 INCH	SS;CME45	,	
(R: .E: VS: 1	0.92 in^2 53.83 ft 16,807.7 f/s									EM: 30,	.492 k/ft3
F2: R: TR:	Max Transfe Energy of F Hammer En Energy Tran Maximum F	^2 ergy Rating isfer Ratio							DMX: Max DFN: Fina	kimum Veloo kimum Displ al Displacen ws per Minu	lacement nent
BL#	depth	BLC bl/ft	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
253	ft 50.00	0	k-ft 0.245	k-ft 0.310	k-ft 0.350	(%) 70.0	kips 20.4	f/s 13.9	in 1.60	in 1.60	0.0
254	50.05	19	0.279	0.351	0.350	79.7	21.4	12.6	0.97	0.97	31.4
255	50.11	19	0.251	0.322	0.350	71.6	20.7	12.2	0.71	0.56	31.7
256	50.16	19	0.273	0.336	0.350	78.1	21.2	12.3	1.01	1.01	24.1
257	50.21	1 9	0.278	0.347	0.350	79.5	21.7	12.5	1.06	1.06	30.8
258	50.26	19	0.259	0.331	0.350	74.0	20.7	11.9	0.66	0.41	29.6
259	50.32	19	0.278	0.351	0.350	79.3	21.7	13.1	0.97	0.97	27.8
260	50.37	19	0.262	0.336	0.350	74.8	21.3	12.4	0.67	0.40	31.6
261 262	50.42 50.47	19 19	0.255 0.255	0.320 0.325	0.350 0.350	72.8 72.7	20.3 20.6	12.2 12.1	0.69	0.64	33.4
263	50.47	19	0.255	0.325	0.350	78.3	20.0	12.1	0.79 0.81	0.79 0.81	30.5 33.8
264	50.55	19	0.274	0.309	0.350	70.2	20.3	12.8	0.62	0.81	30.9
265	50.63	19	0.265	0.338	0.350	75.8	21.3	12.7	0.67	0.54	33.3
266	50.68	19	0.246	0.306	0.350	70.3	19.6	11.8	0.63	0.62	32.5
267	50.74	19	0.250	0.313	0.350	71.5	20.0	11.9	0.70	0.70	33.0
268	50.79	19	0.275	0.349	0.350	78.7	21.4	12.8	0.67	0.65	33.7
269	50.84	19	0.250	0.314	0.350	71.3	20.3	12.0	0.64	0.64	31.6
270	50.89	19	0.242	0.297	0.350	69.1	19.8	11.5	0.82	0.82	31.5
271	50.95	19	0.230	0.294	0.350	65.8	19.4	11.4	0.54	0.39	32.1
272 273	51.00 51.05	19	0.236	0.295	0.350	67.3	19.6	11.4	0.58	0.57	31.5
274	51.05	19 19	0.222 0.231	0.278 0.286	0.350 0.350	63.5 66.1	19.2 19.4	11.2 11.3	0.64 0.67	0.64 0.67	32.2
275	51.16	19	0.231	0.285	0.350	66.9	19.4	11.5	0.67	0.66	32.5 32.3
276	51.21	19	0.244	0.305	0.350	69.6	20.2	12.2	0.67	0.58	31.0
277	51.26	19	0.261	0.326	0.350	74.5	20.1	12.2	0.78	0.78	32.1
278	51.32	19	0.242	0.306	0.350	69.0	19.6	11.8	0.74	0.74	31.8
279	51.37	19	0.243	0.308	0.350	69.5	20.1	12.2	0.73	0.71	32.8
280	51.42	19	0.216	0.272	0.350	61.8	19.0	11.1	0.70	0.70	31.2
281	51.47	19	0.237	0.299	0.350	67.7	19.7	11.5	0.75	0.75	31.1
282	51.53	19	0.247	0.306	0.350	70.7	20.4	11.4	0.72	0.72	0.0
283 284	51.58 51.63	19 19	0.255 0.259	0.315	0.350	72.7	20.6	11.7	0.86	0.86	34.2
285	51.63	19	0.259	0.322 0.282	0.350 0.350	73.9 64.2	21.0 19.7	12.2 11.2	0.70 0.70	0.67 0.70	32.5
286	51.74	19	0.223	0.202	0.350	69.3	20.3	12.4	0.70	0.70	31.0 30.6
287	51.79	19	0.239	0.299	0.350	68.3	20.1	12.1	0.72	0.65	31.9
288	51.84	19	0.241	0.307	0.350	68.9	20.2	12.3	0.72	0.60	30.9
289	51.89	19	0.270	0.333	0.350	77.3	21.4	12.2	0.98	0.98	23.3
290	51.95	19	0.271	0.338	0.350	77.3	21.5	12.2	0.81	0.81	23.2
		Average	0.251	0.315	0.350	71.6	20.4	12.1	0.76	0.73	31.1
		Std. Dev.	0.016	0.021	0.000	4.7	0.7	0.6	0.18	0.21	2.6
		Maximum	0.279	0.351	0.350	79.7	21.7	13.9	1.60	1.60	34.2
		@ Blow#	254	254	253	254	257	253	253	253	283
		Minimum	0.216	0.272	0.350	61.8	19.0	11.1	0.54	0.39	23.2
		@ Blow#	280	280	253	280 ber of blows	280	280	271	271	290

	Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 10-Apr-2009						Geosciences Testing & Research Inc Case Method Results							
	75 TRACK;TRA Test date: 25-5	SS;CME	2 INCH			RANS RSCH001-703 - GD-5 IP: SPK								
.492 k/ft3 ,000 ksi 0.00	EM: 30					0.92 in^2 53.71 ft 16,807.7 f/s								
lacement nent	Maximum Velo Maximum Disp Final Displacen Blows per Minu	DMX: DFN:				MX: Max Transferred Energy F2: Energy of F ^A 2 R: Hammer Energy Rating TR: Energy Transfer Ratio MX: Maximum Force								
5514	DEN	DIAV	\ /h #\/	514 /				,	istics for entire file					
BPM	DFN	DMX in	VMX f/s	FMX kips	ETR (%)	ER k-ft	EF2 k-ft	EMX k-ft						
51.3	1.14	1.19	15.5	26.6	84.0	0.350	0.388	0.294	Average					
5.9	0.66	0.63	0.6	0.7	5.3	0.001	0.027	0.018	Std. Dev.					
58.6	3.66	3.66	17.2	27.8	95.4									
135	1	1	53	43	18	1	174	18	@ Blow#					
33.4	0.18	0.56	14.4	24.8	60.9	0.350	0.296	0.213	Minimum					
48	136	136	63	47	2	1	2	2	@ Blow#					

Geosciences Testing & Research Inc Case Method Results

VRANS RSCH001-703 - GD-5 OP: SPK 0.92 in^2

53.71 ft

WS: 16,807.7 f/s

AR:

LE:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 10-Apr-2009

2 INCH SS;CME75 TRACK;TRANSTECH

Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

110.	10,007.7 1/3									00. (0.00
EMX: EF2: ER: ETR: FMX:	Hammer En Energy Tran	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	imum Veloo imum Displ Il Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	3	0.223	0.308	0.350	63.6	26.3	17.0	3.66	3.66	0.0
2	10.40	3	0.213	0.296	0.350	60.9	25.4	15.6	2.68	2.63	47.2
3	10.80	3	0.264	0.306	0.350	75.5	26.3	16.5	2.90	2.90	44.3
4	11.20	3	0.276	0.311	0.350	78.8	26.4	17.2	3.08	3.08	0.0
5	11.60	3	0.253	0.312	0.350	72.3	26.2	16.0	1.82	1.81	46.0
6	12.00	3	0.264	0.309	0.350	75.4	25.9	16.7	2.11	2.11	46.2
		Average	0.249	0.307	0.350	71.1	26.1	16.5	2.71	2.70	45.9
		Std. Dev.	0.023	0.005	0.000	6.6	0.3	0.6	0.61	0.61	1.0
		Maximum	0.276	0.312	0.350	78.8	26.4	17.2	3.66	3.66	47.2
		@ Blow#	4	5	1	4	4	4	1	1	2
		Minimum	0.213	0.296	0.350	60.9	25.4	15.6	1.82	1.81	44.3
		@ Blow#	2	2	1	2	2	2	5	5	3

Total number of blows analyzed: 6

Time Summary

	•	
Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

Total time [1:40:33] = (Driving [0:03:16] + Stop [1:37:17])

	ciences Tes Method Res	ting & Resear sults	rch Inc					PDIPLOT Ve	er. 2008.2 - I		ge 1 of 1 Apr-2009
VRAN OP: S	IS RSCH00 PK	1-703 - GD-5						2 INCH S	S;CME75 T Tes	RACK;TRA	
AR: LE:	0.92 in^: 53.71 ft	2								EM: 30,	
	6,807.7 f/s	ferred Energy								JC: (imum Velo	0.00
EF2:	Energy of I									timum Displ	
ER:	Hammer E	nergy Rating								al Displacen	
	Energy Tra								BPM: Blov	vs per Minu	te
FMX:							=				
BL#	depth	BLC bl/ft	EMX k-ft	EF2 k-ft	ER k-ft	ETR	FMX	VMX f/s	DMX in	DFN	BPM
7	ft 15.00	0	0.274	0.355	0.350	(%) 78.3	kips 26.2	16.6	3.51	in 3.51	0.0
8	15.00	10	0.274	0.355	0.350	73.2	25.7	16.3	2.88	2.88	53.2
9	15.20	10	0.258	0.349	0.350	73.8	26.1	15.8	2.17	2.10	53.3
10	15.30	10	0.304	0.380	0.350	86.8	26.9	16.2	1.58	1.54	51.8
11	15,40	10	0.297	0.376	0.350	84.7	27.1	14.7	1.08	1.01	55.4
12	15.50	10	0.302	0.374	0.350	86.4	26.4	14.8	1.15	1.15	55.8
13	15.60	10	0.291	0.372	0.350	83.2	26.7	14.8	1.07	1.07	55.9
14	15.70	10	0.307	0.382	0.350	87.6	27.4	14.5	0.96	0.85	56.0
15	15.80	10	0.299	0.372	0.350	85.6	27.0	14.8	0.95	0.89	56.0
16	15.90	10	0.317	0.380	0.350	90.7	27.3	14.6	0.98	0.98	56.1
17	16.00	10	0.309	0.364	0.350	88.2	26.5	15.2	1.05	1.05	56.4
18	16.10	10	0.334	0.353	0.350	95.4	26.7	15.6	1.47	1.47	56.4
19	16.20	10	0.307	0.337	0.350	87.6	25.8	14.7	0.82	0.82	56.3
20	16.30	10	0.301	0.351	0.350	85.9	26.4	15.5	0.67	0.31	56.1
21	16.40	10	0.318	0.353	0.350	90.9	26.8	15.3	1.65	1.65	56.7
22	16.50	10	0.320	0.359	0.350	91.6	26.7	15.3	0.90	0.90	56.5
23	16.60	10	0.303	0.350	0.350	86.6	26.7	15.2	0.64	0.52	56.4
24 25	16.70 16.80	10 10	0.307 0.302	0.361 0.353	0.350 0.350	87.6 86.4	26.9 26.6	15.5 15.6	0.69 0.61	0.69 0.47	56.2 56.2
25 26	16.60	10	0.302	0.355	0.350	93.1	26.8	15.6	1.19	0.47 1.19	56.2 56.4
20	17.00	10	0.320	0.356	0.350	89.4	26.9	15.4	1.19	1.19	56.5
	17.00		0.302	0.361	0.350	86.3	26.6	15.3	1.12	1.12	55.7
		Average Std. Dev.	0.019	0.012	0.000	5.4	20.0	0.6	0.72	0.75	1.3
		Maximum	0.019	0.382	0.350	95.4	27.4	16.6	3.51	3.51	56.7
		@ Blow#	18	14	0.330	18	14	7	5.51	5.51	21
		Minimum	0.256	0.337	0.350	73.2	25.7	, 14.5	0.61	0.31	51.8
		@ Blow#	8	19	7	8	8	14	25	20	10
		0	-		Total num	ber of blows	-				

Total number of blows analyzed: 21

	iences Tes Vethod Res	ting & Researd	ch Inc					PDIPLOT V	er. 2008.2	P: 2 - Printed: 10-	age 1 of 1 -Apr-2009
VRAN OP: SI		1-703 - GD-5						2 INCH S		5 TRACK;TRA Test date: 25-	
AR: LE: WS: 10	0.92 in^: 53.71 ft 6,807.7 f/s	2								EM: 30	0.492 k/ft3 0,000 ksi 0.00
EMX: EF2: ER: ETR:	Max Trans Energy of I	nergy Rating Insfer Ratio							DMX: I DFN: I	Maximum Velo Maximum Disp Final Displace Blows per Minu	lacement ment
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
28	20.00	0	0.260	0.341	0.350	74.2	25.7	16.4	1.82	1.70	0.0
29	20.11	9	0.293	0.374	0.350	83.8	27.1	16.2	1.79		43.9
30	20.22	9	0.283	0.380	0.350	80.8	26.8	15.6	1.25		52.2
31	20.33	9	0.296	0.386	0.350	84.7	27.2	15.8	1.21		53.2
32	20.44	9	0.293	0.383	0.350	83.7	27.2	16.3	1.22		53.7
33	20.56	9	0.289	0.384	0.350	82.5	27.3	15.7	1.03		54.1
34	20.67	9	0.317	0.386	0.350	90.4	27.7	14.9	1.09		53.9
35	20.78	9	0.295	0.383	0.350	84.4	27.6	14.8	0.88		54.1
36	20.89	9	0.293	0.379	0.350	83.7	27.5	15.1	0.98		54.2
37	21.00	9	0.285	0.382	0.350	81.6	27.7	14.6	0.90	0.55	54.5
38	21.11	9	0.310	0.384	0.350	88.7	27.7	14.8	1.15		54.5
39	21.22	9	0.284	0.373	0.350	81.1	27.4	15.2	1.26		54.2
40	21.33	9	0.293	0.385	0.350	83.7	27.5	15.3	1.22		54.2
41	21.44	9	0.282	0.377	0.350	80.7	27.4	15.6	1.50		54.4
42	21.56	9	0.303	0.392	0.350	86.7	27.6	16.5	1.77		54.4
43	21.67	9	0.285	0.385	0.350	81.5	27.8	16.4	1.72		54.3
44	21.78	9	0.288	0.388	0.350	82.4	27.8	16.6	1.63		54.1
45	21.89	9	0.282	0.385	0.350	80.7	27.8	16.3	1.44	1.44	54.2
		Average	0.291	0.380	0.350	83.1	27.4	15.7	1.32	1.28	53.4
		Std. Dev.	0.012	0.011	0.000	3.4	0.5	0.6	0.30	0.35	2.4
		Maximum	0.317	0.392	0.350	90.4	27.8	16.6	1.82		54.5
		@ Blow#	34	42	28	34	43	44	28	29	37
		Minimum	0.260	0.341	0.350	74.2	25.7	14.6	0.88		43.9
		@ Blow#	28	28	28	28	28	37	35	37	29
					Totoloum	bor of blow		. 10			

28 28 28 Total number of blows analyzed: 18

	ciences Testir Method Resu		ch Inc					PDIPLOT V	er. 2008.2 - F		ge 1 of 1 Apr-2009
VRAN OP: S	IS RSCH001- PK	703 - GD-5						2 INCH S	S;CME75 TI Tes	RACK;TRAI	
AR: LE: WS: 1	0.92 in^2 53.71 ft 6,807.7 f/s									EM: 30,	492 k/ft3 000 ksi).00
	Max Transfer Energy of FA Hammer Energy Trans Maximum Fo	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	imum Veloc imum Displ Il Displacen vs per Minu	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
47	25.00	0	0.259	0.347	0.350	74.0	24.8	16.6	3.11	3.11	0.0
48	25.29	4	0.260	0.353	0.350	74.4	24.8	16.9	3.49	3.49	33.4
49	25.57	4	0.281	0.382	0.350	80.3	26.3	16.7	2.55	2.55	41.0
50	25.86	4	0.284	0.391	0.350	81.0	26.6	16.4	2.25	2.25	50.0
51	26.14	4	0.272	0.372	0.350	77.7	25.7	16.5	2.62	2.62	52.7
52	26.43	4	0.283	0.384	0.350	80.9	25.6	17.0	2.87	2.87	51.5
53	26.71	4	0.286	0.380	0.350	81.6	25.7	17.2	2.18	2.18	49.9
54	27.00	4	0.286	0.392	0.350	81.7	26.1	15.5	1.13	1.03	51.1
		Average	0.276	0.375	0.350	79.0	25.7	16.6	2.52	2.51	47.1
		Std. Dev.	0.011	0.016	0.000	3.0	0.6	0.5	0.66	0.69	6.6
		laximum	0.286	0.392	0.350	81.7	26.6	17.2	3.49	3.49	52.7
		@ Blow#	53	54	47	54	50	53	48	48	51
		Ainimum	0.259	0.347	0.350	74.0	24.8	15.5	1.13	1.03	33.4
		@ Blow#	47	47	47	47	47	54	54	54	48
		-									

Total number of blows analyzed: 8

	ciences Test Method Res	ing & Resear ults	ch Inc				P	DIPLOT V	′er. 2008.2 - F		ge 1 of 1 Apr-2009
VRAN OP: S		I-703 - GD-5						2 INCH S	SS;CME75 TI Tes	RACK;TRAI t date: 25-5	
AR: LE:	0.92 in^2 53.71 ft 16,807.7 f/s	2								EM: 30,	492 k/ft3 000 ksi).00
EMX: EF2: ER: ETR:	Max Transf Energy of F	nergy Rating nsfer Ratio							DMX: Max DFN: Fina	imum Veloo imum Displ Il Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
02.	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
55	30.00	0	0.272	0.366	0.350	77.8	25.0	16.4	1.22	1.22	0.0
56	30.06	17	0.266	0.361	0.350	76.1	25.3	15.6	0.92	0.92	38.2
57	30.12	17	0.277	0.370	0.350	79.3	25.4	14.8	0.98	0.98	37.4
58	30.18	17	0.276	0.369	0.350	78.8	25.4	14.6	0.96	0.95	37.7
59	30.24	17	0.273	0.367	0.350	78.0	25.5	14.7	0.96	0.95	37.8
60	30.30	17	0.274	0.367	0.350	78.2	25.8	14.7	0.88	0.85	38.3
61	30.36	17	0.274	0.367	0.350	78.2	26.0	14.7	0.87	0.87	37.9
62	30.42	17	0.270	0.364	0.350	77.1	26.0	14.8	0.79	0.77	37.6
63	30.48	17	0.279	0.369	0.350	79.6	26.0	14.4 14.8	0.98 0.73	0.98 0.59	37.8 37.8
64 65	30.55 30.61	17 17	0.266 0.269	0.365 0.363	0.350 0.350	76.0 76.9	26.0 25.9	14.0	0.73	0.59	37.8 38.0
66	30.67	17	0.269	0.363	0.350	76.9	25.9	14.9	0.85	0.68	37.7
67	30.07	17	0.262	0.352	0.350	74.8	25.6	14.6	0.81	0.81	37.7
68	30.79	17	0.272	0.364	0.350	77.8	25.8	15.0	0.84	0.83	37.6
69	30.85	17	0.274	0.371	0.350	78.3	26.2	15.2	0.87	0.87	41.3
70	30.91	17	0.278	0.377	0.350	79.4	26.3	14.8	0.80	0.79	43.3
71	30.97	17	0.277	0.370	0.350	79.1	26.2	15.0	0.91	0.91	43.8
72	31.03	17	0.280	0.375	0.350	79.9	26.2	15.0	0.83	0.82	44.1
73	31.09	17	0.280	0.375	0.350	79.9	26.0	15.0	0.81	0.81	44.5
74	31.15	17	0.282	0.381	0.350	80.7	26.5	15.2	0.77	0.73	44.6
75	31.21	17	0.280	0.374	0.350	80.0	25.8	15.2	1.04	1.04	44.7
76	31.27	17	0.275	0.372	0.350	78.5	26.2	15.3	0.71	0.60	45.0
77	31.33	17	0.275	0.376	0.350	78.5	26.3	15.3 15.3	0.78	0.78	44.7
78 79	31.39 31.45	17 17	0.277 0.276	0.375 0.375	0.350 0.350	79.3 78.9	26.2 26.1	15.3	0 <i>.</i> 69 0.86	0.67 0.86	45.0 45.1
79 80	31.45	17	0.276	0.375	0.350	79.2	26.1	15.0	0.69	0.64	45.0
81	31.52	17	0.271	0.366	0.350	77.3	25.7	15.2	0.65	0.62	44.7
82	31.64	17	0.289	0.383	0.350	82.5	25.6	14.9	1.07	1.07	45.0
83	31.70	17	0.275	0.371	0.350	78.4	26.3	15.4	0.61	0.36	44.9
84	31.76	17	0.283	0.382	0.350	80.7	26.4	15.4	0.68	0.68	45.4
85	31.82	17	0.274	0.370	0.350	78.4	25.8	15.0	0.68	0.68	45.3
86	31.88	17	0.277	0.378	0.350	79.2	26.5	15.4	0.62	0.52	45.7
87	31.94	17	0.281	0.381	0.350	80.3	26.3	15.3	0.69	0.69	45.5
88	32.00	17	0.274	0.373	0.350	78.4	26.0	15.1	0.62	0.60	45.4
		Average	0.275	0.371	0.350	78.6	25.9	15.1	0.82	0.79	42.0
		Std. Dev.	0.005	0.007	0.000	1.5	0.3	0.4	0.14	0.17	3.4
		Maximum	0.289	0.383	0.350	82.5	26.5	16.4	1.22	1.22	45.7
		@ Blow#	82	80	55	82	74	55	55	55	86 27 4
		Minimum	0.262	0.352	0.350 55	74.8 67	25.0 55	14.4 63	0.61 83	0.36 83	37.4 57
		@ Blow#	67	67		0/ ber of blows			03	00	57

Total number of blows analyzed: 34

	Method Result S RSCH001-7								Ver. 2008.2 - SS;CME75 T	RACK;TRA	NSTECH
OP: S									Tes	st date: 25-5	
AR: LE:	0.92 in^2 53.71 ft									SP: 0. EM: 30.	492 k/ft3 000 ksi
	6,807.7 f/s									,	0.00
EF2:	Max Transferr Energy of F ²								DMX: Max	timum Veloo timum Displ	acement
	Hammer Ener Energy Transf									al Displacem vs per Minu	
	Maximum For								DEIVI. DIUV		le
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
80	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in 1 oc	in	**
89 90	35.00 35.09	0 12	0.297 0.291	0.400 0.395	0.350 0.350	84.8 83.2	26.6 26.3	16.6 15.3	1.96 0.99	1.94 0.86	0.0 52.5
91	35.17	12	0.296	0.398	0.350	84.7	26.5	15.2	0.98	0.98	51.3
92	35.26	12	0.300	0.402	0.350	85.9	26.5	14.8	0.79	0.66	51.1
93	35.35	12	0.305	0.406	0.350	87.0	26.5	15.1	0.81	0.79	51.5
94	35.43	12	0.306	0.407	0.350	87.4	26.7	15.0	0.92	0.92	51.9
95	35.52	12	0.309	0.413	0.350	88.3	27.0	15.2	1.06	1.06	51.9
96	35.61	12	0.300	0.404	0.350	85.7	26.2	15.2	0.91	0.87	52.3
97	35.70	12	0.306	0.409	0.350	87.3	26.5	15.2	1.16	1.16	51.8
98	35.78	12	0.304	0.413	0.350	86.9	26.2	15.3	1.05	0.99	51.9
99 100	35.87 35.96	12	0.301	0.404	0.350 0.350	86.1 84.9	25.7 25.5	14.8 15.0	1.11	1.11	52.2 52.1
100	36.04	12 12	0.297 0.303	0.402 0.405	0.350	86.5	25.5 25.6	15.0 15.0	1.02 1.14	1.02 1.14	52.1
102	36.13	12	0.303	0.408	0.350	86.3	25.7	14.8	0.91	0.69	51.9
103	36.22	12	0.300	0.402	0.350	85.8	25.4	15.0	1.15	1.15	52.0
104	36.30	12	0.302	0.410	0.350	86.4	25.6	14.9	0.93	0.82	51.7
105	36.39	12	0.300	0.401	0.350	85.7	25.3	15.0	1.07	1.07	51.9
106	36.48	12	0.303	0.408	0.350	86.4	25.4	15.0	0.85	0.70	51.7
107	36.57	12	0.310	0.409	0.350	88.5	25.6	15.0	1.05	1.05	51.7
108	36.65	12	0.309	0.411	0.350	88.2	25.8	15.2	0.96	0.96	51.8
109 110	36.74	12	0.298	0.401	0.350	85.0	25.5	15.1	0.74	0.50	52.0
111	36.83 36.91	12 12	0.306 0.302	0.409 0.407	0.350 0.350	87.5 86.4	25.6 25.7	15.4 15.3	1.02 0.73	1.02 0.51	51.7 51.5
112	37.00	12	0.302	0.407	0.350	86.5	25.7	15.5	0.75	0.70	51.6
		verage	0.302	0.406	0.350	86.3	26.0	15.2	1.00	0.95	51.8
		d. Dev.	0.004	0.005	0.000	1.2	0.5	0.4	0.24	0.28	0.3
		aximum	0.310	0.413	0.350	88.5	27.0	16.6	1.96	1.94	52.5
	a	Blow#	107	95	89	107	95	89	89	89	90
		inimum	0.291	0.395	0.350	83.2	25.3	14.8	0.73	0.50	51.1
	a) Blow#	90	90	89	90	105	92	111	109	92
					Total num	ber of blows	s analyzed:	24			
Time S	Summary										
Drive	10 seco				0:02:58 AM			08) BN 1 -	6		
Stop		ites 44 sec	onds		0:03:08 AM			-			
Drive	21 seco				0:16:52 AM			27			
Stop Drive	20 seco	ites 38 sec	onas		0:17:13 AM 0:28:51 AM			46			
Stop		tes 19 sec	onds		0:29:11 AM			40			
Drive	9 secon		lonas		0:40:30 AM			54			
Stop	12 minu				0:40:39 AM			•			
Drive	46 seco	nds		1	0:52:39 AM	- 10:53:25 A	M BN 55 -	88			
Stop	12 minu	tes 57 sec	onds		0:53:25 AM						
Drive	26 seco				1:06:22 AM			112			
Stop		tes 24 sec	onds		1:06:48 AM						
Drive	26 seco				1:20:12 AM			- 138			
Chair .	11 minu	tes 49 sec	onas	1	1:20:38 AM			100			
Stop		nda		*	4.20.07 484	44.20.64 4					
Drive	27 seco		onde		1:32:27 AM			- 163			
•	27 seco	tes 26 sec	onds	1	1:32:27 AM 1:32:54 AM 1:43:20 AM	- 11:43:20 A	M				

Total time [1:40:33] = (Driving [0:03:16] + Stop [1:37:17])

	ciences Testing Method Result		ch Inc					PDIPLOT	Ver. 2008.2	Pa - Printed: 3-/	ge 1 of 1 Apr-2009
	NS RSCH001-7								SS;CME75	TRACK;TRAI	NSTECH
AR: LE:	0.92 in^2 53.71 ft										492 k/ft3
	16,807.7 f/s										000 KSI).00
	Max Transferr	ed Energy							VMX: Ma	aximum Veloo	
	Energy of F ²								DMX: Ma	aximum Displ	acement
ER:	Hammer Ener									nal Displacem	
	Energy Transf								BPM: Blo	ows per Minu	te
	Maximum For							\ / I\/			
BL#	depth ft	BLC bl/ft	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM
113	40.00	0	0.314	0.421	0.350	89.8	27.6	17.0	2.13	2.13	0.0
114	40.08	13	0.320	0.427	0.350	91.5	27.3	17.2	1.91	1.91	57.6
115	40.16	13	0.316	0.427	0.350	90.2	26.9	16.7	1.41	1.40	57.1
116	40.24	13	0.311	0.424	0.350	88.8	27.3	15.8	0.97	0.82	57.0
117	40.32	13	0.312	0.420	0.350	89.1	27.3	15.7	0.95	0.88	57.6
118	40.40	13	0.309	0.419	0.350	88.2	27.4	15.7	0.96	0.96	57.5
119	40.48	13	0.305	0.412	0.350	87.1	27.2	16.0	0.84	0.67	57.7
120	40.56	13	0.306	0.417	0.350	87.5	27.3	15.7	0.86	0.85	57.7
121	40.64	13	0.295	0.402	0.350	84.3	27.0	15.8	0.79	0.63	57.7
122	40.72	13	0.309	0.419	0.350	88.2	27.4	16.1	0.85	0.84	57.3
123	40.80	13	0.299	0.406	0.350	85.5 86.0	27.1 27.2	16.0 15.9	0.80 0.76	0.77 0.70	57.7 57.9
124 125	40.88 40.96	13 13	0.301 0.304	0.410 0.414	0.350 0.350	87.0	27.2	16.1	0.76	0.70	57.9
125	40.90	13	0.304	0.414	0.350	87.3	27.4	16.2	0.73	0.68	58.0 57.4
127	41.12	13	0.315	0.422	0.350	90.1	27.1	15.7	0.76	0.76	58.4
128	41.20	13	0.314	0.427	0.350	89.7	27.0	15.8	0.68	0.46	57.4
129	41.28	13	0.315	0.422	0.350	89.9	27.4	15.8	0.68	0.54	57.7
130	41.36	13	0.308	0.420	0.350	88.1	26.9	16.1	0.68	0.68	57.5
131	41.44	13	0.317	0.431	0.350	90.6	27.3	15.3	0.62	0.38	57.9
132	41.52	13	0.320	0.427	0.350	91.5	27.4	15.6	0.62	0.25	58.0
133	41.60	13	0.322	0.427	0.350	92.1	26.8	15.7	1.17	1.17	57.6
134	41.68	13	0.312	0.422	0.350	89.1	27.5	16.0	0.59	0.31	57.4
135 136	41.76 41.84	13 13	0.310 0.315	0.417 0.425	0.350 0.350	88.5 90.1	26.9 27.3	15.8 15.7	0.80 0.56	0.80 0.18	58.6 57.3
137	41.92	13	0.315	0.425	0.350	87.0	27.3	16.2	0.57	0.48	57.5
138	42.00	13	0.315	0.428	0.350	90.1	27.0	15.5	0.57	0.48	58.6
		Average	0.311	0.420	0.350	88.7	27.2	16.0	0.88	0.79	57.7
		td. Dev.	0.007	0.007	0.000	1.9	0.2	0.4	0.38	0.44	0.4
		aximum	0.322	0.431	0.350	92.1	27.6	17.2	2.13	2.13	58.6
	a	Blow#	133	131	113	133	113	114	113	113	135
		linimum	0.295	0.402	0.350	84.3	26.8	15.3	0.56	0.18	57.0
	a) Blow#	121	121	113	121	133	131	136	136	116
					l otal num	ber of blows	s analyzed:	26			
Time	Summary										
Drive	10 seco	onds				- 10:03:08 A		08) BN 1 -	6		
Stop		ites 44 sec	onds			- 10:16:52 A		_			
Drive	21 seco					- 10:17:13 A		7			
Stop		utes 38 sec	onas			- 10:28:51 A		46			
Drive Stop	20 seco	nas ites 19 sec	onde			- 10:29:11 A - 10:40:30 A		40			
Drive	9 secor		onus			- 10:40:30 A		54			
Stop	12 minu					- 10:52:39 A					
Drive	46 seco					- 10:53:25 A		88			
Stop	12 minu	utes 57 sec	onds			- 11:06:22 A					
Drive	26 seco					- 11:06:48 A		112			
Stop		ites 24 sec	onds			- 11:20:12 A		400			
Drive	26 seco					- 11:20:38 A		- 138			
Stop		ites 49 sec	onas			- 11:32:27 A		163			
Drive Stop	27 secc	nas ites 26 sec	onde			- 11:32:54 A - 11:43:20 A		- 105			
Drive	11 seco		ulua			- 11:43:31 A		- 174			
	11 3000		•03·161 ± 6			11.40.01 P					

Total time [1:40:33] = (Driving [0:03:16] + Stop [1:37:17])

Geosciences Testing & Research Inc.

Page 1 of 1

	NS RSCH001-70)3 - GD-5						2 INCH S	SS;CME75 T	,	
<u>OP: S</u> AR: LE:	0.92 in^2 53.71 ft								105	st date: 25-5 SP: 0 EM: 30	492 k/ft3
	16,807.7 f/s										0.00
	Max Transferre	ed Enerav							VMX: Max	kimum Velo	
EF2:	Energy of F ²									kimum Disp	
ER:	Hammer Energ									al Displacen	
	Energy Transfe Maximum Forc								BAW: RIO/	ws per Minu	te
BL#		BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
DL#	depth ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	DFIVI **
139	45.00	0	0.315	0.411	0.350	89.9	27.1	16.7	1.55	1.55	0.0
140	45.08	12	0.306	0.406	0.350	87.4	26.4	16.4	1.72	1.72	51.8
141	45.17	12	0.305	0.400	0.350	87.3	26.6	15.8	1.29	1.29	50.5
142	45.25	12	0.302	0.398	0.350	86.2	27.1	15.1	1.27	1.26	51.3
143	45.33	12	0.299	0.397	0.350	85.3	26.9	15.6	1.29	1.29	51.9
144	45.42	12	0.305	0.408	0.350	87.2	27.5	15.6	1.23	1.22	52.0
145	45.50	12	0.299	0.399	0.350	85.3	27.2	15.4	1.12	1.10	52.6
146	45.58	12	0.300	0.403	0.350	85.8	27.1	15.5	1.04	1.02	52.8
147	45.67	12	0.294	0.391	0.350	83.9	27.0	15.2	0.93	0.84	52.8
148	45.75	12	0.301	0.404	0.350	85.9	27.1 26.9	15.3 15.1	0.97 0.95	0.95 0.91	53.4 53.5
149 150	45.83 45.92	12 12	0.296 0.300	0.390 0.400	0.350 0.350	84.7 85.8	20.9	15.1	0.95	0.91	53.5 53.7
151	46.00	12	0.300	0.400	0.350	85.9	27.0	15.2	0.86	0.34	53.7
152	46.08	12	0.299	0.402	0.350	85.4	27.0	15.3	0.88	0.81	53.8
153	46.17	12	0.295	0.397	0.350	84.3	27.1	15.0	0.77	0.37	53.8
154	46.25	12	0.301	0.402	0.350	85.9	27.1	15.3	0.96	0.96	53.9
155	46.33	12	0.299	0.397	0.350	85.5	26.7	15.3	0.82	0.68	54.0
156	46.42	12	0.301	0.404	0.350	86.1	27.2	15.6	0.82	0.82	54.0
157	46.50	12	0.298	0.393	0.350	85.1	26.8	15.6	0.78	0.75	53.9
158	46.58	12	0.302	0.402	0.350	86.4	27.3	15.7	0.76	0.70	53.5
159	46.67	12	0.299	0.394	0.350	85.4	26.8	15.6	0.74	0.73	54.1
160	46.75	12	0.302	0.404	0.350	86.3	27.2	15.7	0.72	0.64	53.9
161	46.83	12	0.299	0.391	0.350	85.6	26.8	15.9	0.77	0.77	54.0
162 163	46.92 47.00	12 12	0.304	0.405 0.395	0.350 0.350	87.0 85.0	26.9 26.8	15.6 15.7	0.70 0.70	0.52 0.69	53.7 54.0
103			0.297	0.395	0.350	85.9	20.8	15.6	0.98	0.09	53.2
		verage d. Dev.	0.301 0.004	0.400	0.350	05.9 1.2	0.2	0.4	0.98	0.93	53.2 1.0
		ximum	0.315	0.005	0.350	89.9	27.5	16.7	1.72	1.72	54.1
		Blow#	139	139	139	139	144	139	140	140	159
	-	nimum	0.294	0.390	0.350	83.9	26.4	15.0	0.70	0.37	50.5
		Blow#	147	149	139	147	140	153	162	153	141
	Ŭ				Total num	ber of blows	s analyzed:	25			
Time	Summary										
Drive	10 secor	nde		-	10:02:58 AM	10.03.08 4	M (0/25/20	08) BN 1.	6		
Stop		tes 44 sec	onds		10:02:08 AM		•		0		
Drive	21 secor				10:16:52 AM			27			
Stop		tes 38 sec	onds		0:17:13 AM						
Drive	20 secor				0:28:51 AM			46			
Stop	11 minut	tes 19 sec	onds	1	10:29:11 AM	- 10:40:30 A	١M				
Drive	9 second	ds			10:40:30 AM			54			
Stop	12 minut				10:40:39 AM						
Drive	46 secor				0:52:39 AM			88			
Stop	12 minut	tes 57 sec	onds		0:53:25 AM			440			
1 1/11/0	16 0000										

11:06:22 AM - 11:06:48 AM BN 89 - 112 11:06:48 AM - 11:20:12 AM 11:20:12 AM - 11:20:38 AM BN 113 - 138

11:32:27 AM - 11:32:54 AM BN 139 - 163

11:32:54 AM - 11:43:20 AM 11:43:20 AM - 11:43:31 AM BN 164 - 174

11:20:38 AM - 11:32:27 AM

Total time [1:40:33] = (Driving [0:03:16] + Stop [1:37:17])

13 minutes 24 seconds

11 minutes 49 seconds

10 minutes 26 seconds

26 seconds

26 seconds

27 seconds

11 seconds

Drive

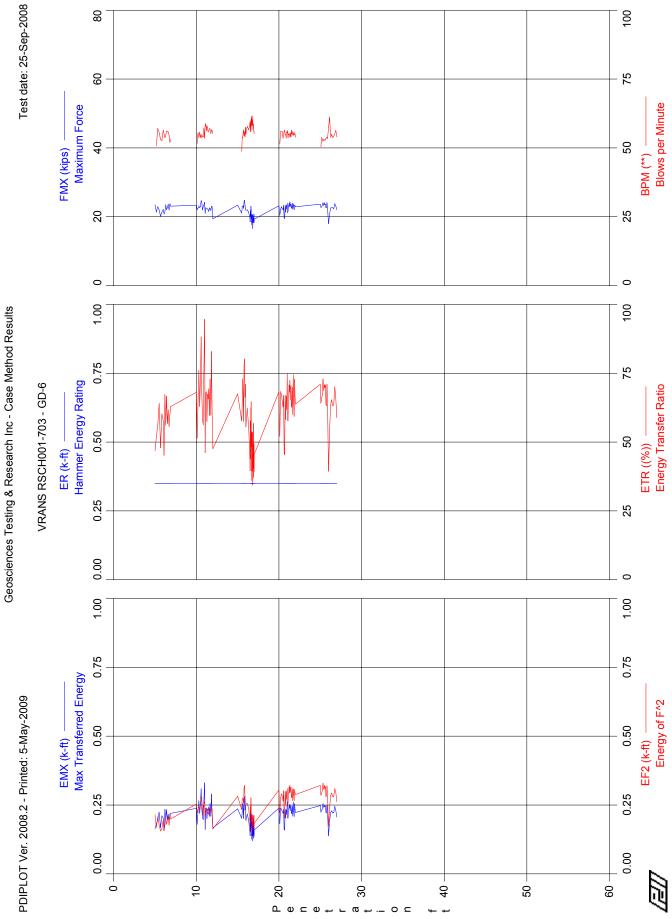
Stop

Drive

Stop

Drive

Stop


Drive

	ciences Tes Method Res	ting & Resear sults	ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VRAN OP: S		1-703 - GD-5						2 INCH S	S;CME75 T Tes	RACK;TRAI	
AR: LE: WS: 1	0.92 in^ 53.71 ft 6,807.7 f/s	2								EM: 30,	492 k/ft3 000 ksi).00
	Max Trans Energy of I Hammer E	nergy Rating Insfer Ratio							DMX: Max DFN: Fina	timum Veloc timum Displ al Displacem vs per Minur	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
164	50.00	0	0.306	0.403	0.350	87.5	26.0	16.4	2.28	2.28	0.0
165	50.20	5	0.310	0.410	0.350	88.7	26.7	15.8	1.93	1.93	50.6
166	50.40	5	0.305	0.413	0.350	87.1	26.9	15.5	1.74	1.73	52.1
167	50.60	5	0.315	0.424	0.350	90.1	27.0	15.6	1.84	1.84	53.0
168	50.80	5	0.309	0.414	0.350	88.3	27.1	15.7	1.90	1.90	54.0
169	51.00	5	0.301	0.409	0.350	85.9	26.5	15.5	1.23	1.22	54.4
170	51.20	5	0.314	0.428	0.350	89.8	26.8	14.9	0.92	0.67	54.4
171	51.40	5	0.310	0.419	0.350	88.5	26.8	15.0	1.29	1.28	54.4
172	51.60	5	0.308	0.423	0.350	88.1	27.3	16.1	1.52	1.52	54.7
173	51.80	5	0.308	0.417	0.350	88.1	27.3	15.8	1.99	1.99	54.4
174	52.00		0.324	0.437	0.350	92.6	27.2	16.7	2.04	2.04	54.7
		Average	0.310	0.418	0.350	88.6	26.9	15.7	1.70	1.67	53.7
		Std. Dev.	0.006	0.009	0.000	1.7	0.4	0.5	0.39	0.44	1.3
		Maximum	0.324	0.437	0.350	92.6	27.3	16.7	2.28	2.28	54.7
		@ Blow#	174	174	164	174	173	174	164	164	172
		Minimum	0.301	0.403	0.350	85.9	26.0	14.9	0.92	0.67	50.6
		@ Blow#	169	164	164	169	164	170	170	170	165
		-			Total num	ber of blows	s analyzed	: 11			

Time Summary

— ·		
Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

Total time [1:40:33] = (Driving [0:03:16] + Stop [1:37:17])

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009 2 INCH SS;CME75 TRACK SAFETY;TRANSTECH Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

VMX: Maximum Velocity

DFN: Final Displacement BPM: Blows per Minute

DMX: Maximum Displacement

JC: 0.00

VRANS RSCH001-703 - GD-6 OP: SPK AR: 0.92 in^2 LE: 28.71 ft WS: 16,807.7 f/s EMX: Max Transferred Energy

EF2: Energy of F^2

ER: Hammer Energy Rating ETR: Energy Transfer Ratio

FMX: Maximum Force

Stat

atistics for entire file	e (143 blows))							
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.211	0.244	0.350	60.3	21.9	14.7	1.10	0.97	55.7
Std. Dev.	0.038	0.049	0.001	10.9	1.7	2.0	0.48	0.65	2.3
Maximum	0.331	0.329	0.350	94.6	24.8	19.8	2.87	2.87	61.7
@ Blow#	29	128	1	29	50	13	4	4	73
Minimum	0.120	0,139	0.350	34.3	16.5	10.0	0.47	-2.41	48.7
@ Blow#	77	77	1	77	77	138	53	96	44

Time Summary

Drive 17 seconds

10 minutes 26 seconds Stop

Drive 27 minutes 21 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

EMX

0.164

0.181

0.196

0.224

0.168

0.211

0.202

0.158

0.235

0.196

0.233

0.198

0.216

0.195

0.210

0.220

0.200

0.023

0.235

0.158

q

8

0.178

0.156

0.163

0.196

0.157

0.177

0.203

0.180

0.194

0.208

0.177

0.218

0.199

0.187

0.020

0.218

0.156

15

5

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.000

0.350

0.350

1

6

6

6

6

6

6

6

10

10

10

10

10

10

10

10

10

k-ft

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-6 0.92 in^2

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

1.74

2 43

2.40

2.87

1.55

1.88

1.60

1.06

2.11

1.29

2.09

1.53

1.42

1.22

1.25

1.41

1.74

0.50

2.87

1.06

4

8

	Test date: 2	5-Sep-2008
		0.492 k/ft3
	EM:	30,000 ksi
	JC:	0.00
VMX:	Maximum V	elocity
DMX:	Maximum D	isplacement
DFN:	Final Displace	cement
BPM:	Blows per M	inute
DM	X DFN	BPM
	in in	**

1.51

2.43

2.40

2.87

1.55

1.88

1.60

0.80

2.11

0.86

2.09

1.52

1.34

1.08

0.95

1.41

1.65

0.58

2.87

0.80

4

8

0.0

50.7

57.1

55.6

53.1

52.6

56.5

55.0

53.7

54.6

56.1

55.8

55.9

54.6

52.0

53.1

54.4

1.8

57.1

50.7

3

2

OP: SPK AR: LE: 28.71 ft WS: 16,807.7 f/s EMX: Max Transferred Energy EF2: Energy of F^2 Hammer Energy Rating ER: ETR: Energy Transfer Ratio FMX: Maximum Force BL# depth BLC bl/ft ft 5.00

5.17

5.33

5.50

5.67

5.83

6.00

6.10

6.20

6.30

6.40

6.50

6.60

6.70

6.80

6.90

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

EF2 ER ETR FMX VMX k-ft k-ft (%) kips f/s 0.215 0.350 46.7 23.5 19.5 21.4 0.169 0.350 51.8 17.1 0.207 0.350 55.9 23.0 19.1

64.0

47.9

60.2

57.8

45.2

67.2

56.1

66.6

56.7

61.8

55.6

60.0

62.9

57.3

67.2

45.2

6.5

9

22.0

20.2

21.4

22.2

20.8

21.5

23.5

22.1

22.6

23.6

22.0

23.8

23.1

22.3

1.0

15

5

23.8

20.2

18.0

16.6

16.0

18.3

16.7

17.6

19.3

18.2

18.7

19.8

17.4

19.5

18.7

18.2

1.1

13

6

19.8

16.0

Average Std. Dev. Maximum @ Blow# Minimum @ Blow#

8 Total number of blows analyzed: 16

Time Summarv

Drive 17 seconds

Stop 10 minutes 26 seconds Drive 27 minutes 21 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

Page 1 of 1 -2009

	VRANS RSCH001-703 - GD-6 OP: SPK							
AR:	0.92 in^2							
LE:	28.71 ft							
WS:	16,807.7 f/s							

EMX: Max Transferred Energy

EF2: Energy of F^2

ER: Hammer Energy Rating ETR: Energy Transfer Ratio

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009
2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

00,0IVIE/0	INAUN SAFETT, H	
	Test date: 2	5-Sep-2008
	SP:	0.492 k/ft3

EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

BPM: Blows per Minute

	Maximum I									ws per minu	(e
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
18	10.00	0	0.238	0.254	0.350	68.1	23.3	18.0	2.11	2.11	0.0
19	10.10	10	0.180	0.222	0.350	51.3	22.0	16.4	1.16	0.99	51.6
20	10.20	10	0.223	0.235	0.350	63.7	22.5	16.2	1.49	1.49	55.5
21	10.30	10	0.266	0.243	0.350	76.0	23.1	15.7	1.73	1.73	53.7
22	10.40	10	0.220	0.231	0.350	62.9	22.6	15.0	1.13	1.07	55.7
23	10.50	10	0.255	0.247	0.350	72.9	22.9	16.0	1.53	1.53	53.8
24	10.58	12	0.309	0.281	0.350	88.2	24.7	16.8	1.93	1.93	54.9
25	10.67	12	0.236	0.278	0.350	67.6	24.2	16.9	1.03	0.81	53.6
26	10.75	12	0.204	0.214	0.350	58.1	22.0	15.2	1.16	1.16	54.4
27	10.83	12	0.197	0.246	0.350	56.3	22.9	15.2	0.85	-0.39	54.0
28	10.92	12	0.265	0.255	0.350	75.6	23.3	17.1	1.51	1.51	57.1
29	11.00	12	0.331	0.262	0.350	94.6	24.2	16.0	2.24	2.24	53.5
30	11.07	14	0.161	0.204	0.350	46.1	21.0	14.2	1.07	-0.16	58.6
31	11.14	14	0.238	0.237	0.350	67.9	22.6	15.4	0.95	0.95	58.8
32	11.21	14	0.239	0.239	0.350	68.3	22.5	15.0	1.03	1.03	56.2
33	11.29	14	0.201	0.226	0.350	57.5	22.4	14.6	0.91	0.42	58.1
34	11.36	14	0.236	0.221	0.350	67.4	22.2	14.4	1.34	1.34	57.3
35	11.43	14	0.230	0.225	0.350	65.7	22.1	14.6	1.35	1.35	55.8
36	11.50	14	0.243	0.215	0.350	69.3	21.5	14.2	1.75	1.75	56.0
37	11.58	12	0.209	0.237	0.350	59.6	22.6	15.1	1.08	0.85	57.0
38	11.67	12	0.255	0.234	0.350	72.8	22.4	15.0	1.83	1.83	56.9
39	11.75	12	0.209	0.224	0.350	59.8	21.8	15.5	1.32	1.32	55.2
40	11.83	12	0.290	0.244	0.350	82.9	23.1	15.2	2.15	2.15	56.6
41	11.92	12	0.211	0.234	0.350	60.2	22.9	14.7	0.99	0.83	56.3
42	12.00	12	0.167	0.163	0.350	47.6	19.4	12.4	1.07	1.07	55.2
		Average	0.233	0.235	0.350	66.4	22.6	15.4	1.39	1.24	55.7
		Std. Dev.	0.040	0.023	0.000	11.3	1.1	1.1	0.41	0.64	1.7
		Maximum	0.331	0.281	0.350	94.6	24.7	18.0	2.24	2.24	58.8
		@ Blow#	29	24	18	29	24	18	29	29	31
		Minimum	0.161	0.163	0.350	46.1	19.4	12.4	0.85	-0.39	51.6
		@ Blow#	30	42	18	30	42	42	27	27	19
					Total num	ber of blows	analyzed:	25			

Time Summary

Drive 17 seconds

Stop 10 minutes 26 seconds Drive

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

27 minutes 21 seconds

Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-6 OP: SPK AR: 0.92 in^2 LE: 28.71 ft

EMX: Max Transferred Energy

WS: 16,807.7 f/s

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH
Test date: 25-Sep-2008
SP: 0.492 k/ft3

EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

EMX:	Max Tran	sferred Energy	/						VMX: M	laximum Velo	ocity
EF2: ER:	Energy of	F^2							DMX: M	laximum Disp	placement
ETR:	Familier Energy Ti	Energy Rating ransfer Ratio							DFN: F	inal Displace	ment
	Maximum	Force							BPM: B	lows per Mini	ute
BL#	depth		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	0014
	f		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	BPM
43	15.00	-	0.236	0.282	0.350	67.5	23.4	17.4	1.28	1.23	0.0
44	15.50		0.202	0.233	0.350	57.6	21.0	16.1	1.23	1.23	48.7
45	15.56		0.224	0.273	0.350	63.9	23.0	17.4	0.88	0.88	53.8
46	15.61		0.255	0.274	0.350	73.0	23.0	16.7	1.09	1.09	53.7
47	15.67		0.237	0.271	0.350	67.6	23.2	15.9	0.66	0.66	55.6
48	15.72		0.201	0.257	0.350	57.5	22.4	16.0	0.53	0.05	56.5
49	15.78		0.272	0.311	0.350	77.7	24.4	18.1	1.00	1.00	54.4
50 51	15.83		0.281	0.321	0.350	80.2	24.8	17.9	0.95	0.95	55.8
51	15.89		0.232	0.282	0.350	66.2	23.4	16.6	0.57	0.43	54.0
53	15.94 16.00		0.248	0.258	0.350	71.0	22.4	16.7	1.80	1.80	57.5
54	16.00		0.194	0.252	0.350	55.5	21.9	15.0	0.47	-0.59	55.0
55	16.33		0.218	0.257	0.350	62.4	22.0	16.3	0.68	0.68	57.9
56	16.50	-	0.194	0.236	0.350	55.3	21.3	15.1	0.71	0.71	56.5
57	16.50		0.149	0.186	0.350	42.5	19.4	14.5	0.66	0.59	59.3
58	16.53	66	0.138 0.202	0.175	0.350	39.6	18.5	14.4	1.00	1.00	57.6
59	16.55	66	0.202	0.226 0.244	0.350	57.7	20.8	15.2	0.82	0.82	57.6
60	16.56	66	0.202	0.244	0.350	57.7	21.8	14.7	0.55	0.50	58.5
61	16.58	66	0.173	0.203	0.350 0.350	51.1 48.9	20.1	14.0	1.07	1.07	55.9
62	16.59	66	0.154	0.200	0.350	40.9	20.9 20.0	13.1	0.48	0.00	59.9
63	16.61	66	0.219	0.200	0.350	43.9 62.4	20.0	12.8	0.47	0.23	57.4
64	16.62	66	0.193	0.246	0.350	55.2	23.1	15.5 16.6	0.59	-0.11	56.3
65	16.64	66	0.226	0.254	0.350	64.7	22.1	15.5	0.63	0.40	59.6
66	16.65	66	0.126	0.151	0.350	36.0	17.7	11.1	1.12 0.62	1.12	57.9
67	16.67	66	0.188	0.206	0.350	53.7	20.4	13.5	0.82	0.62 0.84	61.3
68	16.68	66	0.177	0.206	0.350	50.7	20.3	14.2	0.55	0.84	60.3
70	16.71	66	0.169	0.188	0.350	48.2	19.4	12.9	0.62	0.28	59.0 60.5
71	16.73	66	0.188	0.215	0.350	53.7	20.7	13.9	0.77	0.02	59.0
72	16.74	66	0.177	0.210	0.350	50.5	20.4	14.5	1.15	1.15	58.0
73	16.76	66	0.138	0.168	0.350	39.5	18.3	13.1	0.67	0.67	61.7
74	16.77	66	0.166	0.191	0.350	47.4	19.6	12.1	1.04	1.04	58.3
75	16.79	66	0.170	0.199	0.350	48.6	19.8	12.8	0.67	0.58	59.7
76	16.80	66	0.187	0.213	0.350	53.5	20.5	13.5	1.01	1.01	60.3
77	16.82	66	0.120	0.139	0.350	34.3	16.5	10.2	0.96	0.96	58.9
78 79	16.83	66	0.124	0.147	0.350	35.5	17.2	10.7	0.56	0.56	58.5
80	16.85	66	0.159	0.174	0.350	45.4	18.6	11.7	0.96	0.96	58.7
81	16.86 16.88	66	0.154	0.181	0.350	44.1	18.6	12.1	0.82	0.82	56.8
82	16.89	66 66	0.173	0.185	0.350	49.5	19.5	11.5	1.13	1.13	57.5
83	16.91	66	0.156 0.142	0.195	0.350	44.7	19.6	11.8	0.67	0.67	57.9
84	16.92	66	0.142	0.173	0.350	40.4	18.8	11.6	0.72	0.72	58.8
85	16.94	66	0.139	0.208 0.162	0.350	56.8	20.3	12.8	2.19	2.19	56.2
86	16.95	66	0.158	0.182	0.350	37.1	18.3	11.7	0.65	0.65	56.1
87	16.97	66	0.172	0.192	0.350 0.350	45.2 49.2	19.4 20.8	13.4	0.85	0.85	0.0
88	16.98	66	0.137	0.167	0.350	49.2 39.1		13.2	0.68	0.20	56.2
89	17.00	66	0.159	0.183	0.350	45.4	18.3 19.3	11.2 12.7	0.53	0.34	55.9
		Average	0.185	0.218	0.350	52.8	20.6		0.75	0.75	55.1
		Std. Dev.	0.039	0.218	0.350	52.8 11.2	20.6	14.1 2.1	0.84	0.74	57.4
		Maximum	0.281	0.321	0.350	80.2	24.8	2.1 18.1	0.33	0.46	2.4
		@ Blow#	50	50	43	50	24.8 50	49	2.19 84	2.19	61.7
		Minimum	0.120	0.139	0.350	34.3	16.5	10.2	04 0.47	84 -0.59	73
		@ Blow#	77	77	43	77	77	77	53	-0.59	48.7 44
							analyzed: 4	16		55	44

Time Summary

Drive 17 seconds

Stop 10 minutes 26 seconds

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

VRANS RSCH001-703 - GD-6 OP: SPK					
AR:	0.92 in^2				
LE:	28.71 ft				
WS: 1	6,807.7 f/s				
EMX:	Max Transferred Energy				

EF2: Energy of F^2

ER: Hammer Energy Rating

	Energy Trans								BPM: Blov	ws per Minu	te
FMX:	Maximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
90	20.00	0	0.239	0.305	0.350	68.3	23.2	17.0	1.45	1.32	0.0
91	20.10	10	0.182	0.222	0.350	52.1	20.4	15.5	1.15	1.04	51.4
92	20.20	10	0.239	0.276	0.350	68.3	22.2	16.7	2.15	2.15	55.9
93	20.30	10	0.235	0.290	0.350	67.2	22.9	16.1	1.66	1.66	56.1
94	20.40	10	0.226	0.282	0.350	64.6	22.3	15.0	1.27	1.25	55.9
95	20.50	10	0.220	0.265	0.350	62.7	22.0	15.2	1.55	1.55	53.5
96	20.56	16	0.234	0.302	0.350	66.9	23.3	14.4	0.65	-2.41	54.8
97	20.63	16	0.161	0.203	0.350	46.0	19.6	12.1	0.89	0.89	56.0
98	20.69	16	0.159	0.204	0.350	45.3	19.5	11.5	0.53	-0.17	56.4
99	20.75	16	0.235	0.299	0.350	67.0	23.3	13.6	0.82	0.51	55.0
100	20.81	16	0.203	0.253	0.350	58.1	21.3	13.0	0.92	0.92	55.0
101	20.88	16	0.233	0.300	0.350	66.7	23.4	14.0	0.73	-0.04	53.5
102	20.94	16	0.216	0.271	0.350	61.7	22.2	13.5	0.70	0.68	55.9
103	21.00	16	0.262	0.310	0.350	74.7	23.9	14.8	1.10	1.10	55.4
104	21.05	22	0.203	0.246	0.350	58.0	21.2	13.0	0.87	0.87	56.3
105	21.09	22	0.202	0.256	0.350	57.7	21.7	13.1	0.57	0.40	53.7
106	21.14	22	0.233	0.294	0.350	66.5	23.1	14.1	0.66	0.62	55.1
107	21.18	22	0.237	0.296	0.350	67.7	23.1	14.1	0.66	0.62	54.8
108	21.23	22	0.247	0.315	0.350	70.7	23.8	14.6	0.65	0.45	54.9
109	21.27	22	0.238	0.294	0.350	68.1	23.0	13.8	0.64	0.63	55.1
110	21.32	22	0.253	0.322	0.350	72.4	24.3	14.6	0.66	0.28	53.9
111	21.36	22	0.229	0.297	0.350	65.3	23.0	13.6	0.63	0.44	54.5
112	21.41	22	0.244	0.306	0.350	69.8	23.6	14.2	0.74	0.70	55.4
113	21.45	22	0.247	0.315	0.350	70.5	23.7	14.4	0.74	0.49	54.0
114	21.50	22	0.221	0.280	0.350	63.1	22.5	13.7	0.76	0.76	56.5
115	21.56	18	0.219	0.276	0.350	62.6	22.5	13.8	0.68	0.64	55.1
116	21.61	18	0.245	0.309	0.350	69.9	24.0	14.5	0.71	0.64	54.8
117	21.67	18	0.210	0.266	0.350	60.0	22.2	13.1	0.61	0.17	56.0
118	21.72	18	0.261	0.309	0.350	74.5	23.7	14.4	1.15	1.15	54.4
119	21.78	18	0.233	0.294	0.350	66.5	23.3	14.3	0.64	0.46	55.3
120	21.83	18	0.208	0.266	0.350	59.3	22.0	12.8	0.57	0.37	55.6
121	21.89	18	0.255	0.306	0.350	72.8	23.4	14.5	1.06	1.06	54.7
122	21.94	18	0.234	0.294	0.350	66.9	23.2	14.1	0.66	0.50	55.1
123	22.00	18	0.223	0.288	0.350	63.7	22.9	13.9	0.64	0.54	53.8
		Average	0.226	0.283	0.350	64.6	22.6	14.2	0.88	0.65	55.0
		td. Dev.	0.024	0.029	0.000	6.9	1.2	1.1	0.36	0.71	1.0
		aximum	0.262	0.322	0.350	74.7	24.3	17.0	2.15	2.15	56.5
		DBlow#	103	110	90	103	110	90	92	92	114
		linimum	0.159	0.203	0.350	45.3	19.5	11.5	0.53	-2.41	51.4
	Q) Blow#	98	97	90	98	98	98	98	96	91
					fotal num	ber of blows	analyzed:	34			

Time Summary

Drive 17 seconds

Stop 10 minutes 26 seconds

Drive 27 minutes 21 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM

1:56:22 PM - 2:23:43 PM BN 18 - 146

Total time [0:38:04] = (Driving [0:27:38] + Stop [0:10:26])

Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

VRANS RSCH001-703 - GD-6

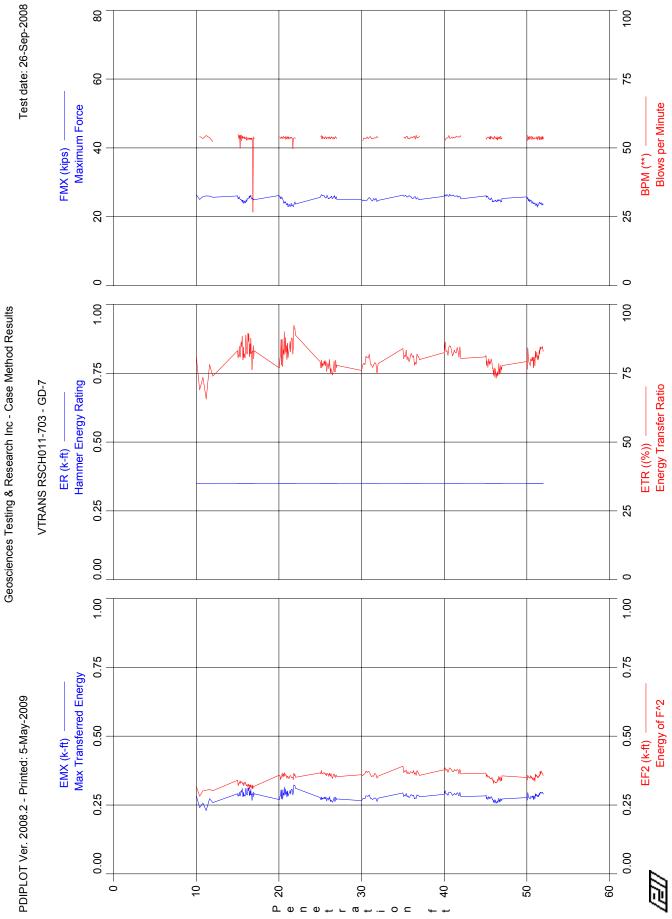
Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

	Tes	st date: 25-8	Sep-2008
		SP: 0.	492 k/ft3
		EM: 30,	000 ksi
		JC: (0.00
	VMX: Max	imum Velo	city
	DMX: Max	imum Displ	acement
	DFN: Fina	al Displacen	nent
	BPM: Blov	vs per Minu	te
VMX	DMX	DFN	BPM
f/s	in	in	**
16.4	1.36	1.14	0.0
14.8	0.96	0.95	50.4
15.1	1.00	0.94	53.7

VECAN	VRANS RSUNUUI-/US - GD-0						
<u>OP: S</u>	PK						
AR:	0.92 in^2						
LE:	28.71 ft						
<u>WS:</u> 1	16,807.7 f/s						
EMX:	Max Transfe	rred Energy					
EF2:	Energy of F [^]	2					
ER:	Hammer Ene	ergy Rating					
ETR:							
FMX:	Maximum Fo	rce					
BI #	donth	PI C					

FMX:	Maximum F	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
124	25.00	0	0.248	0.321	0.350	71.0	23.6	16.4	1.36	1.14	0.0
125	25.08	12	0.224	0.285	0.350	64.1	22.7	14.8	0.96	0.95	50.4
126	25.17	12	0.232	0.293	0.350	66.2	22.8	15.1	1.00	0.94	53.7
127	25.25	12	0.234	0.303	0.350	66.9	23.4	14.3	1.14	1.14	53.2
128	25.33	12	0.255	0.329	0.350	73.0	24.1	15.3	1.31	1.23	52.4
129	25.42	12	0.241	0.307	0.350	68.7	23.3	15.0	1.83	1.82	53.2
130	25.50	12	0.248	0.321	0.350	70.9	24.0	14.7	1.29	1.04	52.9
131	25.56	16	0.244	0.308	0.350	69.7	23.5	13.6	1.28	1.20	52.7
132	25.63	16	0.247	0.317	0.350	70.7	23.7	13.7	1.11	0.58	53.2
133	25.69	16	0.223	0.280	0.350	63.6	22.6	12.9	1.79	1.79	53.5
134	25.75	16	0.221	0.284	0.350	63.2	22.6	13.2	1.50	1.49	53.7
135	25.81	16	0.248	0.320	0.350	71.0	24.1	13.9	1.55	1.46	53.8
136	25.88	16	0.221	0.279	0.350	63.1	22.4	12.7	1.68	1.68	53.4
138	26.00	16	0.138	0.173	0.350	39.4	18.0	10.0	0.76	0.71	57.3
139	26.13	8	0.192	0.241	0.350	54.8	20.8	12.1	1.03	1.03	61.2
140	26.25	8	0.222	0.284	0.350	63.5	22.5	13.2	1.07	1.07	53.9
141	26.38	8	0.229	0.294	0.350	65.4	22.6	13.9	0.88	0.71	55.0
142	26.50	8	0.221	0.281	0.350	63.2	22.6	13.3	1.04	1.04	53.7
143	26.63	8	0.222	0.281	0.350	63.4	22.3	13.4	0.82	0.68	54.2
144	26.75	8	0.246	0.310	0.350	70.2	23.8	14.3	1.43	1.43	55.1
145	26.88	8	0.230	0.296	0.350	65.8	23.1	14.1	0.81	0.72	56.4
146	27.00	8	0.206	0.262	0.350	58.8	22.0	12.7	0.74	0.66	54.0
		Average	0.227	0.290	0.350	64.8	22.8	13.8	1.20	1.11	54.1
		Std. Dev.	0.025	0.033	0.000	7.0	1.3	1.3	0.32	0.36	2.1
	1	Maximum	0.255	0.329	0.350	73.0	24.1	16.4	1.83	1.82	61.2
		@ Blow#	128	128	124	128	135	124	129	129	139
		Minimum	0.138	0.173	0.350	39.4	18.0	10.0	0.74	0.58	50.4
		@ Blow#	138	138	124	138	138	138	146	132	125
					Total num	ber of blows	analyzed:	22			


Time Summary

Drive 17 seconds

10 minutes 26 seconds Stop Drive

27 minutes 21 seconds

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

Page 1 of 1

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009 2 INCH SS;CME45C AUTO;VTRANS

VMX: Maximum Velocity

BPM: Blows per Minute

DMX

1.17

0.40

2.99

128

0.53

42

in

VMX

f/s

14.9

1.0

17.9

12.7

178

80

FMX kips

25.0

0.9

26.5

155

22.8

227

DMX: Maximum Displacement DFN: Final Displacement

DFN

1.15

0.42

2.99

128

0.26

193

in

Test date: 26-Sep-2008

JC: 0.00

SP: 0.492 k/ft3 EM: 30,000 ksi

BPM

53.5

1.9

55.0

26.7

8

44

**

Case Method Results								
VTRANS RSCH011-703 - GD-7 OP: SPK								
AR: 0.92 in^2								
LE: 53.80 ft								
WS: 16,807.7 f/s								
EMX: Max Transferre	ed Energy							
EF2: Energy of F^2								
ER: Hammer Energ								
ETR: Energy Transfe								
FMX: Maximum Forc	e							
Statistics for entire file	e (240 blows))						
	EMX	EF2	ER	ETR				
	k-ft	k-ft	k-ft	(%)				
Average	0.282	0.351	0.350	80.6				
Std. Dev.	0.014	0.019	0.001	3.9				
Maximum	0.323	0.391	0.350	92.4				
@ Blow#	76	128	1	76				
Minimum @ Blow#	0.230	0.282 2	0.350	65.6				
				4				

Time Summary

time eac		
Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240
		

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRAI OP: SI	NS RSCH011	-703 - GD-7						2 INC	CH SS;CME	45C AUTO; at date: 26-S	
AR: LE:	0.92 in^2 53.80 ft 6,807.7 f/s									SP: 0. EM: 30,	492 k/ft3
EF2: ER: ETR:	Max Transfer Energy of F ² Hammer Ene Energy Trans Maximum For							DMX: Max DFN: Fina	timum Veloo timum Displ al Displacen ws per Minu	acement nent	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	3	0.283	0.318	0.350	81.0	26.4	17.2	2.07	2.07	0.0
2	10.40	3	0.241	0.282	0.350	69.0	25.0	16.5	2.20	2.20	54.2
3	10.80	3	0.257	0.301	0.350	73.5	25.8	17.2	2.01	2.01	53.4
4	11.20	3	0.230	0.304	0.350	65.6	26.0	16.8	1.44	1.36	54.5
5	11.60	3	0.273	0.306	0.350	78.1	26.0	16.1	1.84	1.84	53.7
6	12.00	3	0.259	0.302	0.350	73.9	25.7	16.6	1.99	1.99	52.3
		Average	0.257	0.302	0.350	73.5	25.8	16.7	1.92	1.91	53.6
	S	td. Dev.	0.018	0.011	0.000	5.2	0.4	0.4	0.24	0.27	0.8
	М	aximum	0.283	0.318	0.350	81.0	26.4	17.2	2.20	2.20	54.5
	Ć	Blow#	1	1	1	1	1	1	2	2	4
		linimum	0.230	0.282	0.350	65.6	25.0	16.1	1.44	1.36	52.3
	C	D Blow#	4	2	1	4	2	5	4	4	6
		_			Total nun	nber of blow	s analyzed:	6			
Time S	Summary										
Drive	/e 6 seconds 9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6										

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

Page 1 of 2

VTRANS RSCH011-703 - GD-7 OP: SPK AR: 0.92 in^2 LE: 53.80 ft WS: 16,807.7 f/s

EMX: Max Transferred Energy EF2: Energy of F^2

ER: Hammer Energy Rating

ETR: Energy Transfer Ratio

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum F	Force								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ŕt	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
7	15.00	0	0.291	0.340	0.350	83.2	26.0	15.8	1.48	1.47	0.0
8	15.05	20	0.282	0.324	0.350	80.7	25.2	14.7	1.05	1.05	55.0
9	15.10	20	0.285	0.321	0.350	81.5	25.2	14.1	0.76	0.68	54.2
10	15.15	20	0.285	0.328	0.350	81.4	25.5	14.3	0.86	0.86	53.4
11	15.20	20	0.297	0.331	0.350	84.8	25.8	14.4	1.12	1.12	54.1
12	15.25	20	0.285	0.329	0.350	81.4	25.3	14.5	1.03	1.03	54.6
13	15.30	20	0.283	0.338	0.350	80.7	25.0	15.1	1.07	1.07	49.9
14	15.35	20	0.288	0.329	0.350	82.3	25.1	15.0	1.25	1.25	54.6
15	15.40	20	0.300	0.332	0.350	85.7	24.9	15.2	1.23	1.23	53.5
16	15.45 15.50	20	0.302	0.335	0.350	86.3	25.0	15.2	1.35 1.12	1.35 1.12	52.6
17 18	15.50	20 20	0.296 0.310	0.333 0.333	0.350 0.350	84.5 88.5	24.5 24.8	14.9 15.2	1.12	1.12	54.7 53.4
19	15.60	20	0.310	0.333	0.350	83.0	24.8	15.2	1.09	1.47	54.2
20	15.65	20	0.291	0.325	0.350	79.9	24.8	14.8	0.66	0.65	53.6
21	15.70	20	0.296	0.330	0.350	84.4	24.0	14.9	1.15	1.15	53.6
22	15.75	20	0.283	0.320	0.350	80.7	23.8	14.9	1.15	1.15	54.0
23	15.80	20	0.287	0.329	0.350	82.1	24.5	14.9	0.96	0.96	53.4
24	15.85	20	0.284	0.332	0.350	81.2	24.2	14.7	0.72	0.72	54.0
25	15.90	20	0.282	0.330	0.350	80.5	24.3	14.6	0.76	0.76	53.4
26	15.95	20	0.303	0.332	0.350	86.5	24.1	14.7	0.96	0.96	53.5
27	16.00	20	0.311	0.325	0.350	88.8	24.6	14.4	1.21	1.21	53.7
28	16.05	20	0.294	0.320	0.350	84.1	25.0	14.9	0.99	0.99	52.8
29	16.10	20	0.287	0.321	0.350	82.0	24.3	15.2	0.66	0.66	54.0
30	16.15	20	0.287	0.325	0.350	82.0	25.1	15.0	0.54	0.40	53.5
31	16.20	20	0.289	0.320	0.350	82.6	25.2	14.9	0.55	0.38	53.2
32	16.25	20	0.313	0.317	0.350	89.4	25.3	14.7	1.38	1.38	52.9
33	16.30	20	0.303	0.326	0.350	86.6	25.3	15.4	0.61	0.56	53.4
34	16.35	20	0.313	0.321 0.322	0.350	89.4	25.4	15.2	1.41	1.41	53.7
35 36	16.40 16.45	20 20	0.291 0.284	0.322	0.350 0.350	83.1 81.1	26.0 25.5	14.8 14.9	0.76 0.91	0.76 0.91	53.3 53.5
30 37	16.45	20	0.204	0.309	0.350	85.7	26.0	14.9	1.06	1.06	53.5 52.9
38	16.55	20	0.300	0.322	0.350	82.1	25.8	14.9	0.89	0.89	53.5
39	16.60	20	0.307	0.324	0.350	87.8	26.2	15.1	1.30	1.30	53.3
40	16.65	20	0.288	0.319	0.350	82.3	25.4	15.2	0.81	0.81	53.6
41	16.70	20	0.289	0.316	0.350	82.5	25.3	15.0	1.06	1.06	53.0
42	16.75	20	0.267	0.310	0.350	76.3	25.1	14.8	0.53	0.42	53.5
43	16.80	20	0.291	0.322	0.350	83.1	25.4	14.9	0.90	0.90	53.2
44	16.85	20	0.289	0.310	0.350	82.6	24.9	15.1	0.90	0.90	26.7
45	16.90	20	0.297	0.317	0.350	85.0	25.2	15.5	1.24	1.24	53.0
46	16.95	20	0.281	0.318	0.350	80.2	24.9	15.6	0.71	0.71	54.0
47	17.00	20	0.291	0.318	0.350	83.2	25.0	15.6	0.84	0.84	53.3
		Average	0.292	0.324	0.350	83.4	25.1	15.0	0.99	0.97	52.8
		Std. Dev.	0.010	0.007	0.000	2.8	0.6	0.3	0.26	0.28	4.3
		Maximum	0.313	0.340	0.350	89.4	26.2	15.8	1.48	1.47	55.0
		@ Blow#	32	7	7	32	39	7	7	7	8
		Minimum	0.267	0.309	0.350	76.3	23.8	14.1	0.53	0.38	26.7
		@ Blow#	42	36	7	42	22	9	42	31	44

Time Summary

Drive 6 seconds Stop 14 minutes 35 seconds Drive 45 seconds 11 minutes 38 seconds Stop Drive 34 seconds Stop 10 minutes 19 seconds Drive 34 seconds

9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 9:09:49 AM - 9:24:24 AM 9:24:24 AM - 9:25:09 AM BN 7 - 47 9:25:09 AM - 9:36:47 AM 9:36:47 AM - 9:37:21 AM BN 48 - 79 9:37:21 AM - 9:47:40 AM 9:47:40 AM - 9:48:14 AM BN 80 - 111

Total number of blows analyzed: 41

Page 1 of 2

VTRANS RSCH011-703 - GD-7 OP: SPK 0.92 in^2

EMX: Max Transferred Energy EF2: Energy of F²

53.80 ft WS: 16,807.7 f/s

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009 2 INCH SS;CME45C

ME45C AUTO;VTRANS								
Test date: 26-Sep-2008								
SP:	0.492 k/ft3							
EM:	30,000 ksi							
JC:	0.00							

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

EF2: ER: ETR: FMX:	Energy Tra	Energy Rating ansfer Ratio							DFN: Fin	al Displacen ws per Minu	nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
48	20.00	0	0.270	0.358	0.350	77.0	26.2	16.0	2.45	2.45	0.0
49	20.06	16	0.270	0.357	0.350	77.1	25.8	16.1	1.32	1.32	54.0
50	20.13	16	0.282	0.356	0.350	80.5	25.7	15.1	1.17	1.14	53.9
51	20.19	16	0.285	0.343	0.350	81.3	25.3	14.7	1.37	1.37	53.5
52	20.26	16	0.305	0.350	0.350	87.2	25.8	14.9	1.39	1.39	53.5
53	20.32	16	0.273	0.351	0.350	77.9	25.3	15.1	1.23	1.23	54.0
54	20.39	16	0.305	0.366	0.350	87.2	25.5	15.6	1.43	1.43	53.4
55	20.45	16	0.271	0.354	0.350	77.5	25.2	15.5	1.25	1.25	53.7
56	20.52	16	0.292	0.363	0.350	83.6	24.7	15.3	1.16	1.14	54.2
57	20.58	16	0.287	0.353	0.350	82.0	23.9	15.5	1.38	1.38	53.5
58	20.65	16	0.315	0.368	0.350	90.0	24.4	15.2	1.30	1.30	53.7
59	20.71	16	0.286	0.355	0.350	81.8	24.0	15.5	1.31	1.31	53.9
60	20.77	16	0.308	0.361	0.350	87.9	24.3	15.6	1.21	1.21	53.1
61	20.84	16	0.289	0.360	0.350	82.7	24.0	15.9	0.88	0.88	54.2
62	20.90	16	0.298	0.354	0.350	85.0	23.5	15.8	1.09	1.09	53.4
63	20.97	16	0.280	0.347	0.350	80.0	23.5	15.7	1.12	1.12	53.6
64	21.03	16	0.301	0.355	0.350	85.9	23.8	16.1	1.29	1.29	54.0
65	21.10	16	0.283	0.353	0.350	80.7	22.9	16.0	0.87	0.87	53.2
66	21.16	16	0.288	0.348	0.350	82.2	23.1	16.1	1.01	1.01	54.0
67	21.23	16	0.293	0.346	0.350	83.7	23.6	15.6	1.24	1.24	53.4
68	21.29	16	0.296	0.354	0.350	84.6	23.2	16.3	0.82	0.82	53.7
69	21.35	16	0.303	0.356	0.350	86.5	22.9	16.4	1.31	1.31	53.8
70	21.42	16	0.290	0.357	0.350	82.8	23.3	16.2	0.73	0.72	53.4
71	21.48	16	0.306	0.352	0.350	87.6	24.0	15.4	1.29	1.29	53.9
72	21.55	16	0.307	0.350	0.350	87.8	23.1	15.7	1.13	1.13	53.8
73	21.61	16	0.306	0.349	0.350	87.5	23.4	15.5	1.35	1.35	53.4
74	21.68	16	0.287	0.351	0.350	82.0	23.2	15.7	0.90	0.90	49.7
75	21.74	16	0.295	0.342	0.350	84.4	22.9	15.3	1.41	1.41	53.3
76	21.81	16	0.323	0.365	0.350	92.4	23.6	15.9	1.21	1.21	53.5
77	21.87	16	0.320	0.357	0.350	91.4	23.8	16.0	1.42	1.42	53.6
78	21.94	16	0.320	0.361	0.350	91.3	24.3	15.7	1.15	1.15	53.7
79	22.00	16	0.311	0.351	0.350	88.8	23.7	16.0	1.19	1.19	53.5
		Average	0.295	0.354	0.350	84.3	24.1	15.7	1.23	1.23	53.5
		Std. Dev.	0.015	0.006	0.000	4.2	1.0	0.4	0.28	0.28	0.8
		Maximum	0.323	0.368	0.350	92.4	26.2	16.4	2.45	2.45	54.2
		@ Blow#	76	58	48	76	48	69	48	48	56
		Minimum	0.270	0.342	0.350	77.0	22.9	14.7	0.73	0.72	49.7
		@ Blow#	48	75	48	48	75	51	70	70	74
		3					s analyzed:				
Time	O										
	Summary										
Drive	6 6 6	conde		c	.00.43 AM -		(9/26/2008)	N BN 1-6			

Drive	6 seconds	9:
Stop	14 minutes 35 seconds	9:
Drive	45 seconds	9:
Stop	11 minutes 38 seconds	9:
Drive	34 seconds	9:
Stop	10 minutes 19 seconds	9:
Drive	34 seconds	9:
Stop	10 minutes 26 seconds	9:
Drive	16 seconds	9:
Stop	11 minutes 59 seconds	9:
Drive	22 seconds	10
Stop	18 minutes 19 seconds	10
Drive	19 seconds	10
Stop	17 minutes 37 seconds	10
Drive	40 seconds	10
Stop	19 minutes 4 seconds	10

0:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 9:09:49 AM - 9:24:24 AM 24:24 AM - 9:25:09 AM BN 7 - 47 :25:09 AM - 9:36:47 AM :36:47 AM - 9:37:21 AM BN 48 - 79 9:37:21 AM - 9:47:40 AM :47:40 AM - 9:48:14 AM BN 80 - 111 .48:14 AM - 9:58:40 AM :58:40 AM - 9:58:56 AM BN 112 - 127 9:58:56 AM - 10:10:55 AM 0:10:55 AM - 10:11:17 AM BN 128 - 148 10:11:17 AM - 10:29:36 AM 10:29:36 AM - 10:29:55 AM BN 149 - 167 10:29:55 AM - 10:47:32 AM 10:47:32 AM - 10:48:12 AM BN 168 - 204 10:48:12 AM - 11:07:16 AM

Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009 2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008 SP: 0.492 k/ft3

VMX: Maximum Velocity

DMX: Maximum Displacement

EM: 30,000 ksi

JC: 0.00

VTRANS RSCH011-703 - GD-7 OP: SPK AR: 0.92 in^2 LE: 53.80 ft WS: 16,807.7 f/s

EMX: Max Transferred Energy EF2: Energy of F^2

ER: Hammer Energy Rating

ER: ETR:	Hammer Er Energy Tra	nergy Rating							DFN: Fina	al Displacer	nent
	Maximum F								BPM: Blov	ws per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	PDM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	BPM
80	25.00	0	0.277	0.367	0.350	79.1	25.7	17.9	1.61	1.61	0.0
81	25.06	16	0.269	0.363	0.350	77.0	26.0	16.4	1.04	1.01	54.0
82	25.13	16	0.279	0.375	0.350	79.8	26.4	16.0	1.10	1.10	54.5
83	25.19	16	0.270	0.366	0.350	77.1	26.3	15.6	0.95	0.94	53.3
84	25.26	16	0.275	0.364	0.350	78.6	26.2	14.9	1.28	1.28	54.2
85	25.32	16	0.272	0.364	0.350	77.7	26.2	15.6	0.93	0.93	53.4
86	25.39	16	0.273	0.367	0.350	78.1	26.1	15.8	0.99	0.99	53.7
87	25.45	16	0.278	0.368	0.350	79.3	26.1	15.5	0.97	0.97	53.7
88	25.52	16	0.274	0.366	0.350	78.2	26.0	15.1	0.98	0.98	53.3
89	25.58	16	0.279	0.364	0.350	79.6	25.5	15.2	1.11	1.11	54.0
90	25.65	16	0.272	0.360	0.350	77.7	25.5	15.7	0.94	0.94	54.0
91	25.71	16	0.277	0.365	0.350	79.1	25.5	15.8	0.91	0.91	53.7
92	25.77	16	0.265	0.357	0.350	75.6	26.1	16.6	0.72	0.66	53.2
93	25.84	16	0.271	0.363	0.350	77.4	26.1	16.5	1.11	1.11	53.8
94	25.90	16	0.275	0.364	0.350	78.5	25.7	16.0	1.06	1.06	53.7
95	25.97	16	0.274	0.361	0.350	78.3	25.2	15.5	1.04	1.04	53.9
96	26.03	16	0.268	0.354	0.350	76.7	25.3	16.0	0.96	0.96	53.3
97	26.10	16	0.280	0.366	0.350	80.0	25.5	15.1	0.93	0.93	54.0
98	26.16	16	0.274	0.360	0.350	78.2	25.4	15.4	1.07	1.07	53.7
99	26.23	16	0.263	0.355	0.350	75.1	25.6	16.3	0.78	0.78	53.3
100	26.29	16	0.268	0.364	0.350	76.7	25.7	15.8	0.85	0.85	53.7
101	26.35	16	0.266	0.360	0.350	76.0	26.0	15.7	0.90	0.90	54.0
102	26.42	16	0.262	0.350	0.350	74.9	25.5	15.5	0.81	0.81	53.6
103	26.48	16	0.260	0.347	0.350	74.4	25.3	16.2	1.08	1.08	53.7
104	26.55	16	0.265	0.354	0.350	75.8	25.5	16.5	1.12	1.12	53.2
105	26.61	16	0.270	0.362	0.350	77.1	25.9	16.0	0.93	0.91	53.8
106	26.68	16	0.278	0.363	0.350	79.4	25.7	15.5	1.24	1.24	53.7
107	26.74	16	0.264	0.357	0.350	75.6	26.1	16.2	1.12	1.12	53.3
108	26.81	16	0.264	0.350	0.350	75.5	25.2	15.3	1.31	1.31	54.1
109	26.87	16	0.279	0.358	0.350	79.7	25.4	15.5	1.23	1.23	53.9
110	26.94	16	0.270	0.359	0.350	77.1	25.8	16.8	1.35	1.35	53.7
111	27.00	16	0.272	0.353	0.350	77.9	25.0	16.4	1.47	1.47	53.3
		Average	0.271	0.361	0.350	77.5	25.7	15.9	1.06	1.06	53.7
		Std. Dev.	0.006	0.006	0.000	1.6	0.4	0.6	0.19	0.20	0.3
		Maximum	0.280	0.375	0.350	80.0	26.4	17.9	1.61	1.61	54.5
		@ Blow#	97	82	80	97	82	80	80	80	82
		Minimum	0.260	0.347	0.350	74.4	25.0	14.9	0.72	0.66	53.2
		@ Blow#	103	103	80	103	111	84	92	92	92
					Total num	her of blows	analyzed:	<u>, , , , , , , , , , , , , , , , , , , </u>			

Total number of blows analyzed: 32

Time Summary

Drive Stop	6 seconds 14 minutes 35 seconds
Drive	45 seconds
Stop	11 minutes 38 seconds
Drive	34 seconds
Stop	10 minutes 19 seconds
Drive	34 seconds
Stop	10 minutes 26 seconds
Drive	16 seconds
Stop	11 minutes 59 seconds
Drive	22 seconds
Stop	18 minutes 19 seconds
Drive	19 seconds
Stop	17 minutes 37 seconds
Drive	40 seconds
Stop	19 minutes 4 seconds

9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 9:09:49 AM - 9:24:24 AM 9:24:24 AM - 9:25:09 AM BN 7 - 47 9:25:09 AM - 9:36:47 AM 9:36:47 AM - 9:37:21 AM BN 48 - 79 9:37:21 AM - 9:47:40 AM 9:47:40 AM - 9:48:14 AM BN 80 - 111 9:48:14 AM - 9:58:40 AM 9:58:40 AM - 9:58:56 AM BN 112 - 127 9:58:56 AM - 10:10:55 AM 10:10:55 AM - 10:11:17 AM BN 128 - 148 10:11:17 AM - 10:29:36 AM 10:29:36 AM - 10:29:55 AM BN 149 - 167 10:29:55 AM - 10:47:32 AM 10:47:32 AM - 10:48:12 AM BN 168 - 204 10:48:12 AM - 11:07:16 AM

Page 1 of 1

VTRANS RSCH011-703 - GD-7 OP: SPK 0.92 in^2

EMX: Max Transferred Energy

ER: Hammer Energy Rating

53.80 ft WS: 16,807.7 f/s

EF2: Energy of F^2

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008							
SP: 0.492 k/ft3 EM: 30.000 ksi							
JC: 0.00							

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

ETR: E	Energy Trans	fer Ratio								vs per Minu	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
112	30.00	0	0.266	0.360	0.350	76.0	24.9	16.2	2.37	2.37	0.0
113	30.13	8	0.273	0.357	0.350	77.9	24.6	15.8	2.04	2.04	52.6
114	30.27	8	0.275	0.361	0.350	78.7	24.9	15.4	1.72	1.70	53.6
115	30.40	8	0.273	0.364	0.350	78.1	24.7	15.8	1.72	1.69	53.5
116	30.53	8	0.284	0.374	0.350	81.2	24.8	16.2	1.90	1.90	53.4
117	30.67	8	0.282	0.368	0.350	80.6	24.8	16.2	1.98	1.98	54.0
118	30.80	8	0.282	0.372	0.350	80.5	25.3	16.0	1.64	1.63	53.3
119	30.93	8	0.287	0.370	0.350	81.9	25.6	16.9	1.76	1.76	53.9
120	31.07	8	0.274	0.360	0.350	78.3	25.2	17.1	1.94	1.94	54.1
121	31.20	8	0.273	0.353	0.350	78.0	24.8	17.1	1.77	1.77	53.3
122	31.33	8	0.270	0.356	0.350	77.1	24.6	15.5	1.58	1.58	53.3
123	31.47	8	0.273	0.355	0.350	78.0	25.3	16.0	1.86	1.86	53.5
124	31.60	8	0.276	0.365	0.350	78.9	24.8	15.7	1.24	1.24	53.7
125	31.73	8	0.274	0.361	0.350	78.4	25.3	16.5	1.40	1.40	53.6
126	31.87	8	0.263	0.348	0.350	75.0	24.4	15.3	1.15	1.15	54.1
127	32.00	8	0.275	0.355	0.350	78.5	24.7	15.2	1.29	1.29	53.8
		Average	0.275	0.361	0.350	78.6	24.9	16.1	1.71	1.71	53.6
	S	Std. Dev.	0.006	0.007	0.000	1.8	0.3	0.6	0.31	0.31	0.4
	N	laximum	0.287	0.374	0.350	81.9	25.6	17.1	2.37	2.37	54.1
	(@ Blow#	119	116	112	119	119	120	112	112	120
	N	Ainimum	0.263	0.348	0.350	75.0	24.4	15.2	1.15	1.15	52.6
	(② Blow#	126	126	112	126	126	127	126	126	113
					Total num	ber of blows	s analyzed:	16			

Time Summary

Drive 6 seconds 9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 Stop 14 minutes 35 seconds 9:09:49 AM - 9:24:24 AM Drive 45 seconds 9:24:24 AM - 9:25:09 AM BN 7 - 47 11 minutes 38 seconds 9:25:09 AM - 9:36:47 AM Stop Drive 34 seconds 9:36:47 AM - 9:37:21 AM BN 48 - 79 Stop 10 minutes 19 seconds 9:37:21 AM - 9:47:40 AM Drive 34 seconds 9:47:40 AM - 9:48:14 AM BN 80 - 111 Stop 10 minutes 26 seconds 9:48:14 AM - 9:58:40 AM 9:58:40 AM - 9:58:56 AM BN 112 - 127 Drive 16 seconds 11 minutes 59 seconds 9:58:56 AM - 10:10:55 AM Stop 10:10:55 AM - 10:11:17 AM BN 128 - 148 Drive 22 seconds Stop 18 minutes 19 seconds 10:11:17 AM - 10:29:36 AM 10:29:36 AM - 10:29:55 AM BN 149 - 167 Drive 19 seconds Stop 17 minutes 37 seconds 10:29:55 AM - 10:47:32 AM Drive 40 seconds 10:47:32 AM - 10:48:12 AM BN 168 - 204 10:48:12 AM - 11:07:16 AM Stop 19 minutes 4 seconds 11:07:16 AM - 11:07:54 AM BN 205 - 240 Drive 38 seconds

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-7 OP: SPK AR: 0.92 in^2

EMX: Max Transferred Energy

53.80 ft

WS: 16,807.7 f/s

EF2: Energy of F^2

LE:

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity

DMX: Maximum Displacement

ER: ETR: FMX:	Hammer En Energy Tran Maximum Fo	sfer Ratio							DFN: Fina BPM: Blov	al Displacen vs per Minu	nent te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
128	35.00	0	0.294	0.391	0.350	8¥.Ó	26.3	16.8	2.99	2.99	0.0
129	35.10	10	0.281	0.368	0.350	80.3	26.0	15.5	2.01	2.01	53.6
130	35.20	10	0.285	0.374	0.350	81.5	26.0	15.1	1.62	1.62	53.8
131	35.30	10	0.284	0.372	0.350	81.1	26.2	15.2	1.38	1.38	53.5
132	35.40	10	0.292	0.377	0.350	83.4	26.0	15.7	1.49	1.49	54.2
133	35.50	10	0.280	0.364	0.350	80.0	25.7	14.2	1.36	1.36	54.2
134	35.60	10	0.284	0.371	0.350	81.0	25.8	14.0	1.36	1.36	53.4
135	35.70	10	0.278	0.365	0.350	79.4	26.1	14.8	1.51	1.51	53.6
136	35.80	10	0.278	0.363	0.350	79.3	26.1	14.5	1.69	1.69	53.3
137	35.90	10	0.284	0.371	0.350	81.2	25.8	13.8	1.49	1.49	53.6
138	36.00	10	0.288	0.370	0.350	82.2	25.7	14.1	1.35	1.35	54.0
139	36.10	10	0.285	0.368	0.350	81.5	25.4	14.5	1.47	1.47	53.7
140	36.20	10	0.283	0.366	0.350	80.9	25.2	14.1	1.37	1.37	53.7
141	36.30	10	0.285	0.375	0.350	81.3	25.5	13.9	1.12	1.12	54.1
142	36.40	10	0.273	0.362	0.350	78.0	25.7	13.8	1.27	1.27	54.2
143	36.50	10	0.276	0.368	0.350	78.9	25.8	14.4	1.31	1.31	53.2
144	36.60	10	0.274	0.358	0.350	78.3	25.1	14.1	1.05	1.01	54.6
145	36.70	10	0.287	0.375	0.350	81.9	25.5	14.0	1.21	1.21	53.6
146	36.80	10	0.284	0.370	0.350	81.2	25.5	14.0	1.30	1.30	53.9
147	36.90	10	0.284	0.365	0.350	81.1	25.0	14.0	1.34	1.34	53.8
148	37.00	10	0.280	0.358	0.350	80.0	25.0	13.4	1.25	1.25	54.3
		Average	0.283	0.369	0.350	80.8	25.7	14.5	1.47	1.47	53.8
		Std. Dev.	0.005	0.007	0.000	1.5	0.4	0.8	0.39	0.40	0.4
	P	Maximum	0.294	0.391	0.350	84.0	26.3	16.8	2.99	2.99	54.6
		@ Blow#	128	128	128	128	128	128	128	128	144
		Minimum	0.273	0.358	0.350	78.0	25.0	13.4	1.05	1.01	53.2
		@ Blow#	142	144	128	142	148	148	144	144	143
					Total num	ber of blows	s analyzed:	21			
Time S	Summary										
Drive	6 sec	onds		9	:09:43 AM -	9:09:49 AM	(9/26/2008)	BN 1 - 6			
Stop	14 minutes 35 seconds				:09:49 AM -						

Drive	o seconas	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

VTRANS RSCH011-703 - GD-7 OP: SPK AR: 0.92 in^2

53.80 ft WS: 16,807.7 f/s

LE:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME4

H SS;C	CME45C AUTO;VTRANS
	Test date: 26-Sep-2008
	SP: 0.492 k/ft3
	EM: 30,000 ksi
	JC: 0.00
VMX:	Maximum Velocity
DMX:	Maximum Displacement
DEN	Einel Diselses we ast

	6,807.7 f/s										0.00
	Max Transfer									laximum Veloo	
EF2:	Energy of F^2	2							DMX: M	laximum Displ	acemen
ER:	Hammer Ene								DFN: Fi	inal Displacem	nent
	Energy Trans								BPM: B	lows per Minu	te
	Maximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
149	40.00	0	0.289	0.378	0.350	82.5	25.9	16.0	2.18	2.18	0.0
150	40.11	9	0.302	0.385	0.350	86.4	26.4	15.8	1.74	1.74	52.7
151	40.22	9	0.290	0.375	0.350	82.9	25.9	16.0	1.48	1.48	53.5
152	40.33	9	0.291	0.380	0.350	83.2	26.5	15.3	1.67	1.67	53.6
153	40.44	9	0.285	0.369	0.350	81.5	26.1	16.0	1.75	1.75	53.7
154	40.56	9	0.296	0.378	0.350	84.4	25.9	14.2	1.86	1.86	54.5
155	40.67	9	0.297	0.385	0.350	84.9	26.5	14.0	1.36	1.32	53.5
156	40.78	9	0.297	0.381	0.350	84.8	26.2	13.8	1.80	1.80	53.5
157	40.89	9	0.290	0.378	0.350	83.0	26.1	14.6	2.09	2.09	53.9
158	41.00	9	0.285	0.371	0.350	81.3	26.1	14.5	1.96	1.96	53.6
159	41.11	9	0.287	0.371	0.350	82.0	26.3	14.5	1.85	1.85	53.8
160	41.22	9	0.292	0.379	0.350	83.4	26.0	13.8	1.48	1.48	53.6
161	41.33	9	0.288	0.375	0.350	82.4	26.0	13.7	1.46	1.46	53.8
162	41.44	9	0.288	0.374	0.350	82.4	26.0	13.8	1.59	1.59	54.2
163	41.56	9	0.295	0.379	0.350	84.4	26.1	13.8	1.49	1.49	54.0
164	41.67	9	0.291	0.377	0.350	83.0	25.7	13.5	0.86	0.86	53.9
165	41.78	9	0.283	0.364	0.350	80.9	26.0	13.6	1.11	1.11	54.1
166	41.89	9	0.296	0.380	0.350	84.5	26.0	13.6	1.03	1.03	53.9
167	42.00	9	0.281	0.363	0.350	80.4	25.2	13.4	1.11	1.11	54.5
	1	Average	0.291	0.376	0.350	83.1	26.0	14.4	1.57	1.57	53.8
	S	td. Dev.	0.005	0.006	0.000	1.5	0.3	0.9	0.35	0.36	0.4
	M	aximum	0.302	0.385	0.350	86.4	26.5	16.0	2.18	2.18	54.5
		⊉ Blow#	150	150	149	150	155	151	149	149	154
	N	linimum	0.281	0.363	0.350	80.4	25.2	13.4	0.86	0.86	52.7
	(D Blow#	167	167	149	167	167	167	164	164	150
					Total num	ber of blows	analyzed:	19			
Time S	Summary										
nine c	o			-							

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

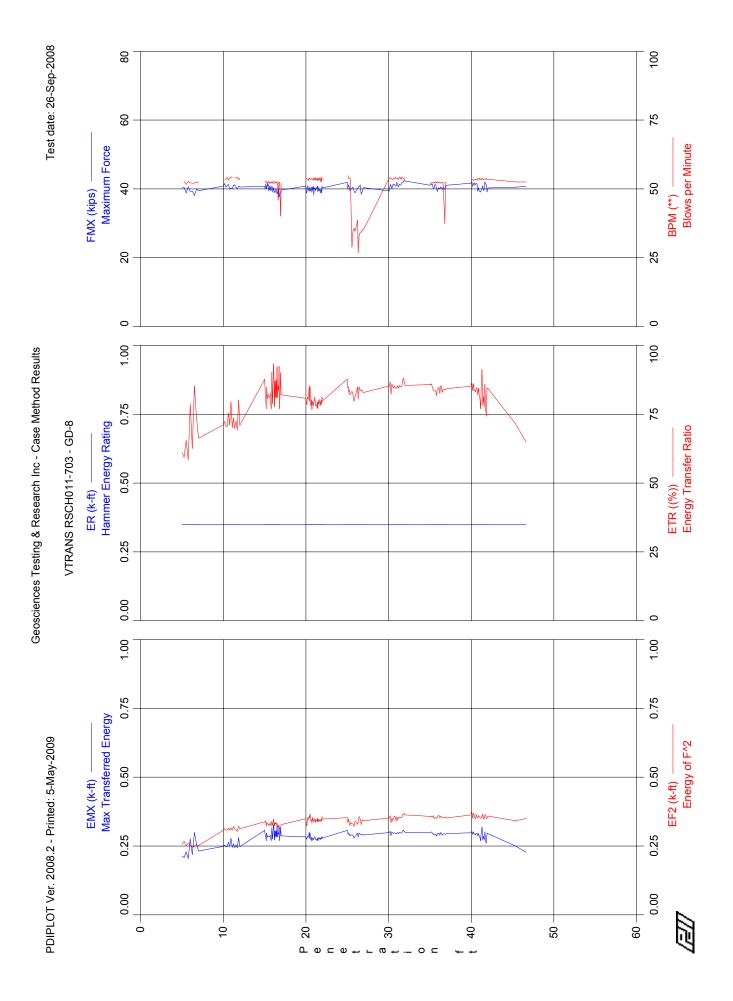
Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-7 <u>OP: SPK</u> AR: 0.92 in² LE: 53.80 ft

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

WS: 16,807.7 f/s EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement ER: Hammer Energy Rating DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute FMX: Maximum Force BL# depth BLC EMX EF2 ER ETR FMX VMX DMX DFN BPM bl/ft k-ft k-ft k-ft (%) f/s ft kips in in 45.00 168 0 0.283 0.366 0.350 80.9 26.0 13.9 1.45 1.45 0.0 169 45.06 18 0.285 0.364 0.350 26.2 814 13.8 1 4 1 1.41 53.4 170 45.11 18 0.273 0.353 0.350 77.9 25.7 13.8 1.58 1.58 53.2 171 45.17 18 0.360 0.350 79.5 26.0 0.278 13.7 1.18 1.18 53.7 172 45.22 18 0.275 0.358 0.350 78.5 25.8 13.7 0.91 0.91 53.9 173 45.28 18 0.270 0.351 0.350 77.2 25.9 0.76 13.6 0.76 53.9 174 45.33 18 0.277 0.351 0.350 79.2 25.3 13.3 1.06 1.06 53.9 175 45.39 18 0.281 0.355 0.350 80.3 25.4 1.03 134 1.03 53.9 176 45.44 18 0.273 0.353 0.350 78.1 25.1 13.3 0.93 0.93 53.3 177 45.50 18 0.277 0.350 0.350 79.3 25.1 13.0 0.91 0.91 53.3 45.56 178 18 0.276 0.346 0.350 78.8 25.0 12.7 0.95 0.95 54.3 179 45.61 18 0.275 0.345 0.350 78.6 25.0 12.8 0.78 0.78 53.2 180 45.67 18 0.280 0.347 0.350 80.1 25.5 12.9 0.99 0.99 54.1 181 45.72 18 0.279 0.346 0.350 79.8 25.3 13.4 1.25 1.25 53.7 182 45.78 0.350 18 0.275 0.350 78.6 25.0 12.8 0.67 0.63 53.6 183 45.83 18 0.269 0.340 0.350 76.8 24.3 13.1 0.98 0.98 53.4 0.269 184 45.89 18 0.342 0.350 76.8 24.6 13.1 0.82 0.82 53.8 185 45.94 18 0.260 0.329 0.350 74.3 24.4 12.9 1.13 1.13 53.5 46.00 186 0.265 0.350 75.8 24.5 18 0.339 13.1 0.64 0.54 53.1 187 46.06 18 0.269 0.338 0.350 76.9 24.6 13.2 1.51 1.51 53.7 188 46.11 18 0.258 0.334 0.350 73.6 24.6 12.8 0.63 0.28 54.2 189 46.17 18 0.268 0.331 0.350 76.6 24.7 12.9 1.54 1.54 53.5 190 46.22 0.263 24.8 18 0.333 0.350 75.3 12.9 1.19 1.19 53.7 191 46.28 0.256 0.330 0.350 73.1 24.4 18 12.9 0.62 0.61 53.5 192 46.33 0.334 0.350 24.6 18 0.261 74.7 12.9 1.12 53.2 1.12 193 46.39 18 0.259 0.333 0.350 73.9 24.4 0.60 13.0 0.26 54.0 194 46.44 18 0.265 0.343 0.350 75.6 24.9 13.2 0.82 0.82 52.9 195 46.50 18 0.260 0.338 0.350 74.3 24.7 13.3 0.61 0.48 53.6 0.350 196 46.56 0.347 24.6 18 0.267 76.2 13.1 1.12 1.12 53.8 197 46.61 18 0.275 0.354 0.350 78.5 25.0 13.4 0.89 0.89 53.3 198 46.67 0.261 0.341 0.350 74.6 24.7 0.59 18 13.6 0 46 54.0 199 46.72 18 0.267 0.349 0.350 76.3 24.8 13.8 0.80 0.80 53.4 200 46.78 18 0.273 0.352 0.350 77.9 24.9 13.5 0.92 0.92 53.2 201 46 83 18 0.263 0.336 0.350 75.0 24.3 13.8 1.01 1.01 54.3 202 46.89 18 0.270 0.348 0.350 77.1 24.5 13.7 0.59 0.45 53.4 203 46.94 18 0.267 0.339 0.350 76.3 24.4 13.6 0.65 0.65 53.5 204 47.00 18 0.272 0.356 0.350 77.8 25.3 13.8 0.61 0.54 53.3 Average 0.270 0.345 0.350 77.2 25.0 13.3 0.95 0.92 53.6 0.009 Std. Dev. 0.007 0.000 2.1 0.5 0.4 0.29 0.34 0.3 Maximum 0.285 0.366 0.350 81.4 26.2 13.9 1.58 1.58 54.3 @ Blow# 169 168 168 169 169 168 170 170 178 Minimum 0.256 0.329 0.350 73.1 24.3 12.7 0.59 0.26 52.9 @ Blow# 191 185 168 191 201 178 202 193 194

Total	numbor	of blows	analyzed:	27
lota	numper	of blows	analyzed:	37


Drive 6 seconds 14 minutes 35 seconds Stop Drive 45 seconds Stop 11 minutes 38 seconds Drive 34 seconds Stop 10 minutes 19 seconds Drive 34 seconds Stop 10 minutes 26 seconds Drive 16 seconds 11 minutes 59 seconds Stop Drive 22 seconds

9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 9:09:49 AM - 9:24:24 AM 9:24:24 AM - 9:25:09 AM BN 7 - 47 9:25:09 AM - 9:36:47 AM 9:36:47 AM - 9:37:21 AM BN 48 - 79 9:37:21 AM - 9:47:40 AM 9:47:40 AM - 9:48:14 AM BN 80 - 111 9:48:14 AM - 9:58:40 AM 9:58:40 AM - 9:58:56 AM BN 112 - 127 9:58:56 AM - 10:10:55 AM 10:10:55 AM - 10:11:17 AM BN 128 - 148

VTRA		11-703 - GD-7	,						сн ss;c	3.2 - Printed: 3- ME45C AUTO;	VTRANS
<u>OP: 8</u>										Test date: 26-	
AR: LE:	0.92 in^ 53.80 ft	2								EM: 30	.492 k/ft3 ,000 ksi
	16,807.7 f/s	ferred Energy							V/MV·	JC: Maximum Velo	0.00 oitu
EF2: ER: ETR: FMX:	Energy of I Hammer E Energy Tra	^{-^} 2 nergy Rating insfer Ratio							DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Minu	lacement nent
BL#		BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	(DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	ir		**
205	50.00	0	0.277	0.350	0.350	79.3	25.8	14.1	1.02		0.0
206 207	50.06	18	0.268	0.341	0.350	76.5	25.2	14.0	0.71		54.6
207	50.11 50.17	18 18	0.295 0.282	0.358 0.353	0.350 0.350	84.2 80.4	25.6 24.7	14.4 14.9	1.63 0.97		52.7 54.0
200	50.23	18	0.282	0.353	0.350	79.2	24.7	14.9	0.97		54.0 53.2
210	50.29	18	0.275	0.347	0.350	78.6	24.3	14.7	0.82		53.2 54.2
211	50.34	18	0.275	0.350	0.350	78.5	24.9	14.4	0.93		53.1
212	50.40	18	0.272	0.348	0.350	77.7	24.5	14.2	0.67		53.3
213	50.46	18	0.281	0.357	0.350	80.2	24.9	14.4	0.70		53.8
214	50.51	18	0.278	0.349	0.350	79.4	24.7	14.0	0.96	6 0.96	54.3
215	50.57	18	0.279	0.353	0.350	79.7	24.2	14.5	1.06		53.1
216	50.63	18	0.282	0.348	0.350	80.7	23.9	14.6	0.76		53.1
217	50.69	18	0.278	0.343	0.350	79.5	24.3	14.5	1.15		54.0
218 219	50.74 50.80	18	0.283 0.270	0.349	0.350	80.8	24.2	14.6	1.02		53.6
219	50.80	18 18	0.270	0.340 0.343	0.350 0.350	77.0 80.9	23.8 23.9	14.3 14.5	0.61 0.87		53.3 53.2
221	50.91	18	0.279	0.349	0.350	79.7	23.5	14.3	0.88		53.Z
222	50.97	18	0.272	0.336	0.350	77.7	23.7	14.3	0.83		53.5
223	51.03	18	0.291	0.362	0.350	83.0	23.8	15.0	0.83		53.5
224	51.09	18	0.283	0.354	0.350	80.8	23.2	15.1	0.73	0.61	53.7
225	51.14	18	0.285	0.359	0.350	81.5	23.5	14.8	0.98		53.4
226	51.20	18	0.289	0.355	0.350	82.7	23.8	15.0	1.09		54.0
227	51.26	18	0.280	0.352	0.350	79.9	22.8	15.6	0.84		52.9
228 229	51.31 51.37	18	0.284	0.349	0.350	81.1	23.4 23.3	15.3	1.00		53.8
229	51.37	18 18	0.285 0.280	0.356 0.350	0.350 0.350	81.4 80.0	23.3 23.5	15.6 15.7	0.80 0.77		54.2 53.8
231	51.49	18	0.292	0.357	0.350	83.5	23.5	15.5	1.34		52.9
232	51.54	18	0.287	0.356	0.350	81.9	24.0	15.2	0.69		54.1
233	51.60	18	0.296	0.372	0.350	84.6	23.8	15.3	0.72		53.0
234	51.66	18	0.293	0.361	0.350	83.6	23.7	14.9	1.22	1.22	53.8
235	51.71	18	0.296	0.374	0.350	84.4	24.1	15.2	0.74		53.7
236	51.77	18	0.294	0.367	0.350	84.1	23.6	15.3	1.16		53.1
237	51.83	18	0.294	0.367	0.350	84.1	23.4	15.2	0.84		54.2
238	51.89	18	0.296	0.364	0.350	84.7	23.8	15.2	0.96		53.2
239 240	51.94 52.00	18 18	0.292 0.290	0.359 0.358	0.350 0.350	83.4 83.0	23.6 23.7	15.1 15.5	0.67 0.60		54.0 53.2
	02.00	Average	0.284	0.354	0.350	81.1	24.1	14.8	0.90		53.6
		Std. Dev.	0.008	0.008	0.000	2.3	0.7	0.5	0.30		0.5
		Maximum	0.296	0.374	0.350	84.7	25.8	15.7	1.63		54.6
		@ Blow#	233	235	205	238	205	230	207		206
		Minimum	0.268	0.336	0.350	76.5	22.8	14.0	0.60		52.7
		@ Blow#	206	222	205	206	227	206	240	206	207
					Total num	ber of blows	s analyzed:	36			
Time	Summary										
Drive	6 se	conds		9	:09:43 AM -	9:09:49 AM	(9/26/2008)	BN 1 - 6			

······ • • •	ion y
Drive	6 seconds
Stop	14 minutes 35 seconds
Drive	45 seconds
Stop	11 minutes 38 seconds
Drive	34 seconds
Stop	10 minutes 19 seconds
Drive	34 seconds
Stop	10 minutes 26 seconds
Drive	16 seconds
Stop	11 minutes 59 seconds
Drive	22 seconds
Stop	18 minutes 19 seconds

9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 -9:09:49 AM - 9:24:24 AM 9:24:24 AM - 9:25:09 AM BN 7 - 47 9:25:09 AM - 9:36:47 AM 9:36:47 AM - 9:37:21 AM BN 48 - 79 9:37:21 AM - 9:47:40 AM 9:47:40 AM - 9:48:14 AM BN 80 - 111 9:48:14 AM - 9:58:66 AM BN 112 - 127 9:58:56 AM - 10:10:55 AM 10:10:55 AM - 10:11:17 AM BN 128 - 148 10:11:17 AM - 10:29:36 AM

	ciences Testing Method Results		PDIPLO	Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009						
VTRA OP: S	NS RSCH011-7	703 - GD-8					21	NCH SS;(CME45C AUTO Test date: 26-	
AR: LE:	1.45 in^2 54.50 ft								EM: 30).492 k/ft3),000 ksi
	16,807.7 f/s			··••·				1/8.414		0.00
	Max Transferre Energy of F ²	ea Energy							Maximum Velo Maximum Disp	
ER:	Hammer Energy	ov Rating							Final Displace	
	Energy Transfe								Blows per Minu	
FMX:	Maximum Ford	e							•	
Statis	tics for entire file	e (176 blows)								
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average	0.284	0.338	0.350	81.1	40.3	14.5	1.09	1.03	51.7
	Std. Dev.	0.020	0.025	0.001	5.8	0.9	1.0	0.49	0.64	5.1
	Maximum	0.327	0.372	0.350	93.3	42.7	16.8	2.90	2.90	54.8
	@ Blow#	41	170	1	41	146	2	2	2	95
	Minimum	0.204	0.246	0.350	58.4	37.6	12.0	0.08	-2.64	26.8
	@ Blow#	4	6	1	4	52	215	215	215	115
Time	Summary									
Drive	9 secon	de		12.04.4	12 DM 12.0	1:51 PM (9/26	5/2008) BN	1.0		
Stop		tes 54 secon	de		51 PM - 12:16		/2000) DIN	1-3		
Drive	17 seco		3			02 PM BN	10 - 23			
Stop		tes 26 secon	ds		02 PM - 12:33		10 20			
Drive	36 seco					:04 PM BN	24 - 56			
Stop	13 minu	tes 29 second	ds	12:34:0	04 PM - 12:47	7:33 PM				
Drive	40 seco					3:13 PM BN	57 - 93			
Stop			inutes 21 se	conds12:48:1						
Drive	48 seco					22 AM BN	94 - 126			
Stop		tes 14 second	ds		22 AM - 10:42					
Drive	22 seco					2:58 AM BN	127 - 147			
Stop		tes 24 second	ds		58 AM - 10:59					
Drive	23 seco					:45 AM BN	148 - 168			
Stop Drive		tes 51 second	35		5 AM - 11:21		160 102			
Stop	26 seco	nas tes 11 secon	te		02 AM - 11:22	2:02 AM BN	109 - 192			
Drive	29 mmu 34 seco		10			:47 AM BN	193 - 220			
Stop		4 seconds			7 AM - 12:52		100 - 220			
Drive	41 seco					3:12 PM BN 2	221 - 246			
	-1 3000			12.02.0						

Total time [72:48:30] = (Driving [0:04:56] + Stop [72:43:34])

	ciences Test Method Res	ting & Resear sults	rch Inc					PDIPLOT	Ver. 2008.2 -		ige 1 of 1 Apr-2009
VTRA <u>OP:</u> S		11-703 - GD-8	8					2 IN	CH SS;CME4 Tes	45C AUTO; t date: 26-8	
AR: LE: WS: 1	1.45 in^2 54.50 ft 6,807.7 f/s	2								EM: 30,	492 k/ft3 000 ksi 0.00
EMX: EF2: ER: ETR:	Max Transf Energy of F	nergy Rating nsfer Ratio							DMX: Max DFN: Fina	imum Veloc imum Displ I Displacen vs per Minu	city lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	5.00	4	0.214	0.256	0.350	61.1	40.3	16.4	1.98	1.98	0.0
2	5.25	4	0.208	0.267	0.350	59.4	40.5	16.8	2.90	2.90	52.7
3	5.50	4	0.229	0.251	0.350	65.5	38.8	16.8	2.66	2.62	51.6
4	5.75	4	0.204	0.261	0.350	58.4	40.6	16.5	2.53	2.49	52.7
5	6.00	4	0.276	0.253	0.350	78.8	39.3	16.0	2.49	2.49	52.2
6	6.25	4	0.219	0.246	0.350	62.5	39.4	15.6	2.16	2.16	52.1
7	6.50	4	0.299	0.248	0.350	85.3	38.0	16.5	2.62	2.62	52.1
8	6.75	4	0.258	0.255	0.350	73.8	39.9	15.5	2.20	2.20	52.5
9	7.00	4	0.232	0.252	0.350	66.3	39.5	15.4	2.19	2.19	52.2
		Average	0.238	0.254	0.350	67.9	39.6	16.2	2.42	2.41	52.3
		Std. Dev.	0.031	0.006	0.000	8.8	0.8	0.5	0.28	0.28	0.3
		Maximum	0.299	0.267	0.350	85.3	40.6	16.8	2.90	2.90	52.7
		@ Blow#	7	2	1	7	4	2	2.00	2	2
		Minimum	0.204	0.246	0.350	58.4	38.0	15.4	1.98	1.98	51.6
		@ Blow#	4	6	1	4	7	9	1.00	1.00	3
		C 10W#	-	0	Tatalaum	⊶ بیداماگہ میں	, 		1	i	5

Total number of blows analyzed: 9

Geosciences	Testing & Research Inc	
Case Method	Results	

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009 2 INCH SSICME

VTRAI OP: S	NS RSCH011 PK	-703 - GD-8	1					2 IN	CH SS;CME4 Tes	45C AUTO; t date: 26-5	
AR:	1.45 in^2										492 k/ft3
LE:	54.50 ft									EM: 30,	
WS: 1	6,807.7 f/s										0.00
	Max Transfer	red Energy							VMX: Max	imum Veloo	citv
	Energy of F^2									imum Displ	
ER:	Hammer Ene								DFN: Fina	I Displacen	nent
ETR:	Energy Trans	sfer Ratio								vs per Minu	
	Maximum Fo									-	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
10	10.00	0	0.249	0.307	0.350	71.2	40.8	15.5	2.42	2.42	0.0
11	10.15	7	0.253	0.313	0.350	72.4	41.6	15.3	1.84	1.84	53.5
12	10.31	7	0.248	0.309	0.350	70.9	40.5	15.1	1.52	1.52	53.5
13	10.46	7	0.247	0.307	0.350	70.5	40.9	15.0	1.50	1.50	54.1
14	10.62	7	0.264	0.315	0.350	75.5	41.3	15.1	1.49	1.49	53.2
15	10.77	7	0.249	0.308	0.350	71.1	39.9	15.1	1.50	1.50	54.0
16	10.92	7	0.278	0.316	0.350	79.6	40.2	15.0	1.49	1.49	54.4
17	11.08	7	0.245	0.307	0.350	70.1	40.1	15.4	1.47	1.47	54.0
18	11.23	7	0.258	0.321	0.350	73.6	41.0	15.3	1.35	1.35	0.0
19	11.38	7	0.244	0.313	0.350	69.8	41.2	15.2	1.36	1.36	54.1
20	11.54	7	0.254	0.309	0.350	72.5	40.5	15.3	1.49	1.49	53.9
21	11.69	7	0.243	0.303	0.350	69.3	39.9	14.9	1.30	1.29	54.2
22	11.85	7	0.281	0.323	0.350	80.2	40.8	15.3	1.45	1.45	53.3
23	12.00	7	0.248	0.313	0.350	71.0	40.6	15.0	1.28	1.27	<u>53.9</u>
		Average	0.254	0.312	0.350	72.7	40.7	15.2	1.53	1.53	53.8
		Std. Dev.	0.012	0.005	0.000	3.3	0.5	0.2	0.28	0.28	0.4
		laximum	0.281	0.323	0.350	80.2	41.6	15.5	2.42	2.42	54.4
		@ Blow#	22	22	10	22	11	10	10	10	16
		Ainimum	0.243	0.303	0.350	69.3	39.9	14.9	1.28	1.27	53.2
	(@ Blow#	21	21	10	21	15	21	23	23	14
					Total num	ber of blows	s analyzed:	14			

10 21 15 Total number of blows analyzed: 14

	ciences Test Method Res	ing & Resear ults	ch Inc					PDIPLOT	/er. 2008.2 -		ge 1 of 1 Apr-2009
VTRA OP: S		11-703 - GD-8	3					2 INC	CH SS;CME4 Tes	15C AUTO;' t date: 26-8	
AR:	1.45 in^2	2								SP: 0.	492 k/ft3
LE:	54.50 ft									EM: 30,	000 ksi
WS: 1	16,807.7 f/s									JC: (0.00
EMX:	Max Transf	erred Energy								imum Velo	
EF2:	Energy of F	^2								imum Displ	
ER:		nergy Rating								I Displacen	
	Energy Tra								BPM: Blov	vs per Minu	te
	Maximum F										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
24	15.00	0	0.307	0.338	0.350	87.7	40.7	15.5	1.50	1.50	0.0
25	15.06	16	0.292	0.337	0.350	83.5	40.1	14.8	0.99	0.99	52.8
26	15.13	16	0.284	0.341	0.350	81.2	41.3 40.5	13.5 12.9	0.74 0.68	0.70 0.68	52.5 52.6
27 28	15.19 15.25	16	0.269 0.297	0.322 0.332	0.350 0.350	76.9 84.8	40.5	12.9	0.88	0.88	52.0
20 29	15.25	16 16	0.297	0.332	0.350	84.8 80.5	40.0	13.7	0.75	0.73	51.9
29 30	15.31	16	0.282	0.335	0.350	82.1	40.8	12.8	0.55	0.56	52.4
31	15.44	16	0.287	0.328	0.350	82.0	41.3	13.0	0.67	0.67	52.6
32	15.50	16	0.284	0.329	0.350	81.2	39.5	12.9	0.53	0.45	52.4
33	15.56	16	0.284	0.325	0.350	81.0	40.8	13.4	0.70	0.70	51.9
34	15.63	16	0.285	0.330	0.350	81.4	39.7	13.2	0.64	0.64	52.5
35	15.69	16	0.289	0.335	0.350	82.6	40.6	13.0	0.64	0.64	52.2
36	15.75	16	0.275	0.323	0.350	78.5	39.4	12.9	0.69	0.69	52.1
37	15.81	16	0.270	0.328	0.350	77.0	39.9	13.2	0.63	0.59	52.5
38	15.88	16	0.316	0.339	0.350	90.2	40.8	13.7	0.89	0.89	52.4
39	15.94	16	0.276	0.326	0.350	78.8	40.3	13.5	0.70	0.59	52.0
40	16.00	16	0.292	0.331	0.350	83.4	39.1	13.3	0.77	0.77	52.5
41	16.06	16	0.327	0.348	0.350	93.3	40.3	13.9	0.88	0.88	52.7
42	16.13	16	0.315	0.335	0.350	90.0	39.6	14.1	0.90	0.90	52.4
43	16.19	16	0.272	0.324	0.350	77.8	39.2	13.8	0.78	0.69	52.1
44	16.25	16	0.304	0.336	0.350	87.0 81.2	38.8 40.0	13.8 13.8	0.89 0.85	0.87 0.78	52.3 52.6
45 46	16.31 16.38	16 16	0.284 0.306	0.330 0.334	0.350 0.350	87.5	40.0 39.8	13.0	0.85	0.78	52.6 52.1
40	16.44	16	0.300	0.334	0.350	81.0	39.5	14.6	0.94	0.94	52.5
48	16.50	16	0.203	0.332	0.350	92.3	38.6	13.7	1.14	1.14	52.6
49	16.56	16	0.284	0.319	0.350	81.0	39.1	13.9	0.95	0.95	52.5
50	16.63	16	0.298	0.325	0.350	85.1	39.9	13.5	0.86	0.81	45.9
51	16.69	16	0.292	0.319	0.350	83.4	39.9	13.4	1.05	1.05	52.0
52	16.75	16	0.324	0.315	0.350	92.5	37.6	13.6	1.07	1.07	52.5
53	16.81	16	0.270	0.312	0.350	77.0	38.5	13.6	1.10	1.10	52.4
55	16.94	16	0.315	0.318	0.350	90.1	39.0	13.8	1.51	1.51	40.1
56	17.00	16	0.287	0.328	0.350	82.1	39.6	14.2	1.14	1.14	52.1
		Average	0.292	0.329	0.350	83.6	39.9	13.6	0.86	0.84	51.8
		Std. Dev.	0.016	0.008	0.000	4.7	0.9	0.6	0.24	0.26	2.4
		Maximum	0.327	0.348	0.350	93.3	41.8	15.5	1.51	1.51	52.8
		@ Blow#	41	41	24	41	29	24	55	55	25
		Minimum	0.269	0.312	0.350	76.9	37.6	12.8	0.53	0.41	40.1
		@ Blow#	27	53	24 Total pure	27 Nor of blow	52 	30	32	29	55

24 27 52 Total number of blows analyzed: 32

	ciences Tes Method Res	ting & Resear sults	rch Inc					PDIPLOT	Ver. 2008.2 -		ige 1 of 1 Apr-2009
	VTRANS RSCH011-703 - GD-8 2 INCH SS;CME45C AUTO;VTRANS OP: SPK Test date: 26-Sep-2008										
AR: LE:	1.45 in^ 54.50 ft 16,807.7 f/s	2								SP: 0. EM: 30,	492 k/ft3
EF2: ER: ETR:	EMX: Max Transferred EnergyVMX: Maximum VelocityEF2: Energy of F^2DMX: Maximum DisplacemER: Hammer Energy RatingDFN: Final DisplacementETR: Energy Transfer RatioBPM: Blows per MinuteFMX: Maximum ForceFMX: Maximum Force										acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
57	20.00	0	0.283	0.349	0.350	80.8	40.8	14.0	1.62	1.62	0.0
58	20.06	18	0.275	0.326	0.350	78.5	38.9	13.4	1.00	0.88	53.8
59	20.11	18	0.277	0.323	0.350	79.2	39.0	13.2	1.30	1.30	53.7
60	20.17 20.22	18	0.284	0.346	0.350	81.2 81 <i>.</i> 1	40.3	13.7	1.39	1.39	53.5
61 62	20.22	18	0.284	0.353	0.350	80.5	40.9	13.3	1.02	1.02	53.6
63	20.28	18 18	0.282 0.289	0.346 0.352	0.350 0.350	80.5 82.5	40.2 39.7	13.7 13.9	1.05 0.93	1.05 0.92	53.7
64	20.33	18	0.289	0.352	0.350	85.6	39.7	13.9	1.05	1.05	52.9 53.9
65	20.39	18	0.279	0.353	0.350	79.8	40.4	13.8	1.05	1.05	53.8
66	20.44	18	0.297	0.367	0.350	84.9	39.5	13.7	0.86	0.86	53.7
67	20.56	18	0.237	0.342	0.350	78.9	39.5	13.4	0.00	0.91	53.5
68	20.61	18	0.274	0.343	0.350	78.1	40.6	13.9	1.12	1.12	53.7
69	20.67	18	0.281	0.344	0.350	80.3	40.3	14.1	0.83	0.80	53.7
70	20.72	18	0.268	0.335	0.350	76.7	39.1	13.9	0.81	0.81	53.4
71	20.78	18	0.279	0.353	0.350	79.6	40.6	13.9	0.83	0.83	53.4
72	20.83	18	0.278	0.343	0.350	79.4	39.8	13.0	0.85	0.84	53.8
73	20.89	18	0.273	0.345	0.350	78.1	40.7	14.2	0.77	0.76	53.7
74	20.94	18	0.276	0.339	0.350	79.0	38.2	13.2	0.79	0.73	53.2
75	21.00	18	0.279	0.346	0.350	79.7	40.3	14.0	1.01	1.01	54.0
76	21.06	18	0.284	0.349	0.350	81.2	40.3	13.4	0.94	0.94	53.5
77	21.11	18	0.280	0.343	0.350	80.1	40.0	13.7	0.79	0.79	53.2
78	21.17	18	0.274	0.336	0.350	78.2	39.5	13.5	0.79	0.79	54.0
79	21.22	18	0.275	0.346	0.350	78.5	40.4	13.7	0.88	0.88	53.3
80	21.28	18	0.273	0.342	0.350	78.1	40.2	13.7	0.58	0.48	53.7
81	21.33	18	0.271	0.340	0.350	77.5	40.2	14.0	0.64	0.64	53.6
82	21.39	. 18	0.278	0.351	0.350	79.4	40.8	13.9	0.60	0.60	53.0
83	21.44	18	0.269	0.339	0.350	77.0	39.2	13.7	0.59	0.59	54.0
84 85	21.50 21.56	18	0.280	0.347	0.350	80.0 78.9	40.5 39.4	13.1	0.58	0.52 0.85	53.2
60 86	21.50	18 18	0.276 0.275	0.338 0.343	0.350 0.350	78.6	39.4 39.7	12.3 13.3	0.85 0.65	0.65	53.3 54.0
87	21.67	18	0.275	0.345	0.350	80.4	39.9	13.0	0.05	0.05	53.6
88	21.72	18	0.276	0.340	0.350	79.0	38.8	12.8	0.62	0.62	52.6
89	21.78	18	0.274	0.341	0.350	78.2	39.6	12.6	0.87	0.87	53.4
90	21.83	18	0.280	0.347	0.350	79.9	39.9	13.2	0.80	0.80	54.2
91	21.89	18	0.276	0.340	0.350	78.8	38.8	12.7	0.54	0.52	52.7
92	21.94	18	0.284	0.356	0.350	81.2	40.7	13.9	0.68	0.68	53.9
93	22.00	18	0.279	0.348	0.350	79.8	40.3	13.9	0.59	0.59	53.5
		Average	0.279	0.345	0.350	79.7	39.9	13.5	0.86	0.85	53.5
		Std. Dev.	0.006	0.008	0.000	1.8	0.7	0.5	0.23	0.24	0.4
		Maximum	0.300	0.367	0.350	85.6	40.9	14.2	1.62	1.62	54.2
		@ Blow#	64	66	57	64	61	73	57	57	90
		Minimum	0.268	0.323	0.350	76.7	38.2	12.3	0.54	0.48	52.6
		@ Blow#	70	59	57	70	74	85	91	80	88
					Total num	ber of blows	s analyzed:	37			

Geosciences Testing & Research Inc Page 1 Case Method Results PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2													
	VTRANS RSCH011-703 - GD-8 2 INCH SS;CME45C AUTO;VTRANS OP: SPK Test date: 26-Sep-2008 AD: 1.45 in A0												
AR: 1.45 in^2 SP: 0.492 k/ft LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00													
EMX: Max Transferred Energy VMX: Maximum Velocity EMX: Max Transferred Energy DMX: Maximum Displacement EF2: Energy of F^2 DMX: Maximum Displacement ER: Hammer Energy Rating DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute FMX: Maximum Force BPM: Blows per Minute													
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM		
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**		
94	25.00	0	0.307	0.353	0.350	87.8	41.9	15.0	1.46	1.46	0.0		
95	25.06	16	0.296	0.334	0.350	84.6	39.9	14.4	1.09	1.09	54.8		
96	25.13	16	0.298	0.348	0.350	85.1	41.2	14.9	1.09	1.09	54.1		
97	25.19	16	0.291	0.343	0.350	83.0	40.9	14.6	0.64	0.61	53.9		
98	25.25	16	0.294	0.337	0.350	83.9	40.5	14.7	0.68	0.68	54.0		
99	25.31	16	0.288	0.324	0.350	82.2	39.5	14.5	0.75	0.75	53.8		
100	25.38	16	0.288	0.334	0.350	82.4	39.9	14.1	0.67	0.67	53.6		
103	25.56	16	0.291	0.331	0.350	83.3	40.2	14.2	0.77	0.77	28.8		
105	25.69	16	0.288	0.330	0.350	82.3	40.5	14.4	0.88	0.88	34.6		
107	25.81	16	0.279	0.321	0.350	79.7	39.4	14.3	0.90	0.90	35.7		
109	25.94	16	0.285	0.341	0.350	81.4	38.9	13.9	0.83	0.83	34.6		
114	26.25	16	0.297	0.329	0.350	84.9	40.1	14.7	0.80	0.80	38.6		
115	26.31	16	0.282	0.336	0.350	80.5	40.3	14.1	0.77	0.77	26.8		
117	26.44	16	0.297	0.357	0.350	85.0	40.7	14.3	0.59	0.59	33.1		
119	26.56	16	0.292	0.348	0.350	83.5	41.2	14.6	0.74	0.74	34.3		
121	26.69	16	0.294	0.328	0.350	83.9	38.4	14.0	0.78	0.78	34.3		
123	26.81	16	0.292	0.345	0.350	83.5	39.3	14.1	0.51	0.51	35.2		
125	26.94	16	0.290	0.342	0.350	82.9	40.4	14.5	0.48	0.47	35.0		
		Average	0.292	0.338	0.350	83.3	40.2	14.4	0.80	0.80	40.9		
	:	Std. Dev.	0.006	0.010	0.000	1.8	0.8	0.3	0.23	0.23	10.0		
	Ν	/laximum	0.307	0.357	0.350	87.8	41.9	15.0	1.46	1.46	54.8		
		@ Blow#	94	117	94	94	94	94	94	94	95		
	1	Viinimum	0.279	0.321	0.350	79.7	38.4	13.9	0.48	0.47	26.8		
		@ Blow#	107	107	94	107	121	109	125	125	115		
	Total number of blows analyzed: 18												

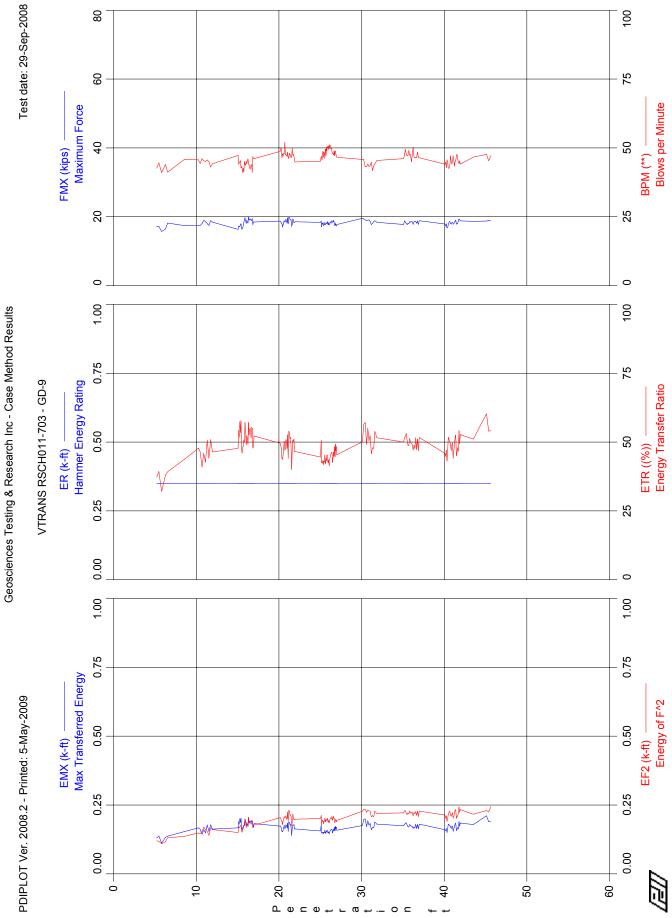
0.350 79.7 38.4 94 107 121 Total number of blows analyzed: 18

	ciences Test Method Res	ing & Reseau ults	rch Inc					PDIPLOT	Ver. 2008.	Pa 2 - Printed: 3-	ige 1 of 1 Apr-2009		
VTRA OP: S		11-703 - GD-	8					2 IN		/IE45C AUTO; Fest date: 26-8			
AR: LE: WS: 1	LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00												
EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement ER: Hammer Energy Rating DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute FMX: Maximum Force BPM: Blows per Minute													
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM		
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**		
128	30.10	10	0.299	0.352	0.350	85.3	39.4	15.1	1.71	1.71	54.1		
129	30.20	10	0.304	0.360	0.350	86.8	41.3	15.2	1.65	1.65	53.9		
130	30.30	10	0.288	0.335	0.350	82.2	41.0	15.2	1.43	1.41	53.8		
131	30.40	10	0.301	0.351	0.350	85.9	40.1	15.2	1.58	1.58	53.7		
132	30.50	10	0.298	0.342	0.350	85.2	41.2	15.2	1.40	1.38	53.4		
133	30.60	10	0.296	0.351	0.350	84.5	41.3	15.2	1.58	1.58	53.7		
134	30.70	10	0.298	0.359	0.350	85.3	41.3	15.2	1.32	1.31	53.8		
135	30.80	10	0.297	0.356	0.350	84.7	40.9	15.1	1.28	1.27	54.3		
136	30.90	10	0.295	0.340	0.350	84.4	40.8	15.1	1.55	1.55	53.7		
137	31.00	10	0.297	0.356	0.350	84.8	41.9	15.3	1.25	1.20	53.6		
138	31.10	10	0.299	0.345	0.350	85.4	41.0	15.2	1.34	1.34	53.8		
139	31.20	10	0.295	0.354	0.350	84.4	40.6	15.1	1.16	1.10	53.5		
140	31.30	10	0.299	0.355	0.350	85.4	41.3	15.1	1.20	1.20	54.3		
141	31.40	10	0.298	0.354	0.350	85.1	41.1	15.4	1.11	1.11	54.2		
142	31.50	10	0.297	0.355	0.350	84.9	41.2	15.2	1.10	1.10	53.4		
143	31.60	10	0.298	0.353	0.350	85.2	41.8	15.3	1.11	1.11	54.2		
144	31.70	10	0.305	0.364	0.350	87.2	42.0	15.9	1.04	0.98	54.3		
145	31.80	10	0.308	0.365	0.350	88.1	42.0	15.8	1.45	1.45	53.8		
146	31.90	10	0.303	0.369	0.350	86.7	42.7	15.8	1.05	0.95	53.9		
147	32.00	10	0.299	0.363	0.350	85.5	42.3	15.6	1.28	1.28	54.0		
		Average	0.299	0.354	0.350	85.4	41.3	15.3	1.33	1.31	53.9		
		Std. Dev.	0.004	0.008	0.000	1.2	0.7	0.3	0.20	0.22	0.3		
		Maximum	0.308	0.369	0.350	88.1	42.7	15.9	1.71	1.71	54.3		
		@ Blow#	145	146	128	145	146	144	128	128	135		
		Minimum	0.288	0.335	0.350	82.2	39.4	15.1	1.04	0.95	53.4		
		@ Blow#	130	130	128	130	128	136	144	146	132		
					101310100	her of blows	2 3 0 31/700.	211					

128 130 128 136 Total number of blows analyzed: 20

	nces Testing ethod Result		ch Inc					PDIPLOT	Ver. 2008.2	Pa 2 - Printed: 3-/	i <mark>ge 1</mark> of 1 Apr-2009
VTRANS	S RSCH011-	703 - GD-8	3					2 IN		E45C AUTO; est date: 26-5	
AR: LE: 5 WS: 16,8	1.45 in^2 54.50 ft 807.7 f/s									SP: 0. EM: 30,	492 k/ft3
EMX: M EF2: Er ER: Ha ETR: Er	ax Transferr nergy of F^2 ammer Ener nergy Transf aximum For	gy Rating fer Ratio							DMX: Ma DFN: Fil	aximum Veloo aximum Displ nal Displacem ows per Minu	city acemen nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
148	35.00	0	0.300	0.358	0.350	85.8	41.1	15.3	2.04	2.04	0.0
149	35.10	10	0.300	0.356	0.350	85.7	41.5	15.1	1.77	1.77	51.9
150	35.20	10	0.301	0.359	0.350	86.0	41.3	15.3	1.45	1.45	52.3
151	35.30	10	0.296	0.356	0.350	84.6	41.3	14.9	1.55	1.55	52.4
152	35.40	10	0.294	0.360	0.350	84.1	40.2	14.7	1.29	1.29	52.0
153	35.50	10	0.292	0.350	0.350	83.5	40.3	14.8	1.39	1.39	52.4
154	35.60	10	0.292	0.353	0.350	83.5	41.2	14.8	1.33	1.33	52.2
155	35.70	10	0.292	0.353	0.350	83.5	41.2	14.8	1.40	1.40	52.7
156	35.80	10	0.286	0.351	0.350	81.8	40.1	14.5	1.47	1.47	52.2
157	35.90	10	0.295	0.355	0.350	84.1	39.3	15.1	1.56	1.56	52.5
158	36.00	10	0.294	0.360	0.350	84.1	40.3	14.9	1.05	1.05	52.3
159	36.10	10	0.297	0.361	0.350	84.8	40.2	15.1	0.92	0.86	52.5
160	36.20	10	0.289	0.352	0.350	82.5	40.0	14.8	0.92	0.90	52.3
161	36.30	10	0.298	0.358	0.350	85.2	40.5	15.3	0.93	0.87	52.1
162	36.40	10	0.298	0.356	0.350	85.3	40.4	14.7	1.15	1.15	52.4
163	36.50	10	0.290	0.353	0.350	83.0	39.8	15.0	0.93	0.86	52.4
164	36.60	10	0.294	0.352	0.350	84.1	40.4	15.3	0.98	0.93	52.3
166	36.80	10	0.294	0.356	0.350	83.9	39.8	15.0	1.15	1.15	37.4
167	36.90	10	0.293	0.352	0.350	83.8	40.6	14.7	1.13	1.12	52.3
168	37.00	10	0.295	0.352	0.350	84.3	41.1	14.5	1.18	1.18	52.2
	Average		0.295	0.355	0.350	84.2	40.5	14.9	1.28	1.26	51.5
		d. Dev.	0.004	0.003	0.000	1.1	0.6	0.3	0.30	0.31	3.3
		ximum	0.301	0.361	0.350	86.0	41.5	15.3	2.04	2.04	52.7
		Blow#	150	159	148	150	149	150	148	148	155
		inimum	0.286	0.350	0.350	81.8	39.3	14.5	0.92	0.86	37.4
		Blow#	156	153	148	156	157	168	159	159	166
						ber of blows				100	

 140
 150
 149


 0.350
 81.8
 39.3

 148
 156
 157

 Total number of blows analyzed:
 20

	ciences Test Method Res		rch Inc					PDIPLOT \	/er. 2008.2 ·		age 1 of 1 Apr-2009
VTRA OP: S	ANS RSCH01 SPK	1-703 - GD-	8					2 INC	CH SS;CME Te:	45C AUTO; st date: 26-8	
AR:	1.45 in^2	I	······								.492 k/ft3
LE:	54.50 ft										,000 ksi
	16,807.7 f/s										0.00
EMX:	Max Transfe	erred Energy							VMX: Max	kimum Velo	city
EF2:	Energy of F				DMX: Max	kimum Displ	lacement				
ER: Hammer Energy Rating DFN: Final Displace											
ETR:	Energy Tran	nsfer Ratio							BPM: Blov	ws per Minu	te
	Maximum F										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
400	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
169	40.00	0	0.298	0.363	0.350	85.2	41.7	15.8	1.72	1.72	0.0
170	40.09	12	0.302	0.372	0.350	86.2	41.9	16.5	1.56	1.56	53.2
171	40.17	12	0.293	0.351	0.350	83.6	40.7	16.2	1.29	1.29	53.5
172	40.26	12	0.301	0.369	0.350	86.1	41.6	16.0	1.38	1.38	53.1
173	40.35	12	0.293	0.363	0.350	83.6	41.8	16.0	1.55	1.55	53.2
174 175	40.43 40.52	12	0.294	0.352	0.350	83.9	41.1	16.0	1.54	1.54	53.4
175	40.52 40.61	12	0.291	0.349	0.350	83.1	41.4	16.1	1.72	1.72	53.5
170	40.61	12 12	0.296	0.364	0.350	84.4	41.6	16.0	1.35	1.34	53.4
178	40.70	12	0.296 0.287	0.356	0.350 0.350	84.5	41.4	16.1	1.18	1.17	53.2
179	40.78	12	0.207	0.353 0.360	0.350	82.0 84.4	39.3 40.3	15.5 16.2	1.15 0.70	1.15	53.8
180	40.87	12	0.295	0.357	0.350	82.3	40.3 39.5	15.5	0.70	0.65 0.76	53.6
181	40.90	12	0.283	0.353	0.350	80.9	39.3	15.5	0.79	0.78	54.0 53.2
182	41.13	12	0.269	0.353	0.350	76.9	39.3 39.1	15.5	0.50	0.19	53.2 53.6
183	41.22	12	0.209	0.356	0.350	86.7	39.7	15.2	1.16	1.16	53.6 53.4
184	41.30	12	0.319	0.355	0.350	91.2	40.2	15.2	1.04	1.02	53.4
185	41.39	12	0.274	0.366	0.350	78.2	40.9	15.5	0.41	-0.34	53.6
186	41.48	12	0.285	0.349	0.350	81.5	39.5	14.9	0.34	-0.79	53.3
187	41.57	12	0.272	0.349	0.350	77.7	39.8	14.9	0.32	-0.76	53.6
188	41.65	12	0.301	0.363	0.350	85.9	42.0	14.5	0.66	0.42	53.5
189	41.74	12	0.270	0.364	0.350	77.3	41.6	15.0	0.38	-0.39	53.5
190	41.83	12	0.260	0.350	0.350	74.2	41.2	14.4	0.24	-0.95	53.9
191	41.91	12	0.296	0.351	0.350	84.5	39.2	14.4	0.74	0.67	53.5
192	42.00	12	0.295	0.359	0.350	84.4	40.3	14.5	0.38	-0.56	53.5
-		Average	0.290	0.357	0.350	82.9	40.6	15.4	0.94	0.66	53.5
		Std. Dev.	0.013	0.007	0.000	3.7	1.0	0.6	0.49	0.86	0.2
		Maximum	0.319	0.372	0.350	91.2	42.0	16.5	1.72	1.72	54.0
		@ Blow#	184	170	169	184	188	170	175	175	180
		Minimum	0.260	0.349	0.350	74.2	39.1	14.4	0.24	-0.95	53.1
		@ Blow#	190	175	169	190	182	191	190	190	172
					Total num	ber of blows	s analyzed	: 24			

	ciences Testi Method Resi	ing & Researd ults	ch Inc					PDIPLOT	Ver. 2008.2 ·	Pa Printed: 3-/	ge 1 of 1 Apr-2009
VTRA <u>OP: S</u>		1-703 - GD-8						2 IN	CH SS;CME Te:	45C AUTO; st date: 26-5	
AR: LE: <u>WS: 1</u>	1.45 in^2 54.50 ft 6,807.7 f/s									SP: 0. EM: 30,	492 k/ft3
EF2: ER: ETR:	Max Transfe Energy of F Hammer En Energy Trar Maximum F	ergy Rating sfer Ratio							DMX: Max DFN: Fina	kimum Velok kimum Displ al Displacen ws per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
198	45.37	14	0.250	0.342	0.350	71.5	40.5	15.2	0.48	0.12	52.5
_215	46.63	14	0.227	0.350	0.350	64.9	40.8	12.0	0.08	-2.64	52.5
		Average	0.238	0.346	0.350	68.2	40.6	13.6	0.28	-1.26	52.5
		Std. Dev.	0.011	0.004	0.000	3.3	0.1	1.6	0.20	1.38	0.0
	1	Maximum	0.250	0.350	0.350	71.5	40.8	15.2	0.48	0.12	52.5
		@ Blow#	198	215	198	198	215	198	198	198	198
		Minimum	0.227	0.342	0.350	64.9	40.5	12.0	0.08	-2.64	52.5
		@ Blow#	215	198	198	215	198	215	215	215	198
		8 2.0 Mir	210	150		her of blow			210	210	190

	iences Testing Method Results	& Research	Inc				PDIPLO	T Ver. 200	Pa 8.2 - Printed: 3-	age 1 of 1 Apr-2009
VTRAI OP: SI	NS RSCH011-7 PK	03 - GD-9					2 INCH	I SS;MOE	BILE SAFETY D Test date: 29-	
AR: LE: WS: 10	0.92 in^2 53.71 ft 6,807.7 f/s								EM: 30	.492 k/ft3 ,000 ksi 0.00
EF2: ER: ETR:	Max Transferre Energy of F ² Hammer Energ Energy Transfe Maximum Force	y Rating r Ratio						DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Minu	lacement nent
Statisti	ics for entire file	(354 blows)								
		EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM
	Average	0.168	0.197	0.350	48.1	18.3	13.0	0.78	0.74	46.1
	Std. Dev.	0.020	0.028	0.001	5.7	0.9	1.1	0.39	0.44	2.7
	Maximum	0.220	0.255	0.350	62.9	20.6	16.2	2.24	2.24	53.3
	@ Blow#	242	340	2	242	129	243	37	37	115
	Minimum @ Blow#	0.112 7	0.109 7	0.350 2	32.0 7	15.2 38	10.6 140	0.30 191	-2.37 357	38.3 9
	Summary			0.50.40						
Drive		es 25 secon				11 AM (9/29/	2008) BN 1	- 94		
Stop Drive		es 27 secon es 39 secon			1 AM - 10:25	7:17 AM BN	05 236			
Stop		es 59 secon			7 AM - 10:50		90 - 200			
Drive	39 secon		45			:53 AM BN	237 - 265			
Stop		es 55 secon	ds		53 AM - 11:05		207 200			
Drive		es 54 secon				42 AM BN	266 - 356			
Stop	11 minut	es 21 secon	ds	11:17:4	2 AM - 11:29):03 AM				
Drive	2 minute	s 51 second	S	11:29:0)3 AM - 11:31	:54 AM BN	357 - 410			
Stop	32 minut	es 9 second	S		54 AM - 12:04					
Drive	3 minute	s 21 second	S	12:04:0)3 PM - 12:07	24 PM BN	411 - 452			

Total time [2:16:38] = (Driving [0:50:49] + Stop [1:25:49])

	ciences Testin Method Result		ch Inc						/er. 2008.2 -		ge 1 of 1 Apr-2009
VTRA OP: S	NS RSCH011 PK	-703 - GD-9)					2 INCH S	S;MOBILE S	SAFETY DF t date: 29-S	
AR: LE: WS ⁻ 1	0.92 in^2 53.71 ft 6,807.7 f/s									EM: 30,	492 k/ft3 000 ksi).00
EMX: EF2: ER: ETR:	Max Transfer Energy of F ² Hammer Ene Energy Trans Maximum For	rgy Rating fer Ratio							DMX: Max DFN: Fina	imum Veloc imum Displ Il Displacem vs per Minut	city acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
ULIT	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
2	5.13	8	0.136	0.121	0.350	38.8	17.4	13.6	1.67	1.67	40.4
3	5.27	8	0.125	0.118	0.350	35.6	16.9	13.5	1.62	1.62	44.8
4	5.40	8	0.124	0.117	0.350	35.5	17.4	13.5	1.38	1.38	45.4
5	5.53	8	0.151	0.121	0.350	43.1	17.0	12.7	1.96	1.96	43.8
6	5.67	8	0.133	0.121	0.350	38.0	17.1	13.2	1.44	1.44	38.7
7	5.80	8	0.112	0.109	0.350	32.0	15.7	12.5	1.32	1.32	41.0
8	5.93	8	0.147	0.133	0.350	41.9	17.7	13.5	1.64	1.64	39.4
9	6.07	8	0.122	0.109	0.350	34.8	16.1	12.4	1.36	1.36	38.3
10	6.20	8	0.138	0.110	0.350	39.3	15.7	12.5	1.45	1.45	44.3
11	6.33	8	0.128	0.125	0.350	36.6	17.1	12.5	1.52	1.52	43.6
12	6.47	8	0.150	0.118	0.350	42.8	16.8	12.7	1.53	1.53	41.0
13	6.60	8	0.124	0.145	0.350	35.6	19.5	14.6	1.81	1.81	41.4
14	6.73	8	0.167	0.113	0.350	47.6	15.7	13.1	1.60	1.60	39.3
16	7.00	8	0.132	0.125	0.350	37.6	17.3	14.1	1.56	1.56	43.1
		Average	0.135	0.120	0.350	38.5	17.0	13.2	1.56	1.56	41.7
		td. Dev.	0.014	0.009	0.000	4.0	1.0	0.6	0.17	0.17	2.3
		aximum	0.167	0.145	0.350	47.6	19.5	14.6	1.96	1.96	45.4
		Blow#	14	13	2	14	13	13	5	5	4
		linimum	0.112	0.109	0.350	32.0	15.7	12.4	1.32	1.32	38.3
) Blow#	7	7	2	7	7	9	7	7	9
	-	-			Tatalasian	سيبعلما كمعمم					

 @ Blow#
 7
 7
 2
 7
 7

 Total number of blows analyzed:
 14
 14
 14
 14
 14

	tiences Tes Method Res	ting & Resear sults	ch Inc		PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009			
VTRA OP: S		11-703 - GD-9	9					2 INCH S	SS;MOBILE : Tes	SAFETY DF st date: 29-S	
AR: LE:	0.92 in^: 53.71 ft	2								EM: 30,	492 k/ft3 000 ksi 0.00
EMX: EF2: ER: ETR:	Energy of I Hammer E	nergy Rating							DMX: Max DFN: Fina	kimum Veloc kimum Displ al Displacem ws per Minu	city lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
17	10.00	0	0.161	0.176	0.350	46.0	18.8	15.9	1.96	1.96	0.0
18	10.11	10	0.175	0.147	0.350	49.9	17.5	14.0	1.44	1.44	48.5
19	10.21	10	0.146	0.151	0.350	41.7	17.8	13.6	0.87	0.75	45.8
20	10.32	10	0.188	0.146	0.350	53.8	17.1	13.2	1.45	1.45	45.5
21	10.42	10	0.131	0.139	0.350	37.5	17.2	13.0	0.89	0.80	45.0
22	10.53	10	0.193	0.152	0.350	55.2	17.7	14.3	1.70	1.70	43.7
23	10.63	10	0.118	0.148	0.350	33.8	17.9	15.1	0.92	0.59	45.1
24	10.74	10	0.169	0.159	0.350	48.1	18.1	14.8	1.64	1.64	47.1
25	10.84	10	0.141	0.176	0.350	40.3	19.3	16.2	1.46	1.44	44.0
26	10.95	10	0.180	0.164	0.350	51.6	18.6	15.5	1.60	1.60	46.7
27	11.05	10	0.115	0.147	0.350	33.0	17.9	15.4	0.98	0.09	43.9
28	11.16	10	0.183	0.174	0.350	52.3	19.2	15.3	1.32	1.32	46.2
29	11.26	10	0.137	0.140	0.350	39.1	17.6	14.8	1.35	1.35	45.7
30	11.37	10	0.218	0.169	0.350	62.4	18.5	14.0	1.54	1.54	45.5
31	11.47	10	0.171	0.131	0.350	48.9	17.2	14.1	2.15	2.15	44.5
32	11.58	10	0.138	0.148	0.350	39.4	17.7	14.2	1.09	1.07	45.6
33	11.68	10	0.191	0.169	0.350	54.5	19.0	15.4	1.59	1.59	43.6
34	11.79	10	0.166	0.164	0.350	47.3	18.7	14.6	1.38	1.38	42.5
35	11.90	10	0.162	0.160	0.350	46.3	18.1	14.3	1.27	1.27	45.7
36	12.00	10	0.163	0.162	0.350	46.4	18.8	14.7	1.64	1.64	42.8
		Average	0.162	0.156	0.350	46.4	18.1	14.6	1.41	1.34	45.1
		Std. Dev.	0.026	0.013	0.000	7.5	0.7	0.8	0.34	0.47	1.5
		Maximum	0.218	0.176	0.350	62.4	19.3	16.2	2.15	2.15	48.5
		@ Blow#	30	17	17	30	25	25	31	31	18
		Minimum	0.115	0.131	0.350	33.0	17.1	13.0	0.87	0.09	42.5
		@ Blow#	27	31	17	27	20	21	19	27	34
		-			Total num	ber of blows	s analyzed	· 20			

	ciences Testing Method Results		h Inc					PDIPLOT	Ver. 2008	Pa .2 - Printed: 3-	age 1 of 2 Apr-2009
	NS RSCH011-7								SS;MOBIL	E SAFETY D	RIVE;SDI
AR: LE:	0.92 in^2 53.71 ft 16,807.7 f/s									EM: 30	.492 k/ft3 ,000 ksi 0.00
EMX: EF2: ER: ETR:	Max Transferre Energy of F ² Hammer Energ Energy Transfe Maximum Forc	gy Rating er Ratio							DMX: N DFN: F	Maximum Velo Maximum Disp Final Displacer Blows per Minu	city lacement nent
BL#	depth	BLC	EMX	EF2	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in		BPM
37	ft 15.00	bl/ft 0	k-ft 0.145	k-ft 0.157	0.350	41.5	16.7	15.1	2.24		0.0
38	15.04	29	0.165	0.140	0.350	47.2	15.2	12.6	1.29		46.4
39	15.07	29	0.169	0.160	0.350	48.2	17.4	13.8	0.78	0.78 0.81	48.1 43.3
40 41	15.11 15.14	29 29	0.185 0.195	0.173 0.167	0.350 0.350	52.8 55.7	17.2 17.5	13.5 13.4	0.81 1.31		43.3 44.7
42	15.14	29	0.208	0.179	0.350	59.5	17.3	13.2	1.39		44.1
43	15.21	29	0.154	0.155	0.350	43.9	17.1	11.9	0.62		45.2
44	15.25	29	0.197	0.173	0.350	56.3 58.4	17.1 17.0	13.1 12.8	1.28 1.20		45.8 43.6
45 46	15.28 15.32	29 29	0.204 0.174	0.170 0.170	0.350 0.350	50.4 49.7	18.2	12.0	0.78		43.8
47	15.35	29	0.200	0.175	0.350	57.2	17.5	13.7	1.02	1.02	42.9
48	15.39	29	0.193	0.185	0.350	55.2	18.4	14.1	0.94		43.8
49 50	15.42 15.46	29 29	0.211 0.163	0.171 0.158	0.350 0.350	60.2 46.6	17.5 16.7	13.2 12.7	1.25 0.84		41.8 41.6
50	15.49	29	0.163	0.158	0.350	40.0	16.3	11.7	0.77		44.8
52	15.53	29	0.158	0.153	0.350	45.2	16.5	12.2	0.91	0.91	42.4
53	15.56	29	0.164	0.149	0.350	46.8	16.3	12.2	0.79		42.6
54 55	15.60 15.63	29 29	0.160 0.178	0.157 0.161	0.350 0.350	45.7 50.8	16.6 17.0	12.6 13.1	0.73 0.95		41.9 40.1
56	15.67	29	0.158	0.152	0.350	45.0	16.5	12.4	0.85		44.4
57	15.70	29	0.181	0.177	0.350	51.8	18.3	13.6	0.73		40.8
58 59	15.74 15.77	29 29	0.160 0.195	0.155 0.193	0.350 0.350	45.8 55.8	17.3 19.4	12.6 13.7	0.75 0.72		40.8 41.9
60	15.81	29	0.195	0.195	0.350	53.9	19.4	14.5	0.80		44.6
61	15.84	29	0.161	0.176	0.350	45.9	18.9	13.4	0.46		45.5
62	15.88	29	0.200	0.202 0.192	0.350 0.350	57.3 57.0	20.0 19.4	13.8 13.7	0.65 0.83		44.9 43.3
63 64	15.91 15.95	29 29	0.199 0.199	0.192	0.350	56.7	19.4	13.3	1.01	1.01	43.8
65	15.98	29	0.180	0.188	0.350	51.5	19.4	13.3	0.62	0.62	43.5
66	16.02	29	0.177	0.167	0.350	50.5	17.4	12.3	0.74		45.0
67 68	16.05 16.09	29 29	0.166 0.189	0.170 0.186	0.350 0.350	47.4 54.1	18.7 18.5	13.3 13.2	0.68 0.84		45.2 42.7
69	16.12	29	0.177	0.189	0.350	50.5	19.6	13.5	0.46	0.35	45.8
70	16.16	29	0.179	0.170	0.350	51.2	17.5	11.9	1.06	1.06	46.4
71 72	16.19 16.23	29 29	0.180 0.159	0.190 0.163	0.350 0.350	51.5 45.4	19.3 17.3	12.6 10.8	0.43 0.77		44.4 46.3
73	16.26	29	0.186	0.183	0.350	53.1	19.1	13.0	0.54		45.7
74	16.30	29	0.205	0.206	0.350	58.5	20.1	14.2	0.80	0.80	43.2
75	16.33	29	0.195	0.205	0.350	55.8	19.8	13.5 11.9	0.58 0.72		44.9 42.1
76 77	16.37 16.40	29 29	0.170 0.198	0.174 0.200	0.350 0.350	48.6 56.6	18.6 19.6	13.6	0.72		42.1
78	16.44	29	0.173	0.179	0.350	49.5	18.8	12.4	0.81	0.81	42.7
79	16.47	29	0.209	0.197	0.350	59.6	19.3	12.9	0.78		42.7
80 81	16.51 16.54	29 29	0.184 0.200	0.183 0.200	0.350 0.350	52.6 57.3	18.9 19.8	12.8 13.4	0.87 0.46		41.1 43.6
82	16.58	29	0.206	0.208	0.350	59.0	20.3	14.3	0.76		39.9
83	16.61	29	0.198	0.196	0.350	56.5	19.2	13.3	0.58		42.2
84	16.65	29	0.163	0.176 0.188	0.350 0.350	46.5 59.6	18.8 18.4	13.3 12.6	0.46 1.17		45.8 44.1
85 86	16.68 16.72	29 29	0.209 0.178	0.188 0.192	0.350	59.6 51.0	10.4	12.6	0.45		44.1
87	16.75	29	0.206	0.204	0.350	58.9	19.8	13.8	0.84	0.84	41.7
88	16.79	29	0.178	0.183	0.350	50.9	19.1	13.1	0.46		40.5
89 90	16.83 16.86	29 29	0.183 0.152	0.178 0.159	0.350 0.350	52.3 43.3	18.0 17.4	12.2 11.7	0.76 0.42		45.5 48.2
90 91	16.90	29 29	0.152	0.159	0.350	43.5 45.5	17.4	12.1	0.42		46.2
92	16.93	29	0.181	0.188	0.350	51.8	19.0	12.1	0.60	0.60	45.8
93	16.97	29	0.202	0.192	0.350	57.8	19.3	13.4	0.86	0.86	45.3

•

VTRANS RSCH011-703 - GD-9

Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS; MOBILE SAFETY DRIVE; SDI

OP: SP	<u>K</u>								les	t date: 29-S	ep-2008
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
94	17.00	29	0.163	0.162	0.350	46.6	17.7	12.2	0.58	0.58	46.9
		Average	0.182	0.177	0.350	51.9	18.2	13.0	0.81	0.80	44.0
	S	Std. Dev.	0.018	0.016	0.000	5.0	1.2	0.8	0.31	0.31	2.0
	N	laximum	0.211	0.208	0.350	60.2	20.3	15.1	2.24	2.24	48.2
	(2 Blow#	49	82	37	49	82	37	37	37	90
	Ň	Ainimum	0.145	0.140	0.350	41.5	15.2	10.8	0.42	0.35	39.9
	(2) Blow#	37	38	37	37	38	72	90	69	82
		-			Total num	ber of blows	s analyzed:	58			

	ciences Testing Method Result		ch Inc						Ver 2008 2	Pa - Printed: 3-	ige 1 of 2 Apr-2009
	NS RSCH011								SS;MOBILE	E SAFETY DI est date: 29-5	RIVE;SDI
AR: LE:	0.92 in^2 53.71 ft 16,807.7 f/s									SP: 0 EM: 30	492 k/ft3
EMX: EF2: ER: ETR:	Max Transferr Energy of F ² Hammer Ener	rgy Rating fer Ratio							DMX: M DFN: Fi	aximum Velo aximum Disp nal Displacen lows per Minu	city lacement nent
BL#	depth ft	BLC bl/ft	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM
95	20.00	0	0.177	0.224	0.350	50.5	19.7	14.9	1.42	1.39	0.0
97 98	20.07	29	0.179	0.229	0.350	51.1	20.1	15.9	0.80	0.74	0.0
90 99	20.10 20.14	29 29	0.158 0.178	0.195 0.202	0.350 0.350	45.1 50.8	18.3 18.2	13.1 12.5	0.68 0.95	0.68 0.95	0.0 49.4
100	20.17	29	0.169	0.202	0.350	48.3	19.3	13.9	0.75	0.75	48.1
101	20.21	29	0.180	0.201	0.350	51.5	18.0	12.6	0.97	0.97	48.2
102	20.24 20.28	29	0.160	0.202	0.350	45.8	19.0	14.0	0.64	0.64	52.0
103 104	20.28	29 29	0.181 0.151	0.196 0.187	0.350 0.350	51.8 43.2	17.6 18.6	13.0 13.6	0.96 1.04	0.96 1.04	49.0 50.3
105	20.35	29	0.164	0.199	0.350	46.8	17.8	11.9	0.57	0.52	46.1
106	20.38	29	0.144	0.181	0.350	41.1	18.3	12.7	0.55	0.55	46.9
107	20.41	29	0.173	0.193	0.350	49.3	17.3	12.0	0.82	0.82	47.6
108 109	20.45 20.48	29 29	0.133 0.154	0.166 0.185	0.350 0.350	38.0 44.1	16.8 17.3	11.9 11.6	0.45 0.62	0.38 0.62	48.1 48.3
110	20.52	29	0.162	0.200	0.350	46.2	18.0	11.7	0.67	0.67	45.8
111	20.55	29	0.176	0.205	0.350	50.1	19.0	12.4	0.64	0.64	50.1
112 113	20.59 20.62	29	0.158	0.193	0.350	45.3	17.8	11.7	0.62 0.76	0.62 0.76	46.1
113	20.62	29 29	0.197 0.155	0.230 0.186	0.350 0.350	56.2 44.3	20.1 17.6	13.5 11.9	0.78	0.76	47.5 48.3
115	20.69	29	0.171	0.215	0.350	49.0	19.4	13.2	0.51	0.50	53.3
116	20.72	29	0.158	0.191	0.350	45.1	17.5	11.6	0.68	0.68	50.7
117 118	20.76 20.79	29 29	0.172 0.162	0.210 0.201	0.350 0.350	49.1 46.3	19.4 18.1	13.4 12.1	0.61 0.63	0.61 0.63	47.7 47.4
119	20.83	29	0.162	0.201	0.350	40.3	19.3	13.7	0.52	0.36	47.7
120	20.86	29	0.196	0.220	0.350	56.0	19.2	12.9	1.12	1.12	47.6
121	20.90	29	0.166	0.207	0.350	47.3	19.4	13.2	0.47	0.16	47.1
122 123	20.93 20.97	29 29	0.185 0.151	0.191 0.193	0.350 0.350	52.9 43.2	17.7 18.2	11.7 12.2	1.28 0.59	1.28 0.59	47.3 48.0
124	21.00	29	0.183	0.207	0.350	52.2	18.1	13.1	0.54	0.46	45.9
125	21.03	29	0.165	0.211	0.350	47.0	19.1	12.3	0.47	0.45	47.8
126 127	21.07 21.10	29 29	0.204 0.143	0.237 0.180	0.350 0.350	58.4 40.9	20.3 17.6	13.3 11.5	0.83 0.40	0.83 0.32	49.2 48.6
128	21.10	29	0.145	0.202	0.350	40.9	18.2	11.9	0.40	0.32	40.0
129	21.17	29	0.188	0.239	0.350	53.8	20.6	13.7	0.58	0.58	46.7
130	21.21	29	0.189	0.224	0.350	54.1	19.3	13.3	0.86	0.86	45.6
131 132	21.24 21.28	29 29	0.176 0.198	0.221 0.236	0.350 0.350	50.2 56.5	20.2 19.6	13.6 12.9	0.56 0.63	0.56 0.63	47.8 48.3
133	21.31	29	0.169	0.212	0.350	48.3	19.2	12.7	0.44	0.28	48.6
134	21.35	29	0.190	0.220	0.350	54.2	19.4	12.7	0.60	0.60	46.9
135 136	21.38 21.41	29 29	0.169 0.193	0.198 0.230	0.350 0.350	48.3 55.3	18.1 20.1	11.8 12.8	1.18 0.45	1.18 0.32	47.0 46.5
137	21.45	29	0.162	0.205	0.350	46.2	18.7	12.0	0.72	0.72	48.2
138	21.48	29	0.176	0.212	0.350	50.3	19.4	12.1	0.46	0.46	45.1
139	21.52	29	0.153	0.189	0.350	43.9	17.9	11.8	0.43	0.42	47.3
140 141	21.55 21.59	29 29	0.127 0.154	0.159 0.190	0.350 0.350	36.2 44.1	16.5 17.9	10.6 11.8	0.45 0.52	0.45 0.52	45.8 51.2
142	21.62	29	0.174	0.188	0.350	49.7	17.7	11.6	0.67	0.67	48.7
143	21.66	29	0.163	0.200	0.350	46.7	18.3	11.7	0.64	0.64	47.4
144 145	21.69 21.72	29 29	0.192 0.161	0.235 0.192	0.350 0.350	54.8 46.0	20.4 18.4	13.4 12.5	0.49 0.43	0.43 0.43	47.3 48.3
145	21.72	29 29	0.101	0.192	0.350	46.0 54.4	19.7	12.5	0.43	0.43	40.3 47.1
147	21.79	29	0.155	0.176	0.350	44.3	17.1	11.2	0.83	0.83	45.5
148	21.83	29	0.203	0.220	0.350	57.9	19.3	12.3	0.98	0.98	48.2
149 150	21.86 21.90	29 29	0.155 0.172	0.192 0.202	0.350 0.350	44.2 49.0	18.2 18.6	11.6 12.4	0.41 0.74	0.32 0.74	45.5 46.1
151	21.93	29	0.149	0.188	0.350	42.6	17.6	11.1	0.40	0.33	44.9
152	21.97	29	0.177	0.209	0.350	50.5	19.5	12.4	0.48	0.47	44.9

VTRANS RSCH011-703 - GD-9 OP: SPK

Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI

P: SPK								Tes	t date: 29-S	ep-2008
		EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
		k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	Average	0.170	0.203	0.350	48.4	18.6	12.6	0.67	0.64	47.7
	Std. Dev.	0.017	0.017	0.000	4.8	1.0	0.9	0.23	0.25	1.8
	Maximum	0.204	0.239	0.350	58.4	20.6	15.9	1.42	1.39	53.3
	@ Blow#	126	129	95	126	129	97	95	95	115
	Minimum	0.127	0.159	0.350	36.2	16.5	10.6	0.40	0.16	44.4
	@ Blow#	140	140	95	140	140	140	127	121	128
	-			Total num	her of blows	analyzed.	57			

VTRA OP: §	NS RSCH011-	703 - GD-9						2 INCH	SS;MOB	ILE SAFETY DI Test date: 29-5	,
AR: LE:	0.92 in^2 53.71 ft		· · · · · · · · · · · · · · · · · · ·				<u> </u>	····		SP: 0	.492 k/ft: ,000 ksi
	16,807.7 f/s						·····		1.0.07		0.00
EF2: ER: ETR:		gy Rating er Ratio							DMX: DFN:	Maximum Velo Maximum Disp Final Displacer Blows per Minu	lacemen nent
BL#	Maximum Ford depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DM	X DFN	BPN
454	ft	bi/ft	k-ft	k-ft	k-ft	(%)	kips	f/s		n in	**
154	25.00	0	0.165	0.219	0.350	47.2	19.0	14.6	0.9		0.0
155 156	25.02 25.05	41	0.156 0.154	0.201 0.200	0.350	44.5 43.9	18.4	13.3	0.6		45.1
150	25.05	41		0.200	0.350		18.5	13.1	0.5		0.0
157	25.07	41	0.161	0.206	0.350	46.1	19.0	13.1	0.8		0.0
159	25.10	41 41	0.197 0.158	0.227	0.350 0.350	56.3 45.1	18.7 18.8	12.7 13.4	0.7		46.3
160	25.15	41	0.169	0.196	0.350	48.2	17.3	13.4	0.6 0.7		47.7 46.2
161	25.13	41	0.128	0.163	0.350	36.6	16.8	11.0	0.6		40.2
162	25.20	41	0.125	0.200	0.350	44.3	17.8	12.3	0.4		47.1
163	25.22	41	0.148	0.192	0.350	42.4	18.3	12.1	0.6		44.0
164	25.24	41	0.153	0.202	0.350	43.8	18.3	12.2	0.3		48.5
165	25.27	41	0.145	0.187	0.350	41.4	18.1	11.8	0.3		47.4
166	25.29	41	0.147	0.187	0.350	41.9	17.6	12.0	0.3		50.5
167	25,32	41	0.149	0.191	0.350	42.7	18.1	12.5	0.3		47.0
168	25.34	41	0.159	0.197	0.350	45.4	18.2	12.2	0.43		48.6
169	25.37	41	0.143	0.186	0.350	41.0	18.1	12.1	0.3		48.5
170	25.39	41	0.159	0.194	0.350	45.5	17.4	11.1	0.53		47.0
171	25.42	41	0.133	0.169	0.350	38.1	17.4	11.8	0.4		46.2
172	25.44	41	0.157	0.194	0.350	44.7	17.4	11.2	0.42		48.2
173	25.46	41	0.145	0.188	0.350	41.4	18.0	11.8	0.37	7 0.37	48.6
174	25.49	41	0.150	0.190	0.350	42.7	17.2	11.3	0.43	3 0.43	45.6
175	25.51	41	0.150	0.192	0.350	42.9	18.2	12.1	0.38	3 0.38	50.0
176	25.54	41	0.163	0.204	0.350	46.7	18.1	11.9	0.43	3 0.43	46.8
177	25.56	41	0.154	0.200	0.350	43.9	18.6	12.2	0.33		45.6
178	25.59	41	0.149	0.197	0.350	42.5	17.5	10.8	0.39		48.9
179	25.61	41	0.148	0.188	0.350	42.4	18.1	12.2	0.43		50.2
180	25.63	41	0.149	0.194	0.350	42.5	17.6	11.1	0.36		49.7
181	25.66	41	0.146	0.184	0.350	41.8	17.9	11.5	0.35		49.4
182	25.68	41	0.158	0.203	0.350	45.2	17.9	11.2	0.34		48.0
183 184	25.71	41	0.150	0.192	0.350	42.9	18.1	11.4	0.33		46.5
185	25.73 25.76	41	0.152	0.194	0.350	43.5	17.4	11.3	0.61		50.4
186	25.78	41 41	0.150 0.165	0.194 0.202	0.350 0.350	43.0 47.1	18.6 18.1	12.4 11.8	0.34		50.2
187	25.81	41	0.151	0.202	0.350	47.1			0.42 0.43		47.4
188	25.83	41	0.173	0.209	0.350	49.3	18.5 18.0	12.3 12.0	0.43		50.6 49.0
189	25.85	41	0.145	0.183	0.350	41.3	18.1	12.0	0.32		49.0 50.7
190	25.88	41	0.157	0.205	0.350	44.8	18.6	11.6	0.32		52.0
191	25.90	41	0.147	0.198	0.350	41.9	18.5	11.6	0.30	0.27	49.2
192	25.93	41	0.139	0.180	0.350	39.8	17.7	11.5	0.31	0.31	49.3
193	25.95	41	0.159	0.197	0.350	45.3	17.7	12.3	0.51		51.8
194	25.98	41	0.153	0.193	0.350	43.7	18.3	12.5	0.67		49.0
195	26.00	41	0.152	0.195	0.350	43.3	18.1	12.4	0.31	0.15	49.9
196	26.02	41	0.135	0.172	0.350	38.6	17.5	11.5	0.36		49.5
197	26.05	41	0.162	0.203	0.350	46.2	17.9	11.5	0.57		51.8
198	26.07	41	0.143	0.184	0.350	40.8	17.9	11.7	0.52	2. 0.52	51.5
199	26.10	41	0.147	0.186	0.350	41.9	17.3	11.0	0.39	0.39	50.8
200	26.12	41	0.149	0.192	0.350	42.7	18.1	11.3	0.31		51.7
201	26.15	41	0.155	0.198	0.350	44.3	17.7	10.9	0.45		48.1
202	26.17	41	0.151	0.194	0.350	43.1	18.2	11.4	0.51		51.1
204	26.22	41	0.160	0.205	0.350	45.8	18.9	10.9	0.33		50.8
205	26.24	41	0.164	0.215	0.350	46.9	18.8	11.7	0.33		48.8
207	26.29	41	0.155	0.193	0.350	44.3	17.8	11.5	0.33		50.6
208	26.32	41	0.165	0.204	0.350	47.1	18.2	11.9	0.44		50.8
209	26.34	41	0.158	0.196	0.350	45.0	18.0	11.4	0.38		49.1
210	26.37	41	0.155	0.190	0.350	44.4	18.4	11.4	0.42		49.8
211 212	26.39 26.42	41 41	0.169 0.169	0.215 0.219	0.350 0.350	48.2 48.3	19.1 19.4	12.5 11.6	0.36 0.36		50.1 48.3

VTRANS RSCH011-703 - GD-9

.

2 INCH SS;MOBILE SAFETY DRIVE;SDI Test date: 29-Sep-2008

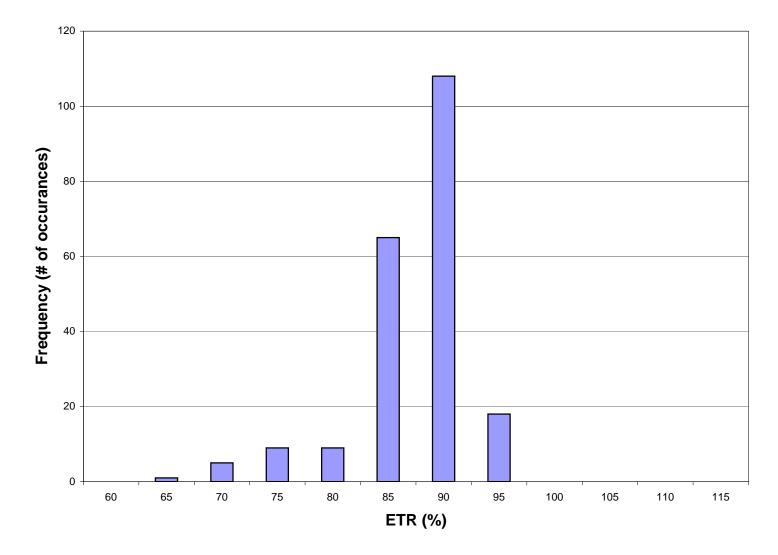
OP: SP		1-703 - GD-3	5					2 114011 0		t date: 29-S	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
DL#	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
213	26.44	41	0.153	0.198	0.350	43.7	18.2	11.8	0.34	0.18	48.5
214	26.46	41	0.142	0.185	0.350	40.6	18.1	11.8	0.33	0.26	46.6
215	26.49	41	0.156	0.206	0.350	44.5	18.8	12.7	0.35	0.20	49.5
216	26.51	41	0.138	0.200	0.350	39.4	17.5	12.1	0.33	0.25	48.4
217	26.54	41	0.158	0.218	0.350	47.9	19.3	13.5	0.34	0.23	47.6
218	26.56	41	0.159	0.202	0.350	47.9	18.5	13.0	0.36	0.46	46.8
210	26.59	41	0.159	0.202	0.350	44.6	18.8	13.1	0.38	0.40	40.0
220	26.59	41	0.156	0.208	0.350	44.0	18.7	12.9	0.38	0.37	46.7
220	26.63	41	0.160	0.207	0.350	45.7	19.2	13.0	0.58	0.29	40.0
222	26.66	41	0.166	0.213	0.350	47.5	18.8	13.1	0.39	0.27	49.1
223	26.68	41	0.148	0.191	0.350	42.2	18.1	12.1	0.42	0.42	48.6
224	26.71	41	0.184	0.199	0.350	52.6	17.8	12.8	0.96	0.96	47.2
225	26.73	41	0.158	0.198	0.350	45.1	18.1	12.3	0.42	0.31	0.0
226	26.76	41	0.155	0.173	0.350	44.3	17.2	12.6	0.90	0.90	47.2
227	26.78	41	0.166	0.190	0.350	47.4	17.0	12.5	0.82	0.82	49.0
228	26.81	41	0.147	0.185	0.350	42.1	17.9	12.2	0.45	0.43	48.9
229	26.83	41	0.186	0.199	0.350	53.1	17.6	12.0	0.89	0.89	47.2
230	26.85	41	0.159	0.194	0.350	45.5	18.5	12.4	0.69	0.69	50.2
231	26.88	4 1	0.168	0.200	0.350	48.0	17.1	13.0	0.48	0.18	46.7
232	26.90	41	0.160	0.195	0.350	45.7	18.1	12.7	0.65	0.65	48.2
233	26.93	41	0.192	0.196	0.350	54.9	16.8	13.2	1.34	1.34	44.9
234	26.95	41	0.147	0.183	0.350	41.9	17.7	12.2	0.54	0.54	50.1
235	26.98	41	0.178	0.216	0.350	51.0	18.3	12.7	0.55	0.55	48.1
236	27.00	41	0.139	0.172	0.350	39.8	17.2	11.7	0.56	0.56	45.1
		Average	0.156	0.196	0.350	44.5	18.1	12.1	0.49	0.45	48.6
		Std. Dev.	0.012	0.012	0.000	3.4	0.6	0.7	0.19	0.22	1.8
	N	Maximum	0.197	0.227	0.350	56.3	19.4	14.6	1.34	1.34	52.0
		@ Blow#	158	158	154	158	212	154	233	233	190
		Minimum	0.128	0.163	0.350	36.6	16.8	10.8	0.30	0.15	44.8
		@ Blow#	161	161	154	161	161	178	191	195	162
		~				مريحة أمام محمط	analyzad				

	ciences Tes Method Re	sting & Resea sults	rch Inc					PDIPLOT	Ver. 2008.2 -	Pa Printed: 3-	age 1 of 1 Apr-2009
VTRA OP: S)11-703 - GD-	9					2 INCH S	SS;MOBILE : Tes	SAFETY DI st date: 29-8	RIVE;SDI Sep-2008
	0.92 in^ 53.71 ft 16,807.7 f/s									SP: 0 EM: 30	.492 k/ft3
EMX: EF2:	Max Trans Energy of	ferred Energy F ²	/						VMX: Max DMX: Max	kimum Velo kimum Disp	city lacement
ER:	Hammer E	Energy Rating							DFN: Fina	al Displacen	nent
	Energy Tra Maximum	ansfer Ratio Force							BPM: Blov	vs per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
237	30.00	0	0.180	0.237	0.350	51.4	19.7	15.7	1.93	1.93	0.0
238	30.07	14	0.169	0.219	0.350	48.3	19.1	14.4	1.13	0.97	46.5
239	30.14	14	0.182	0.236	0.350	51.9	20.0	15.6	1.21	1.19	45.1
240	30.21	14	0.216	0.237	0.350	61.7	19.1	14.9	1.88	1.88	46.6
241	30.29	14	0.178	0.231	0.350	50.9	19.6	15.2	1.24	1.24	45.2
242 243	30.36	14	0.220	0.249	0.350	62.9	19.8	15.7	1.93	1.93	42.8
243	30.43	14	0.163	0.211	0.350	46.5	18.6	16.2	0.99	0.83	39.6
244 245	30.50	14	0.180	0.221	0.350	51.5	18.5	15.0	1.10	1.10	43.5
245	30.57 30.64	14 14	0.174	0.227	0.350	49.8	19.3	15.6	0.93	0.93	42.6
240	30.64	14	0.170 0.187	0.221 0.237	0.350 0.350	48.6 53.3	18.5 19.6	14.7 15.7	1.00	1.00 0.85	43.8
247	30.79	14	0.187	0.237	0.350	55.5 56.8	19.6	15.7	0.86 1.62	0.85	43.8
249	30.86	14	0.199	0.227	0.350	50.8 51.1	19.2	14.0	0.82	0.77	44.5 42.2
250	30.93	14	0.175	0.220	0.350	49.9	18.9	14.3	0.82	0.94	42.2 44.2
251	31.00	14	0.173	0.238	0.350	49.9 56.3	19.2	14.5	1.01	1.01	44.2 44.2
252	31.07	14	0.169	0.200	0.350	48.4	18.1	14.3	0.95	0.95	44.2
253	31.14	14	0.164	0.209	0.350	46.9	18.2	13.5	0.76	0.35	45.5
254	31.21	14	0.156	0.206	0.350	44.6	17.3	13.5	0.84	0.84	44.2
255	31.29	14	0.163	0.206	0.350	46.4	18.4	13.5	0.74	0.73	42.7
256	31.36	14	0.173	0.217	0.350	49.4	17.7	13.4	0.83	0.82	40.8
257	31.43	14	0.165	0.202	0.350	47.1	18.3	13.6	0.74	0.64	45.5
258	31.50	14	0.169	0.213	0.350	48.3	18.8	13.8	0.80	0.80	41.4
259	31.57	14	0.193	0.222	0.350	55.2	18.6	13.9	1.05	1.05	44.5
260	31.64	14	0.184	0.233	0.350	52.5	19.1	14.0	0.69	0.48	44.0
262	31.79	14	0.198	0.230	0.350	56.6	18.4	13.7	1.04	1.04	44.1
263	31.86	14	0.212	0.222	0.350	60.5	18.0	13.1	1.21	1.21	39.9
264	31.93	14	0.163	0.209	0.350	46.6	18.4	13.7	0.65	0.46	46.8
		Average	0.181	0.224	0.350	51.6	18.8	14.5	1.07	1.04	43.7
		Std. Dev.	0.017	0.012	0.000	4.8	0.6	0.9	0.36	0.39	1.9
		Maximum	0.220	0.249	0.350	62.9	20.0	16.2	1.93	1.93	46.8
		@ Blow#	242	242	237	242	239	243	242	242	264
		Minimum	0.156	0.202	0.350	44.6	17.3	13.1	0.65	0.46	39.6
		@ Blow#	254	257	237	254	254	263	264	264	243
					Total num	ber of blows	s analyzed	: 27			

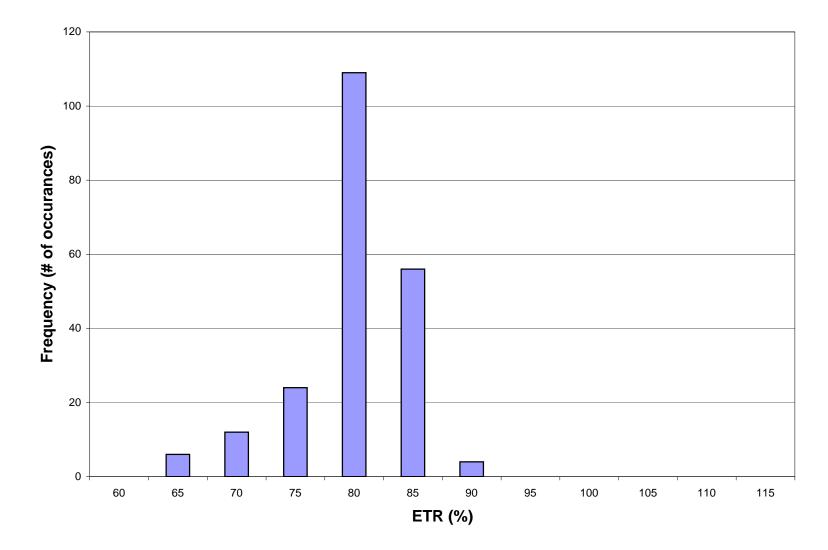
	ciences Testi Method Resu		ch Inc					PDIPLOT	Ver. 2008.2 -		ge 1 of 1 Apr-2009
VTRA OP: S	ANS RSCH01	1-703 - GD-9)						SS;MOBILE \$		RIVE;SDI
AR: LE:	0.92 in^2 53.71 ft 16,807.7 f/s									SP: 0. EM: 30,	492 k/ft3
EMX: EF2: ER: ETR:	Max Transfe Energy of F ^A Hammer Ene Energy Tran Maximum Fo	2 ergy Rating sfer Ratio							DMX: Max DFN: Fina	timum Veloc timum Displ al Displacen vs per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
266	ft 35.00	bl/ft 0	k-ft 0.176	k-ft 0.225	k-ft 0.350	(%) 50.2	kips 18.0	f/s 12.4	in 1.65	in 1.65	0.0
267	35.05	19	0.170	0.220	0.350	49.3	17.8	13.6	1.49	1.49	45.7
268	35.11	19	0.177	0.223	0.350	50.7	17.7	12.2	1.49	1.49	46.5
269	35.16	19	0.181	0.228	0.350	51.8	19.0	14.3	1.31	1.31	47.9
270	35.21	19	0.180	0.231	0.350	51.3	18.6	13.3	1.20	1.20	46.8
271	35.26	19	0.191	0.231	0.350	54.4	17.9	14.0	1.31	1.31	48.4
272	35.32	19	0.173	0.227	0.350	49.4	19.1	13.7	0.93	0.93	50.6
273	35.37	19	0.169	0.210	0.350	48.3	17.5	13.4	0.96	0.96	48.7
274	35.42	19	0.203	0.233	0.350	58.0	18.7	14.2	1.30	1.30	47.0
275	35.47	19	0.162	0.201	0.350	46.3	17.5	13.4	0.66	0.55	47.8
276	35.53	19	0.193	0.230	0.350	55.2	17.9	13.6	1.12	1.12	46.5
277	35.58	19	0.186	0.246	0.350	53.1	19.7	14.1	0.62	0.56	48.5
278	35.63	19	0.156	0.196	0.350	44.6	16.4	12.6	0.64	0.63	46.2
279	35.68	19	0.165	0.220	0.350	47.3	18.1	12.1	0.58	0.56	51.9
280	35.74	19	0.176	0.216	0.350	50.2	17.9	12.1	0.81	0.81	46.4
281 282	35.79 35.84	19 19	0.188	0.234	0.350	53.8 48.8	18.5 18.7	13.3 12.6	0.67 0.63	0.66 0.63	46.7 47.8
282	35.64 35.90	19	0.171 0.166	0.223 0.202	0.350 0.350	40.0 47.3	10.7	12.0	0.63	0.63	47.0 47.2
284	35.95	19	0.185	0.202	0.350	52.8	19.1	12.9	0.76	0.76	47.2
285	36.00	19	0.185	0.233	0.350	52.8	18.8	14.2	0.62	0.56	45.9
286	36.05	19	0.162	0.210	0.350	46.2	18.5	12.8	0.63	0.63	43.9
287	36.11	19	0.174	0.219	0.350	49.6	18.0	13.3	0.60	0.50	48.7
288	36.16	19	0.170	0.230	0.350	48.7	19.0	12.5	0.52	0.33	46.1
289	36.21	19	0.158	0.194	0.350	45.1	16.5	12.9	0.71	0.71	51.6
290	36.26	19	0.172	0.227	0.350	49.0	19.1	11.9	0.55	0.49	48.9
291	36.32	19	0.174	0.228	0.350	49.8	18.2	13.1	0.57	0.51	48.3
292	36.37	19	0.168	0.217	0.350	48.0	18.9	13,4	0.63	0.62	44.9
293	36.42	19	0.162	0.207	0.350	46.2	17.8	12.8	0.68	0.68	47.4
294	36.47	19	0.171	0.230	0.350	48.9	19.4	13.4	0.68	0.68	45.5
295	36.53	19	0.183	0.223	0.350	52.2	18.2	13.7	0.84	0.84	47.5
296	36.58	19	0.179	0.228	0.350	51.0	19.0	14.1	0.65	0.65	45.6
297 298	36.63 36.68	19 19	0.165 0.165	0.206 0.219	0.350 0.350	47.3 47.3	17.4 18.8	13.4 11.7	0.76 0.48	0.76 0.13	45.3 47.5
298	36.74	19	0.185	0.219	0.350	47.3 53.7	18.9	13.6	0.48	0.13	47.0
300	36.79	19	0.170	0.224	0.350	48.5	18.7	12.2	0.58	0.55	49.8
301	36.84	19	0.170	0.209	0.350	48.6	17.7	12.3	0.81	0.81	45.6
302	36.90	19	0.158	0.208	0.350	45.2	17.8	11.5	0.63	0.63	47.5
303	36.95	19	0.177	0.219	0.350	50.7	18.3	12.6	0.84	0.84	47.4
304	37.00	19	0.184	0.237	0.350	52.7	19.4	13.4	0.90	0.90	45.4
		Average	0.174	0.221	0.350	49.9	18.3	13.1	0.83	0.80	47.3
		Std. Dev.	0.010	0.012	0.000	3.0	0.7	0.7	0.30	0.33	1.7
		Aaximum	0.203	0.246	0.350	58.0	19.7	14.3	1.65	1.65	51.9
		@ Blow#	274	277	266	274	277	269	266	266	279
		Viinimum	0.156	0.194	0.350	44.6	16.4	11.5	0.48	0.13	43.9
	(@ Blow#	278	289	266	278	278	302	298	298	286
					Total num	ber of blows	analyzed:	39			

VTRA	ANS RSCH011-7	703 - GD-9							SS;MOBILE	- Printed: 3- SAFETY D	-
<u>OP: 8</u>										st date: 29-	Sep-20
AR: LE:	0.92 in^2 53.71 ft									SP: 0 EM: 30	
	16,807.7 f/s			·····							0.00
EF2: ER: ETR:	Max Transferre Energy of F^2 Hammer Energ Energy Transfe	gy Rating er Ratio							DMX: Max DFN: Fina	kimum Velo kimum Disp al Displacer ws per Minu	laceme nent
FMX:	Maximum Ford	e								····	
BL#		BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BP
305	ft 40.00	bl/ft 0	k-ft 0.170	k-ft 0.230	k-ft 0.350	(%) 48.7	kips 18.8	f/s 14.4	in 1.17	in 1.16	0
306	40.04	26	0.164	0.217	0.350	46.8	18.4	14.0	1.20	1.10	43
307	40.08	26	0.160.	0.207	0.350	45.6	17.9	13.0	0.96	0.82	
308	40.12	26	0.157	0.210	0.350	44.9	17.4	12.7	0.63	0.63	45
309	40.16	26	0.157	0.198	0.350	44.8	17.9	13.2	1.09	1.09	45
310	40.20	26	0.157	0.205	0.350	44.9	16.7	12.6	0.66	0.65	43
311	40.24	26	0.149	0.186	0.350	42.7	17.2	12.7	0.73	0.73	42
312	40.28	26	0.140	0.236	0.350	51.5	18.6	12.9	0.70	0.70	43
313	40.31	26	0.143	0.182	0.350	41.0	17.2	12.6	0.48	0.26	46
314	40.35	26	0.158	0.199	0.350	45.2	16.3	12.3	0.59	0.58	40
315	40.39	26	0.143	0.176	0.350	40.9	16.7	12.2	0.73	0.73	44
316	40.43	26	0.183	0.228	0.350	52.3	17.2	12.9	0.65	0.65	45
317	40.47	26	0.143	0.177	0.350	40.9	16.7	12.4	0.72	0.72	43
318	40.51	26	0.219	0.252	0.350	62.6	18.6	13.6	1.26	1.26	42
319	40.55	26	0.157	0.201	0.350	44.9	18.0	13.2	0.66	0.66	39
320	40.59	26	0.188	0.243	0.350	53.8	18.7	13.6	0.62	0.60	40
321	40.63	26	0.166	0.213	0.350	47.5	18.5	14.0	0.54	0.36	44
322	40.67	26	0.192	0.247	0.350	54.8	18.9	13.3	0.70	0.69	43
323	40.71	26	0.157	0.202	0.350	44.9	18.1	14.3	0.54	0.53	44
324	40.75	26	0.178	0.217	0.350	50.7	17.5	13.0	0.94	0.94	47
325	40.78	26	0.165	0.211	0.350	47.0	18.6	13.9	0.53	0.45	46
326	40.82	26	0.173	0.218	0.350	49.3	17.6	12.9	0.82	0.82	45
327	40.86	26	0.156	0.200	0.350	44.5	18.0	13.5	0.55	0.48	44
328	40,90	26	0.180	0.219	0.350	51.5	17.8	13.2	0.94	0.94	44
329	40.94	26	0.164	0.214	0.350	46.9	18.9	13.5	0.52	0.48	44
330	40.98	26	0.178	0.221	0.350	50.9	17.8	13.0	0.89	0.89	43
331	41.02	26	0.169	0.222	0.350	48.4	18.9	14.4	0.52	0.03	46
332	41.06	26	0.178	0.237	0.350	50.7	19.6	14.1	0.56	0.56	45
333	41.10	26	0.131	0.168	0.350	37.5	16.2	11.7	0.30	0.30	48
334	41.14	26	0.162	0.205	0.350	46.3	17.0	12.4	0.67	0.67	46
335	41.18	26	0.165	0.213	0.350	47.2	18.7	14.3	0.52	0.52	40
336	41.22	26	0.176	0.227	0.350	50.3	18.0	13.2	0.77	0.77	42
337	41.26	26	0.165	0.212	0.350	47.2	18.8	14.0	0.49	0.42	44
338	41.29	26	0.182	0.228	0.350	51.9	18.1	12.8	0.77	0.77	43
339	41.33	26	0.180	0.233	0.350	51.6	19.3	13.7	0.53	0.45	46
340	41.37	26	0.205	0.255	0.350	58.5	19.2	13.7	0.94	0.94	46
341	41.41	26	0.163	0.210	0.350	46.6	18.9	13.6	0.51	0.51	44
342	41.45	26	0.175	0.230	0.350	50.1	18.9	12.8	0.66	0.66	45
343	41.49	26	0.140	0.175	0.350	39.9	16.8	12.4	0.49	0.43	49
344	41.53	26	0.176	0.231	0.350	50.4	18.1	12.7	0.61	0.61	49
345	41.57	26	0.150	0.187	0.350	42.8	17.8	13.0	0.53	0.49	45
346	41.61	26	0.178	0.218	0.350	50.9	17.6	12.5	0.89	0.89	44
347	41.65	26	0.158	0.202	0.350	45.0	18.5	13.2	0.47	0.20	48
348	41.69	26	0.165	0.224	0.350	47.3	19.1	12.6	0.47	0.47	45
349	41.73	26	0.161	0.216	0.350	46.0	18.5	13.2	0.48	0.48	44
350	41.77	26	0.186	0.241	0.350	53.1	19.8	14.5	0.40	0.48	44
351	41.80	26	0.193	0.246	0.350	55.2	18.9	13.0	0.85	0.33	44
352	41.84	26	0.179	0.228	0.350	51.2	19.5	14.2	0.51	0.85	43 45
353	41.88	26	0.167	0.228	0.350	47.6	19.5	14.2	0.51	0.45	
354	41.92	26	0.187	0.219	0.350	47.6	19.0				45
355	41.92	26 26	0.174 0.195	0.227		49.8 55.7		13.6	0.49	0.44	44
555				0.240	0.350		18.6	12.8	1.00	1.00	44
356	42.00	26	0.158	0 200	0.350	45.1	18.1	13.4	0.47	0.43	46

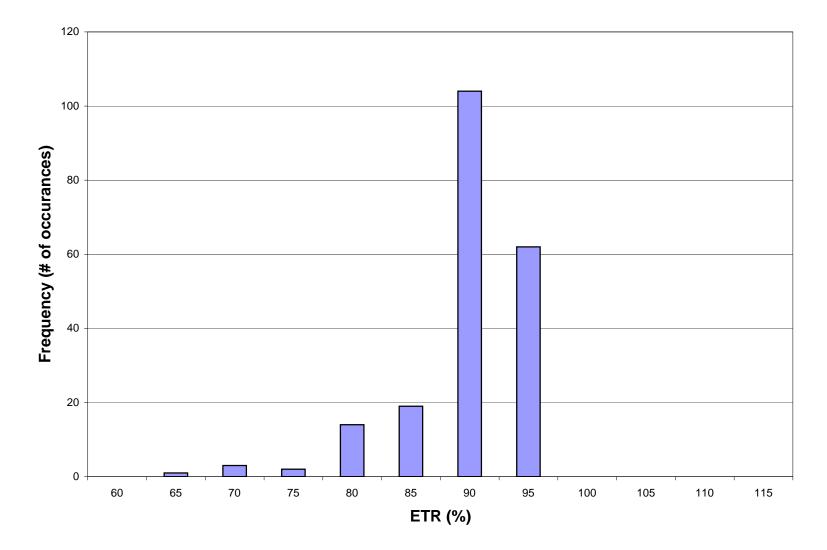
VTRANS RSCH011-703 - GD-9 OP: SPK

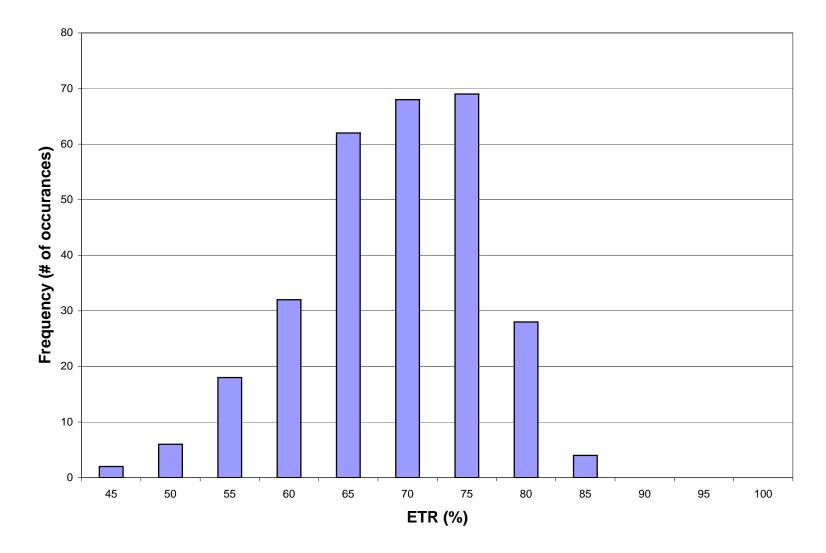

Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

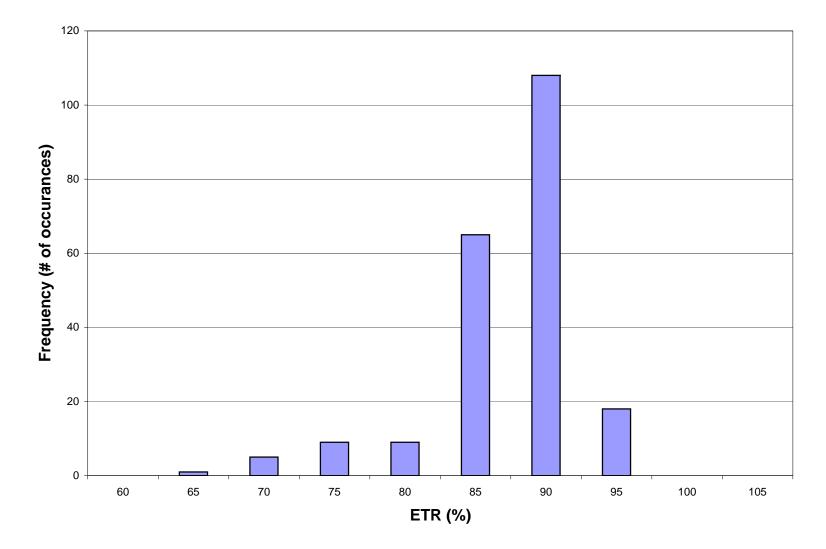
2 INCH SS; MOBILE SAFETY DRIVE; SDI

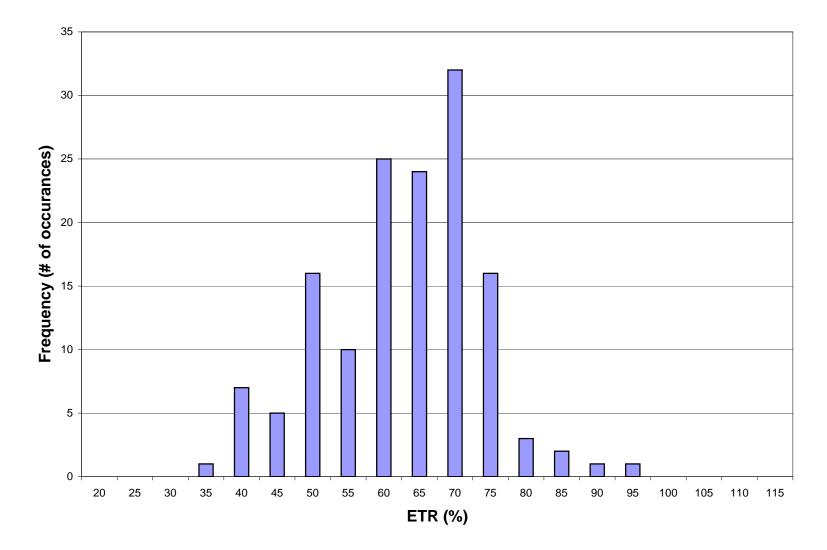

SPK								Tes	t date: 29-S	Sep-2008
		EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX	DFN	BPM
	Average	0.169	0.215	0.350	48.2	18.2	13.2	in 0.68	in 0.65	44.9
	Std. Dev.	0.017	0.020	0.000	4.7	0.9	0.6	0.21	0.24	1.8
	Maximum	0.219	0.255	0.350	62.6	19.8	14.5	1.26	1.26	49.8
	@ Blow#	318	340	305	318	350	350	318	318	344
	Minimum	0.131	0.168	0.350	37.5	16.2	11.7	0.47	0.20	39.9
	@ Blow#	333	333	305	333	333	333	356	347	319
	-			Total num	her of blow	analyzed.	52			

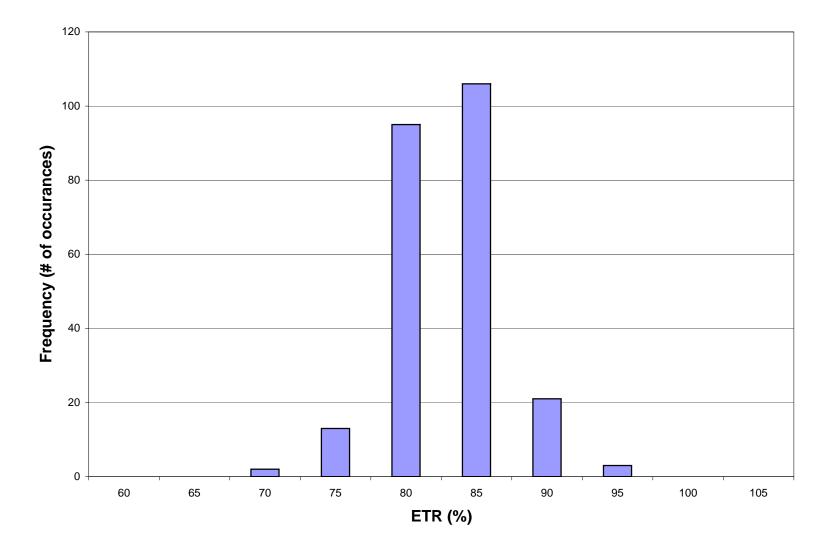
	ciences Testi Method Resu	ng & Resear Ilts	ch Inc					PDIPLOT	/er. 2008.2 -		ge 1 of 1 Apr-2009
VTRA <u>OP:</u> S		1-703 - GD-9)					2 INCH S	S;MOBILE	SAFETY DF st date: 29-5	
AR: LE:	0.92 in^2 53.71 ft									EM: 30,	
	6,807.7 f/s	· · · · · · · · · · · · · · · · · · ·								JC: (0.00
	Max Transfe									kimum Velo	
	Energy of F'									kimum Displ	
	Hammer En									al Displacen	
	Energy Tran								BPM: Blov	ws per Minu	te
	Maximum Fo	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
357	45.00	0	0.142	0.227	0.350	40.5	18.9	12.1	0.32	-2.37	0.0
358	45.04	27	0.200	0.233	0.350	57.0	19.3	14.7	0.92	-0.30	47.2
359	45.08	27	0.203	0.242	0.350	57.9	19.5	13.5	1.16	1.09	49.6
361	45.15	27	0.219	0.218	0.350	62.6	18.0	12.7	2.07	2.07	45.7
367	45.38	27	0.189	0.225	0.350	53.9	18.9	15.4	1.49	1.49	45.3
374	45.64	27	0.190	0.244	0.350	54.2	19.0	12.0	0.75	0.75	47.2
		Average	0.191	0.231	0.350	54.4	18.9	13.4	1.12	0.46	47.0
		Std. Dev.	0.024	0.009	0.000	6.8	0.5	1.3	0.56	1.45	1.5
	!	Maximum	0.219	0.244	0.350	62.6	19.5	15.4	2.07	2.07	49.6
		@ Blow#	361	374	357	361	359	367	361	361	359
		Minimum	0.142	0.218	0.350	40.5	18.0	12.0	0.32	-2.37	45.3
		@ Blow#	357	361	357	357	361	374	357	357	367
		-					· · · · · · · · · · · · · · · · · · ·				

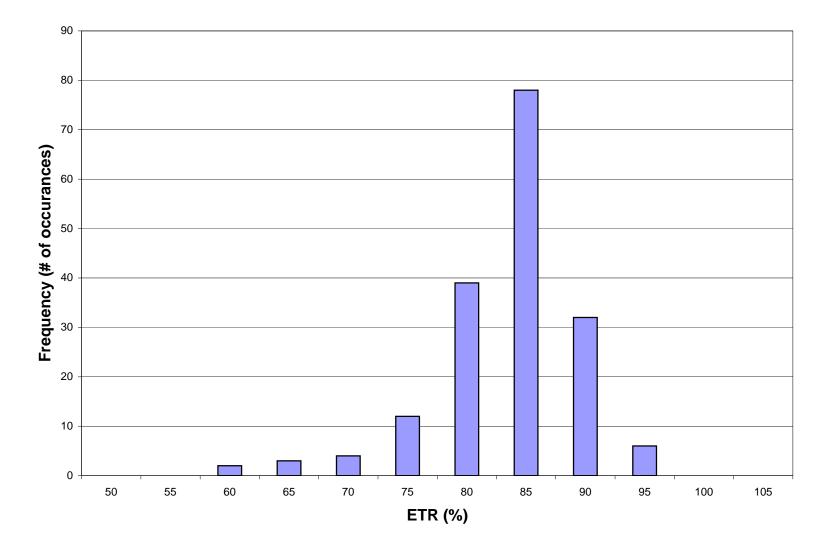

APPENDIX 9 – NORMAL DISTRIBUTION PLOTS OF ETR(%) VALUES

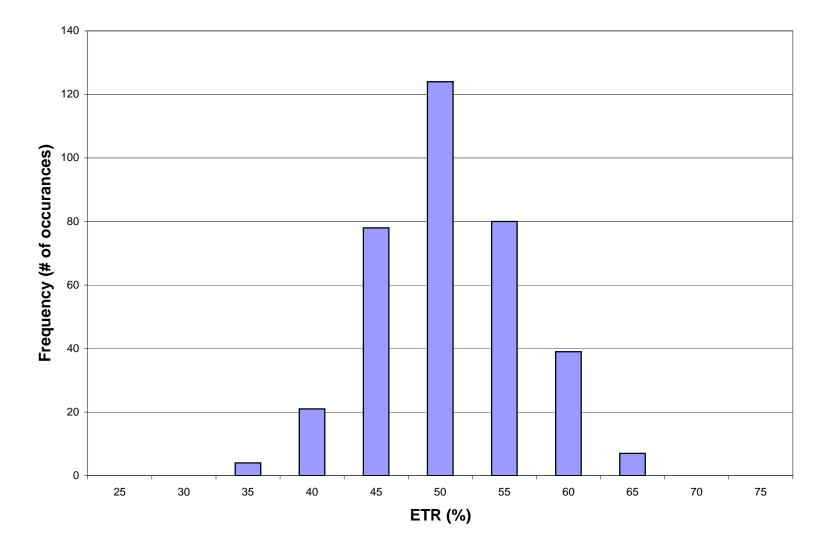

GD-1


GD-2




GD-4


GD-5



GD-7

GD-8

GD-9

Note: Unless otherwise noted, ETR% data below is obtained using the F^2 method.

Test Agency	Hammer Type	Drill Rig	AVG E	TR (%)	AVG C _n	Source
	Diedrich Automatic	Christensen CS 1000	80		1.33	
	Diedrich Automatic	Christensen CS 1000	84		1.4	
	CME Automatic	CME-75	82		1.36	
	CME Automatic	Cme-85	87		1.46	
	Safety Driver	Acker 75 Soil Max	43		0.72	
	Safety Driver	Christensen CS 500	31		0.52	
Caltrans	Safety Driver	Foremost Mobile B-47	56		0.94	Caltrans "Drill Rig Hammer Evaluation", File 59-910683,
	Safety Driver	Foremost Mobile B-48	53		0.88	12/7/2005
	Safety Driver	Foremost Mobile B-49	50		0.84	
	Safety Driver	Foremost Mobile B-50	51		0.85	
	Safety Driver	Foremost Mobile B-51	63		1.05	
	Safety Driver	Foremost Mobile B-52	68		1.13	
	Safety Driver	Foremost Mobile B-53	51		0.85	
	Safety Driver	Foremost Mobile B-54	65		1.08	
	Safety Driver	Foremost Mobile B-55	70		1.17	

	CME Automatic	CME 850	82	1.4	
Oregon DOT	Auto-trip Safety, spooling winch, down hole	Mobile B-53	48	0.8	
Recommended SPT energy	Safety; Cathead	Mobile B-50	78	1.3	"SPT Energy Measurements with the Pile Driving Analyzer"
Correction Factors,	Safety; Cathead	Longyear 24	62	1	PowerPoint Presentation, Laura Krusinski, P.E., Maine DOT
Theoretical	CME Automatic	CME 750	78	1.3	Kiusiliski, F.L., Maille DOT
	Safety; Cathead	Mobile B-50	61	1	
	Automatic; Hydraulic Drive	Mobile	62	1	
	CME Automatic	CME 750	82	1.4	
	CME Automatic	CME 750	78	1.3	
Maryland DOT	Automatic	CME ATV 550	81.4	1.36	"Research Report, SPT Correction", M. Sherif Aggour and Rose Radding, Department of Civil and Environmental Engineering,
	Safety Pin	Mobile B61	70.2	1.17	University of Maryland, September
	Sprauge and Henwood Donut	Mobile B61	63.5	1.06	2001

	Donut; Rope and Cathead	31	0.52	Schmertmann & Palacios (1979)
	Donut; Rope and Cathead	45	0.75	Kovacs et al. (1981)
	Donut; Rope and Cathead	43	0.72	Robertson et al. (1983)
	Donut; Rope and Cathead	47	0.78	Robertson et al. (1985)
	Donut; Tombi	80	1.33	Kovacs & Salmone (1982)
	Donut; Tombi	80-90		Tokimatsu & Yoshimi (1983)
Compiled "In	Safety; Rope and Cathead	52	0.87	Schmertmann & Palacios (1979)
Situ Testing Techniques in Geotechnical	Safety; Rope and Cathead	55	0.92	Schmertmann & Palacios (1979)
Engineering" Alan J. Lutenegger,	Safety; Rope and Cathead	61	1.02	Kovacs et al. (1981)
UMASS - Amherst	Safety; Rope and Cathead	52	0.87	Kovacs & Salmone (1982)
	Safety; Rope and Cathead	62	1.03	Robertson et al. (1983)
	Safety; Rope and Cathead	55-115		Riggs et al. (1983)
	Safety; Rope and Cathead	71-91		Riggs et al. (1984)
	Automatic	56-115		Riggs et al. (1983)
	Automatic	90	1.50	Riggs et al. (1983)
	Automatic	86-91		Schmertmann (1984)
	Automatic	84-106		Frost (1992)

	CME Automatic	86	1.43	1990 Globe CDOT-USBR
	Safety; NW guide	54	0.90	1991, Sy, UBC study
	Diedrich Automatic	100 (area probably wrong)		1992 Frost, Diedrich Drill
	Diedrich Automatic	85	1.42	1993 Frost, Diedrich Drill
	Safety	51	0.85	1993 GRL Texas A&M
	BK-81 Auto	67	1.12	1994 ASCE Seattle
	Safety	56	0.93	1995 ASCE Seattle
	CME Automatic	81	1.35	1996 ASCE Seattle
Compiled "Summary of SPT energy	Safety; Spooling Winch	21	0.35	1997 ASCE Seattle
measurement experience"	CME Automatic	74	1.23	1998 ASCE Seattle
Jeffrey A. Farrar,	Safety	61	1.02	1995 GRL Oregon DOT
U.S. Department	Safety	61	1.02	1996 GRL Oregon DOT
of Interior,	Safety	82	1.37	1997 GRL Oregon DOT
Bureau of	Safety	65	1.08	1998 GRL Oregon DOT
Reclamation	Safety; Spooling Winch	54	0.90	1999 GRL Oregon DOT
	Safety	58	0.97	1995 Jackson, B.C. Hydro
	Unknown Automatic	89	1.48	1996 Jackson, B.C. Hydro
	Mobile Automatic	60	1.00	1995 GRL Oregon DOT
	CME Automatic	95	1.58	1996 GRL Oregon DOT
	CME Automatic	93	1.55	1997 GRL Oregon DOT
	CME Automatic	118	1.97	1998 GRL Oregon DOT
	CME Automatic	102	1.70	1999 GRL Oregon DOT

		-			1
	Donut; Hydraulic Lift Steel wire; <10 m depth		44.9	0.75	
Department of	Donut; Hydraulic Lift Steel wire; >10 m		58.9	0.98	
Civil & Environmental Engineering,	CME Automatic; <10m		57.4	0.96	
Korea Advanced Institute of Science and	CME Automatic; >10m		64.9	1.08	Energy Ratio Measurements of SPT equipment", Dong-Soo Kim et al.
Technology, Daejon, Korea	Safety; < 10 m		54.7	0.91	
•	Safety; > 10 m		58	0.97	
	Donut; Rope and Pulley; < 10 m		36.9	0.62	
	Donut; Rope and Pulley; > 10 m		38.6	0.64	
Argentina	Donut; Rope and Pulley		45	0.75	
Brazil	Pinweight		72	1.20	
China	Pilcon type		60	1.20	
China	Donut; manual		55	0.92	
Columbia	Donut; Rope and Pulley		50	0.83	
Italy	Donut; free fall		65	1.08	
Japan	Donut; free fall		78	1.30	Typical SPT Energy by country, "Case History of SPT Energy ration
Japan	Donut; Rope and Pulley		68	1.13	for automatic hammer in northeastern U.S. practice", S.O.
Paraguay	Pinweight		72	1.20	Akbas & F.H. Kulhawy
U.K.	Donut; free fall		60	1.00	
U.K.	Donut; Rope and Pulley		50	0.83	
U.S.A.	Donut; Rope and Pulley		45	0.75	
U.S.A.	Safety; Rope and Pulley		60	1.00	
U.S.A.	Safety; Free fall		85	1.42	
Venezuela	Donut; Rope and Pulley		43	0.72	

						1
	Rope and					
	Cathead	Mobile B-57	62.2		1.04	
	(Safety?)					
	Rope and					
	Cathead	Mobile B-53	58.2		0.97	
	(Safety?)					
	Rope and					
	Cathead	Mobile B-53	55.4		0.92	
	(Safety?)					
	Rope and					
	Cathead	Mobile B-80	74.8		1.25	
	(Safety?)					
	Rope and					
	Cathead	Mobile B-80	61.2		1.02	
	(Safety?)	Mobile B 66	01.2		1.02	
	Automatic	CME 750	86.6		1.44	
	Automatic	CME 170	87.1		1.45	-
	Automatic	CME 75 CME 75	81.7		1.36 1.31	4
	Automatic		78.7			4
	Wire Line	CME 75	49.8		0.83	4
	Automatic	BK-66	70.8		1.18	-
	Automatic	BK-66	68.6		1.14	-
	Automatic	CME 55	85.3		1.42	
	Automatic	CME 75	94.6		1.58	
	Automatic	CME 55	85.4		1.42	
	Automatic	CME 55	81		1.35	
	Rope and					
	Cathead	Saitech GH3	75.4		1.26	
Utah DOT	(Safety?)					SPT Energy Measurements wit the
otan DOT	Rope and					PDA, Darin Sjoblom et al.
	Cathead	Saitech GH3	69.7		1.16	
	(Safety?)					
	Rope and					
	Cathead	Saitech GH3	76.3		1.27	
	(Safety?)					
	Automatic	CME 75	58.3		0.97	
	Automatic	CME 75	64.5		1.08	
	Rope and					-
	Cathead	Mobile B-61	66.3		1.11	
	(Safety?)		0010			
	Automatic	Mobile B-57	75.5	1	1.26	1
	Automatic	Mobile B-80	70.4		1.20	1
	Rope and		, 0.7		1.1/	1
	Cathead	CME 55	69.1		1.15	
		CIVIL JJ	09.1		1.10	
	(Safety?)		02 7		1.40	4
	Automatic	BK-81	83.7		1.40	4
	Automatic	CME 850	62.7		1.05	4
	Rope and	-	ca =		4.00	
	Cathead	Terramec 100	63.7		1.06	
	(Safety?)					4
	Automatic	CME 750	66.6		1.11	4
	Automatic	CME 850	82		1.37	4
	Automatic	Diedrich D-120	88.8		1.48	
	Automatic	Diedrich D-120	46		0.77	
	Automatic	Diedrich D-120	80		1.33	

U.S. Department of Interior Bureau of Reclamation	CME Automatic		90		1.50	Schmertmann and Smith (1977)
	CME Automatic	CME 750	83		1.38	Riggs (1982)
	CME Automatic		100+			Riggs et al. (1983)
	CME Automatic		88-91			Riggs et al. (1984)
	CME Automatic	CME 750	92		1.53	Kovacs (1984)
	CME Automatic	CME 750, 55	95		1.58	Farrar (1990)
	CME Automatic		86	86	1.43	Goble (1990)
	CME Automatic	CME 75	92-97		1.53	Farrar (1991)
	CME Automatic	CME 75	81	81	1.35	GRL ASCE Seattle (1994)
	CME Automatic		74	73	1.23	GRL ASCE Seattle (1994)
	CME Automatic		74	73	1.23	GRL ASCE Seattle (1994)
	CME Automatic	CME 750	95	82	1.58	GRL Oregon DOT (1995)
	CME Automatic	CME 750	93	78	1.55	GRL Oregon DOT (1995)
	CME Automatic	CME 750	118	78	1.97	GRL Oregon DOT (1995)
	CME Automatic	CME 850	102	82	1.70	GRL Oregon DOT (1995)
	CME Automatic			86-66		Lamb (1997)
	CME Automatic		75	81	1.25	GRL Wyoming DOT (1998)
	CME Automatic		76	81	1.27	GRL Wyoming DOT (1998)
	CME Automatic		76	78	1.27	GRL Wyoming DOT (1998)
	CME Automatic		75	81	1.25	GRL Los Angeles USACE (1998)

Legend

FV No PDA Theoretical Method Unclear

APPENDIX 10 – SPT N VALUE AND N_{60} VALUE PLOTS

Author(s)	Year	Title	Publication	Publisher	Published Location	Need to Obtain Copy
Abou-matar, H., and Goble, G.G.	(1997).	"SPT Dynamic Analysis and Measurements."	Journal of Geotechnical and Geoenvironmental Engineering,	ASCE,	Reston, VA.	
Aggour, M.S., and Radding, W.R.	(2001).	"Standard Penetration Test (SPT) Correction."		Maryland DOT,	Maryland.	
Akbas, S.O., and Kulhawy, F.H.	(2008).	"Case History of SPT Energy Ration for an Automatic Hammer in Northeastern U.S. Practice."	Geotechnical and Geophysical Site Characterization,	Taylor and Francis Group,	Taipei, Taiwan.	
Bosscher, Peter and Showers, Dale	"1987"	"Effect of Soil Type on Standard Penetration Test Input Energy"	Journal of Geotechnical Engineering,	ASCE,		
Butler, J.J., Caliendo, J.A., and Goble, G.G.	(1998).	"Comparison of SPT Energy Measurement Methods."	Proceedings of the First International Conference on Site Characterization,	Geotechnical Site Characterization,	Atlanta, GA.	
Caltrans.	(2005-2008).	"Drill Rig Hammer Evaluation."			California.	
Daniel, C., Howie, J.	"2005"	"Effect of hammer shape on energy transfer measurement in the Standard Penetration Test- Vol. 45."	Soils and Foundations	Japanese Geotechnical Society		
Diedrich Drill Incorporated.	(2004)	"Diedrich Automatic Hammer Operation Instructions"				
Diedrich Drill Incorporated.	(1996).	"Diedrich Automatic SPT Hammer System."			LaPorte, IN.	
Drumright, E.E., Pfingsten, C.W., and Lukas, R.G.	(1996).	"Influence of Hammer Type on SPT Results."	Journal of Geotechnical Engineering,	ASCE,	Reston, VA.	
Farrar, J., Nickell, J., Allen, M., Goble, G., Berger, J.	"1998"	"Energy loss in long rod penetration testing-Terminus Dam Liquefaction Investigation"	Geotechnical Special Publication	ASCE,		x
Farrar, J.A.	(1998).	"Summary of Standard Penetration Test (SPT) Energy Measurement Experiment."	Proceedings of the First International Conference on Site Characterization,	Geotechnical Site Characterization,	Atlanta, GA.	
Farrar, J.A., and Chitwood, D.	(1999).	"CME Automatic Hammer Operations Bulletin."		US Bureau of Reclamation,	Denver, CO.	
Frost, D.J.	(1992).	"Evaluation of the Repeatability and Efficiency of Energy Delivered with a Diedrich Automatic SPT Hammer System."		Diedrich Drill Incorporated,	LaPorte, IN.	
Goble, G.G., and Abou- matar, H.	(1992).	"Determination of Wave Equation Soil Constants from the Standard Penetration Test."	Proceedings of the Fourth International Conference on the Application of Stress- Wave Theory to Piles,		The Netherlands.	
Hall, J.R.	"1982"	"Drill Rod Energy As A Basis For Correlation for SPT Data"	Proceedings of the 2nd. European Symposium	Amsterdam	Balkema	

Howie, J., and Campanella R.G.		"Energy Measurement in the Standard Penetration Test (SPT)"	www.civil.ubc.ca/rese arch/geotech/sptenerg y/sptenergy.htm	Department of Civil Engineering	University of British Columbia, Vancouver, BC, Canada	
Johnsen, L.F., Bemben, S.M., and Jagello, J.J.	(2001).	"SPT Energy Transfer Measurements for Liquefaction Evaluations in the Northeast."	Proceedings of the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,		San Diego, CA.	
Kim, D.S., Seo, W.S., and Bang, E.S.	(2004).	"Energy Ratio Measurement of SPT Equipment."	Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization,		Porto, Portugal.	
Kovacs, W.	"1979"	"Velocity Measurement of Free-Fall SPT Hammer"	Journal of the Geotechnical Engineering Division			х
Kovacs, W.D. Evans, J.C., Griffith, A.H.		"Towards a More Standardized SPT"	Proceedings of the Ninth International	Purdue University,	West Lafayette, IN.	
Kovacs, W.D., Evans, J.C., and Griffith, A.H.	(1975).	"A Comparative Investigation of the Mobile Drilling Company's Safe-T-Driver with the Standard Cathead with Manila Rope for the Performance of the Standard Penetration Test."		Purdue University,	West Lafayette, IN.	
Kovacs, W.D., Griffith, A.H., Evans, J.C.	"1978"	"Alternative To The Cathead and Rope For The Standard Penetration Test"	Geotechnical Testing Journal	American Society for Testing & Materials		
Kovacs, W.D., Salomone, L.A.	"1984"	"Field Evaluation of SPT Energy, Equipment and Methods in Japan Compared with SPT in the United States"	National Bureau of Standards	Department of Commerce		х
Kovacs, W.D., Salomone, L.A., and Yokel, F.Y.	(1980).	"Comparison of Energy Measurements in the Standard Penetration Test Using the Cathead and Rope Method."		U.S. N.R.C.,	Washington, D.C.	
Kovacs, W.D., Salomone, L.A., and Yokel, F.Y.	(1981).	"Energy Measurements in the Standard Penetration Test."		National Bureau of Standards,	Washington, D.C.	
Krusinski, L.		"SPT Energy Measurements with the Pile Driving Analyzer."		Maine DOT,	Maine.	
Lutenegger, A.J.	(1999).	"In Situ Testing Techniques in Geotechnical Engineering."		University of Massachusetts,	Amherst, MA.	
Morgano, C.M., and Liang, R.	(1992).	"Energy Transfer in SPT - Rod Length Effect."	Proceedings of the Fourth International Conference on the Application of Stress- Wave Theory to Piles,		The Netherlands.	

Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P.	(2004).	"Energy Measurements for Standard Penetration Tests and the Effects of the Length of the Rods."	Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization,		Porto, Portuga
Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P.	(2005)	"Energy Efficiency for Standard Penetration Tests"	Journal of Geotechnical and Geoenvironmental Engineering,	ASCE,	
Palacios, A.	"1997"	"The theory and Measurement of Energy Transfer During Standard Penetration Test Sampling"	Ph.D Thesis	University of Florida	Gainesville, Fl
Peixoto, A.S.P., de Carvalho, D., and Giacheti, H.L.	(2004).	"SPT-T: Test Procedure and Applications."	Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization,		Porto, Portuga
Riggs, C.O., Schmidt, N.O., and Rassieur, C.L.	(1983).	"Reproducible SPT Hammer Impact Force with an Automatic Free Fall SPT Hammer System."	Geotechnical Testing Journal,	ASTM,	Philadelphia, I
Robertson, P.K., Woeller, D.J.	"1991"	"SPT Energy Measurements Using a PC Based System"	Canadian Geotechnical Conference	Canadian Geotechnical Society	
Robertson, P.K., Woeller, D.J., and Addo, O.	(1992).	"Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer."		National Research Council Canada,	Fredericton, N Brunswick, Ca
Schmertmann, J., Palacios, A.	"1979"	"Energy Dynamics of SPT"	Journal of the Geotechnical Engineering Division	ASCE,	University of F
Seed, H.B., Tokimatsu, K., Harder, L.F., Chung, R.M.	"1985"	"Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations"	Journal of Geotechnical Engineering,		

jal.	
-L	Х
jal.	
PA.	
	х
New anada.	
Florida	

Sjoblom, D., Bischoff, J., and Cox, K.	(2002).	"SPT Energy Measurements with the PDA."	The 2nd Annual Conference on the Application of Geophysical and NDT Methodologies to Transportation Facilities and Infrastructure,	Federal Highway Administration,	Washington, D.C.	
Skepton, A.W.	"1986"	"Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Density, Particle Size, Aging and Overconsolidation"	Geotechnique			
Steiger, F.		"Experimental Investigation Of The Force/Penetration Relationships of Rod Impact"	Geotechnical Testing Journal			
Sy, Alex, Campanella, R.G.	"1993"	"Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer -Discussion"	Discussion	University of British Columbia		
Tsai, J., Liou, Y., Liu, F., Chen, H.	"2004"	"Effect of hammer shape on energy transfer measurement in the Standard Penetration Test- Vol. 44"	Soils and Foundations	Japanese Geotechnical Society	Tainan, Taiwan	
van der Graaf, H.J., and van den Heuvel, M.H.J.P.	(1992).	"Determination of the Penetration Energy in the Standard Penetration Test."	Proceedings of the Fourth International Conference on the Application of Stress- Wave Theory to Piles,		The Netherlands.	
Yokel,F.	"1982"	"Energy Transfer in Standard Penetration Test"	Journal of the Geotechnical Engineering Division	ASCE,	Washington, D.C.	
Youd, T.L., Bartholomew, H.W., and Steidl, J.H.	(2008).	"SPT Hammer Energy Ratio Versus Drop Height."	Journal of Geotechnical and Geoenvironmental Engineering,	ASCE,	Reston, VA.	
Youd, T.L., et al.,	"2001"	"Liquefaction Resistance of Soils"	Journal of Geotechnical and Geoenvironmental Engineering,			
	"2001"	"US Patent 6286613-Impact method and the device used in standard penetration test	www.patents/6286613 /description.html			
	"1991"	"DCDMA Technical Manual"	Drilling Equipment Manufacturers Association		Columbia, SC	x
	"1988"	"Standard Penetration Test (SPT): International Reference Test Procedure"	Penetration Testing	Balkema		

Entered from ASTM D4633 - 05 References

Entered from Compendex Database

APPENDIX 11 – SPT HAMMER ENERGY LITERAURE VALUES

APPENDIX 12 – SPT INSTRUMENTED ROD CALIBRATION SHEETS