EVALUATION OF FINE AGGREGATE AND 3/4" CRUSHED GRAVEL FROM COLUMBIA SAND AND GRAVEL CORP. COLUMBIA, N.H. FOR USE IN STRUCTURAL CONCRETE

> REPORT 92-1 JANUARY 1992

REPORTING ON WORK PLAN 91-C-6

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

PATRICK J. GARAHAN, SECRETARY OF TRANSPORTATION ROBERT L. MERCHANT, P. E., DIRECTOR OF CONSTRUCTION & MAINTENANCE R. F. CAULEY, P. E., MATERIALS & RESEARCH ENGINEER J. H. WEAVER, P. E., STRUCTURAL CONCRETE ENGINEER

Prepared by:

R. J. Holt, Technician C Structural Concrete Subdivision

Reviewed By:

notenty lawley

R. F. Cauley, P. E. // Materials & Research Engineer

Date: March 2, 1992

"The information contained in this report was compiled for the use of the Vermont Agency of Transportation. Conclusions and recommendations contained herein are based upon the research data obtained and the expertise of the researchers, and are not necessarily to be construed as Agency policy. This report does not constitute a standard, specification, or regulation. The Vermont Agency of Transportation assumes no liability for its contents or the use thereof."

.

TABLE OF CONTENTS

	Page
Executive Summary	1
Introduction	2
Procedures Phase I - Section 704.01 and Section 704.02 Tests Phase II - Performance-In-Concrete Tests	3 8
Results	11
Summary and Conclusions	18
Recommendations	20
Appendix A Vermont Procedure For Evaluating A New Source Of Structural Concrete Aggregate VT-AOT-MRD-9-82	21
Appendix B (Eight Reports) Section 704.01 & Section 704.02 Test Results, Lab. Report Nos. A910183, A910266, G9100062, G9100063, G9100443, & G9100444	23
Appendix C Geologist Report on the Columbia Sand & Gravel Corporation, Coarse and Fine Aggregates for Structural Concrete, Columbia, NH	29
Appendix D (Eight Reports) Compressive Strength Test Results, Lab. Report Nos. C91WP01, C91WP02, C91WP03, C91WP04, C91WP05, C91WP06, C91WP07, & C91WP08	33
Appendix E Work Plan No. 91-C-6	41

EXECUTIVE SUMMARY

To produce the optimum structural concrete, aggregate must be tested and evaluated to assure conformance to required specifications.

This report documents results of tests performed on a proposed new source of fine aggregate and 3/4" crushed gravel for structural concrete. The materials tested were a fine aggregate and a 3/4" crushed gravel produced at the Columbia Sand & Gravel Corp. facilities in Columbia, New Hampshire.

Test results and evaluation confirm these materials meet the required specifications for fine aggregate and 3/4" crushed gravel for structural concrete.

INTRODUCTION

To provide an accurate evaluation of an aggregate for use in structural concrete, not only should tests be initiated to ensure compliance with required specifications, but a collation of test results for the new aggregate with those for a previously evaluated reference aggregate should be performed. This procedure compares both aggregates in concrete mixtures prepared and tested under the same conditions.

In February of 1991, Mr. Steven Persons, General Manager of Persons Concrete Inc. initially requested an evaluation of concrete sand and an evaluation of 3/4" crushed gravel processed at the Columbia Sand & Gravel Corp. facility, Columbia, NH. Following his request, samples of the materials were obtained by Materials and Research Division representatives on March 12, 1991 and evaluated for compliance with Sections 704.01, and 704.02 of the Vermont Agency Of Transportation (VAOT) Standard Specifications for Construction. The Agency's Chief Geologist also traveled to the site to obtain samples for petrographic analysis of the materials.

Testing indicated the materials were in compliance with specifications and materials were obtained for the performance-in-concrete phase of the evaluation which was conducted in the Central Laboratory of the Materials and Research Division.

PROCEDURES

PHASE I - SECTION 704.01 AND SECTION 704.02 TESTS

The proposed new aggregates were sampled by representatives of the Materials and Research Division, from a stockpile at Columbia Sand & Gravel, Columbia, NH. The fine aggregate was examined for gradation (AASHTO T 27-84), organic impurities (AASHTO T 21-86), sodium sulfate soundness (AASHTO T 104-86) and compressive strength of the mortar (Section 704.01 (c) of the VAOT Standard Specifications for Construction). The coarse aggregate (3/4" crushed gravel) was examined for gradation (AASHTO T 27-84), percent of wear (AASHTO T 96-83), thin and elongated pieces (VT AOT-MD 22), fractured faces (VT AOT-MD 23) and sodium sulfate soundness (AASHTO T104-86). Samples of each aggregate were found to be in compliance with requirements.

The reference aggregates were obtained on April 9, 1991 from stockpiles at the Miller ready-mix concrete plant in W. Lebanon, NH (See copies of Aggregate Report Nos. G9100062 & G9100063 in Appendix B). The reference aggregate source was Lebanon Crushed Stone, W. Lebanon, NH. The reference fine aggregate was examined for gradation (AASHTO T 27-84) and organic impurities (AASHTO T 21-86). The reference coarse aggregate was examined for gradation (AASHTO T 27-84), thin & elongated pieces (VT AOT-MD 22), fractured faces (VT AOT-MD 22) and percent of wear (AASHTO T 96-83).

The reference fine aggregate and coarse aggregate were found to comply respectively with Section 704.01 and Section 704.02 requirements. Fine aggregate test results are shown in Table 1 and Table 2. Coarse aggregate test results are shown in Table 3 and Table 4. Aggregate

test results are also shown in Laboratory Report Nos. A910183, A910266, G9100062, G9100063, G9100443, &G9100444 in Appendix B.

The Vermont Agency of Transportation Chief Geologist traveled to the facility in Columbia, N.H. to obtain samples for analysis. Copies of the geologist's petrographic analysis are shown in Appendix C.

TABLE 1

FINE AGGREGATE TEST DATA (Proposed New Aggregate)

	Columbia S Colum Dates	Columbia Sand & Gravel Columbia, NH Dates Sampled		
	03-12-91	04-04-91	Requirements	
	%	%	%	
Sieve Size	Passing	Passing	Passing	
3/8"	100	-	100	
#4	100	-	95-100	
#8	92	-	-	
#16	71	-	50-80	
#30	43	-	25-60	
#50	16	-	10-30	
#100	6	-	2-10	
Fineness Modulus	2.72	-	2.60-3.10	
Organic Impurities, color	1	-	2 maximum	
Compressive Strengt of Mortar, % of Standard Sand	h			
3 days	-	-	100 minimum	
7 days	-	-	100 minimum	
Soundness, % loss	-	4.73	8 maximum	

* Compressive Strength of Mortar testing could not be completed at this time - The Cement Laboratory facilities are in a redesign and renovation stage.

FINE AGGREGATE TEST DATA (Reference Aggregate)

	Lebanon Crushed Stone	
	W. Lebanon, NH	V.A.O.T.
	Date Sampled	Specification
	04-09-91	Requirements
	%	%
Sieve Size	Passing	Passing
3/8"	100	100
#4	100	95-100
#8	89	-
#16	70	50-80
#30	48	25-60
#50	24	10-30
#100	6	2-10
Fineness Modulus	2.63	2.60-3.10
Organic Impurities, colo	r <1	2 maximum

COARSE AGGREGATE TEST DATA (Proposed New Aggregate)

	3/4" Crush Columbia San Columbia	ed Gravel nd & Gravel	V A O T
	Dates Sa 03-12-91	ampled 04-04-91	Specifications Requirements
Sieve Size	% Passing	% Passing	% Passing
1"	100	-	100
3/4"	100	_	90-100
3/8"	32	_	20-55
# 4	4	-	0-10
#8	2	1	0-5
L. A. Abrasion, % loss	23.1	-	35 maximum
Thin and Elongated Pieces, %	4.3	-	10 maximum
Fractured Faces, %	87.0	-	50 minimum
Soundness, % loss	_	0.1	8 maximum

COARSE AGGREGATE TEST DATA (Reference Aggregate)

	3/4" Crushed Stone Lebanon Crushed Stone	
	W. Lebanon, NH Date Sampled 04/09/91 %	V.A.O.T. Specification Requirements %
Sieve Size	Passing	Passing
1"	100	100
3/4"	99	90-100
3/8"	27	20-55
#4	6	0-10
#8	2	0-5
L. A. Abrasion, % wear	32.9	35 maximum
Thin and Elongated Pieces, %	1.7	10 maximum
Fractured Faces, %	100.0	100 minimum
Soundness, % loss	-	8 maximum

PHASE II PERFORMANCE-IN-CONCRETE TESTS

The performance-in-concrete tests were conducted on concrete prepared in the Central Laboratory. Mixtures were designed by Structural Concrete Subdivision personnel for Class A and Class B concrete, using the following materials:

Fine Aggregate

- A. <u>Proposed New Aggregate</u> Columbia Sand & Gravel Corp., Columbia, NH
- B. <u>Reference Aggregate</u> Lebanon Crushed Stone Corp., W. Lebanon, NH

Coarse Aggregate

- A. <u>Proposed New Aggregate</u> Columbia Sand & Gravel Corp., Columbia, NH
- B. <u>Reference Aggregate</u> Lebanon Crushed Stone Corp., W. Lebanon, NH

Cement

Type II Northeast Cement Co., St. Constant, Quebec

Air Entraining Admixture

Daravair W. R. Grace Co., Cambridge, MA

Water Reducing Admixture

WRDA with Hycol W. R. Grace Co. Cambridge, MA

Aggregate Properties used for preparing mix designs are shown in Table 5 and Table 6.

FINE AGGREGATE PROPERTIES

	Bulk Specific Gravity	Absorp., Percent	Fineness Modulus
Proposed New Aggregate Columbia Sand & Gravel Columbia, NH	2.59	1.7	2.72
Reference Aggregate Lebanon Crushed Stone W. Lebanon, NH	2.65	1.0	2.67

TABLE 6

COARSE AGGREGATE PROPERTIES

	Bulk Specific Gravity	Absorp., Percent	Dry Rodded Unit Weight, lbs/cu. ft.
Proposed New Aggregate Columbia Sand & Gravel Columbia, NH	2.65	1.0	99.74
Reference Aggregate Lebanon Crushed Stone W. Lebanon, NH	2.83	0.6	104.26

The concrete used in this evaluation was mixed in a Sears rotary drum mixer with batch size being 1.8 cubic feet. Aggregates were dried prior to the start of mixing operations.

Two batches each of Class A and Class B concrete containing the new fine aggregate and the new coarse aggregate were prepared as well as two batches each of the Class A and Class B concrete containing the reference aggregates.

The mix proportions used are shown in Table 7 and Table 8.

.

NEW AGGREGATE MIX DESIGN BATCH QUANTITIES PER C.Y.

	Cla	ss A	Class B	
	Batch 5	Batch 6	Batch 1	Batch 2
*Coarse Aggregate, lbs.	1697	1697	1697	1697
*New Fine Aggregate, 1bs.	1171	1171	1289	1289
Cement, 1bs.	660	660	611	611
Air Entraining Admixture, oz.	5.5	5.5	3.0	2.5
Water Reducing Admixture, oz.	19.8	19.8	18.3	18.3
Net Water, gal.	31.3	31.5	31.3	31.2

*Weights converted to saturated surface-dry condition

TABLE 8

REFERENCE AGGREGATE MIX DESIGN BATCH QUANTITIES PER C.Y.

	Clas	s A	Class B	
	Batch 7	Batch 8	Batch 3	Batch 4
*Coarse Aggregate, lbs.	1773	1773	1773	1773
*New Fine Aggregate, lbs.	1234	1234	1355	1355
Cement, 1bs.	660	660	611	611
Air Entraining Admixture, oz.	5.0	5.0	4.0	3.5
Water Reducing Admixture, oz.	19.8	19.8	18.3	18.3
Net Water, gal.	31.4	30.7	31.6	31.4

*Weights converted to saturated surface-dry condition

Tests were performed on the fresh concrete to determine slump (AASHTO T 119-86), air content (AASHTO T 152-86) and unit weight (AASHTO T 121-86). Six test cylinders (6" x 12") and one 3" wide x 3" deep x 16" long freeze-thaw specimen were cast from each batch. The cylinders were tested for compressive strength (AASHTO T 22-86); two each at ages 7, 14 and 28 days. The freeze-thaw specimens were moist cured for 14 days, after which they were subjected to freezing and thawing (AASHTO T 161-86) in 3% NaCl solution.

RESULTS

Results of tests on the fresh concrete and compressive strength test results are shown in Table 9 and Table 10.

TABLE 9

PERFORMANCE TEST RESULTS NEW AGGREGATE

	Clas	Class A		ss B
	Batch 5	Batch 6	Batch 1	Batch 2
Slump, inches	2.75	2.75	3.00	2.00
Air Content, percent	6.0	5.7	5.9	5.2
Unit Weight, 1bs/cu. ft.	144.72	144.97	143.92	144.20
Compressive Strength, psi				
7 days	3692	3979	3454	3712
14 days	4384	4474	4117	4410
28 days	4800	5026	4645	4839
(Design Compressive Streng	th, psi) (40	00)	(35	;00)

TABLE 10

PERFORMANCE TEST RESULTS REFERENCE AGGREGATE

	Class A		Class B	
	Batch 7	Batch 8	Batch 3	Batch 4
Slump, inches	2.50	2.50	3.00	2.50
Air Content, percent	5.9	5.5	5.7	5.8
Unit Weight, 1bs/cu. ft.	147.06	149.59	148.42	148.62
Compressive Strength, psi				
7 days	3830	3800	3440	3628
14 days	4342	4595	3975	4175
28 days	4749	5063	4535	4551

(Design Compressive Strength, psi) (4000) (3500)

.

The results of compressive strength tests are also shown on Laboratory Report Nos. C91WP01 through C91WP08 in Appendix D. Strength vs. age plots illustrating average compressive strengths in psi over time in days are shown in Figure I and Figure II.

The results of dynamic testing of freeze-thaw specimens are shown in Table 11. The percent weight change resulting from freezing and thawing of specimens is shown in Table 12. Freeze-thaw test results are also summarized in Figure III and Figure IV. These figures show a comparison of results obtained with the reference aggregate and the new aggregate after 300 cycles of freezing and thawing.

TABLE 11

FREEZE-THAW TEST RESULTS - DURABILITY FACTOR

	New Aggregate			R	eference	Aggregat	e	
	Clas	as A	Cla	ss B	Cla	ss A	Clas	ss B
No. of	Batch 5	Batch 6	Batch 1	Batch 2	Batch 7	Batch 8	Batch 3	Batch 4
Cycles				Durab	ility Fa	ctor		
50	97.8	99.3	103.6	100.1	98.9	96.8	100.1	97.8
100	98.3	100.6	104.0	100.4	98.0	95.9	100.1	97.6
150	99.1	100.7	104.0	99.0	99.0	96.1	100.2	98.3
200	99.1	100.9	103.6	99.2	100.0	96.5	101.8	97.7
250	99.5	102.0	106.6	101.8	104.5	94.4	104.1	100.6
300	97.5	101.2	104.3	100.6	99.0	97.4	102.1	97.5

Batch No.	No. Cycles	Weight Lbs.	Percent Weight Loss	Fundaments Transvers Frequency "N"	al e "N"	Individual Durability Factor DF	Average DF	Relative Durability Factor RDF
Referen	nce Aggre	gate						
7	0	12.92	<u> </u>	1674	2802276	; 		
7	300	12.85	0.5	1666	2775556	99.0		
8	0	12.99		1677	2812329		98.2	
8	300	12.26	5.6	1655	2739025	97.4		
New Ag	gregate							98.8
5	0	12.50		1594	2540836	07.5		
5	300	11.48	8.2	1574	2477436	97.5	00.4	
6	0	12.65		1618	2617924		99.4	
6	300	11.73	7.3	1628	2650384	101.2		

SUMMARY OF FREEZE-THAW TEST RESULTS

CLASS A

.

FIGURE III

Datab	N-	Waisht	Percent	Fundament. Transvers	al e	Individual Durability	A	Relative Durability
No.	Cycles	Lbs.	Loss	"N"	"N"	DF	DF	RDF
Referen	nce Aggre	gate						
3	0	12.86		1658	2748964			
3	300	12.73	1.0	1675	2805625	102.1		
4	0	12.86		1655	2739025		99.8	
4	300	12.69	1.3	1634	2669956	97.5		
New Ag	gregate							101.2
		10.11		1500	0400044			
1	0	12.44	1.8	1562	2439844	104.3		
1	300	12.28		1595	2544025		100 5	
2	0	12.54	4.9	1591	2531281	100.6	102.5	
2	300	11.93		1596	2547216			

SUMMARY OF FREEZE-THAW TEST RESULTS

CLASS B

FIGURE IV

FREEZE-THAW TEST RESULTS - PERCENT OF WT. CHANGE

	New Aggregate					Reference Aggregate				
	Clas	ss A	Clas	ss B	Clas	ss A	Clas	ss B		
No. of	Batch 5	Batch 6	Batch 1	Batch 2	Batch 7	Batch 8	Batch 3	Batch 4		
Cycles			Per	rcent Of	Weight Cl	hange				
50	-2.0	-1.1	-0.2	-1.0	-0.1	-0.9	-0.0	-0.2		
100	-3.7	-2.3	-0.5	-1.9	-0.1	-2.0	-0.1	-0.5		
150	-4.6	-3.2	-0.8	-2.6	-0.2	-3.0	-0.2	-0.7		
200	-5.5	-4.3	-1.0	-3.2	-0.2	-3.5	-0.5	-0.9		
250	-6.7	-5.4	-1.3	-3.8	-0.4	-4.4	-0.8	-1.2		
300	-8.2	-7.3	-1.8	-4.9	-0.5	-5.6	-1.0	-1.3		

SUMMARY AND CONCLUSIONS

- 1. Initial samples of the proposed fine aggregate from the Columbia Sand & Gravel Corporation facility in Columbia, NH were found to be in compliance with VAOT Standard Specifications For Construction, Section 704.01.
- 2. Initial samples of the proposed coarse aggregate from the Columbia Sand & Gravel Corporation facility in Columbia, NH were found to be in compliance with VAOT Standard Specifications For Construction, Section 704.02.
- 3. The average 28 day compressive strengths of concrete containing the Columbia fine aggregate and 3/4" crushed coarse aggregate were approximately 2.5 percent greater than the strengths of concrete containing the reference aggregate. The Class A concrete containing the Columbia aggregates had an average compressive strength of 4913 psi at 28 days, while the Class A concrete containing the reference aggregates yielded an average 28-day compressive strength of 4906 psi. The Class B concrete containing the Columbia aggregates had an average compressive strength of 4742 psi at 28 days, while the Class B concrete containing the reference aggregates had an average compressive strength of 4742 psi at 28 days, while the Class B concrete containing the reference aggregates had an average 28-day compressive strength of 4543 psi.
- 4. Results of freezing and thawing tests indicated reduced performance for the Class A concrete containing the new aggregates as compared with Class A concrete containing the reference aggregate. The average durability factor for the Class A concrete with the new aggregate was 98.4 while the Class A concrete with

the reference aggregate had an average durability factor of 98.2. The Class A concrete containing the new aggregates, however, showed greater weight loss (7.8%) than the Class A concrete containing the reference aggregate (3.1%).

- 5. The Class B concrete containing the new aggregate performed slightly better in sonic testing than the Class B concrete containing the reference aggregate. The average durability factor was 102.5 for the Class B concrete with the new aggregate and 99.8 for the Class B concrete with the reference aggregate. The Class B concrete containing the new aggregate, however, showed greater average weight loss (3.4%) than the Class B concrete with the reference aggregate (1.2%).
- 6. Mix Design Tables, shown on page 11, indicate the Class A and Class B mixtures containing the new aggregates having quantities of water relatively comparable to the mixes containing the reference aggregate develop approximately equal slump and air content (slump & air content indicated in tables 9 & 10, page 12).

RECOMMENDATIONS

- 1. It is recommended that the present Columbia Sand & Gravel Corp. facilities in Columbia, NH be approved as a source of fine aggregate and coarse aggregate for use in structural concrete.
- 2. During the initial uses of concrete containing this aggregate on Agency projects, Materials and Research Division representatives shall conduct tests necessary to determine the performance of this aggregate in concrete under field conditions. Due to the range of results obtained in freeze-thaw tests, it is recommended that subsequent testing include fabrication of freeze-thaw specimens to permit further examination of this concrete property.

APPENDIX A

Prepared By: W. Meyer@f?M Date: March 26, 1982 Page: 1 of 2

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS & RESEARCH DIVISION

VERMONT PROCEDURE FOR EVALUATING A NEW SOURCE OF STRUCTURAL CONCRETE AGGREGATE

VT-AOT-MRD 9-82

1. SCOPE

A procedure for evaluating new structural concrete aggregate sources by testing proposed new aggregates for compliance with Section 700 requirements and by comparing results of tests performed on concrete using the new aggregate with results obtained from concrete containing a reference aggregate.

PROCEDURE

General

The evaluation of a new structural concrete aggregate source (i.e., one on which the Materials and Research Division has no service-inconcrete data) shall be divided into two sections called:

Phase I Section 700 and related tests, and Phase II Performance-in-Concrete tests.

All requests for evaluation of new structural concrete aggregate sources shall be made, in writing, to the Materials and Research Engineer. Requests shall describe the type of material proposed for use as well as the location and quantity of available stockpiles.

Materials and Research Division personnel shall perform all work necessary for both the Phase I and Phase II sections of this evaluation process. The work will be performed in an expeditious manner consistent with availability of manpower. Evaluations may require 60 calendar days or more from the date the aggregate is available for testing (controlled by the availability of personnel to perform testing). Delays beyond the control of the Materials and Research Division shall be documented and notification given of the consequent extension of time required to complete the evaluation.

Test results shall be the basis for determining acceptance, further testing, or rejection of the proposed new material. Failure of the material to comply with all applicable requirements, during any phase of testing, may necessitate rescheduling or termination of the evaluation.

The cost of materials necessary to complete the evaluation will be borne by the requesting party. A report shall be prepared documenting the Materials and Research Division's involvement in the evaluation. A copy of the report shall be forwarded with a cover letter, informing the requesting party of the acceptability or nonacceptability of the aggregate.

Phase I

- Following receipt of the written request, the Structural Concrete Engineer will schedule a field petrographic examination of the proposed new aggregate source by the Vermont A.O.T. Chief Geologist.
- The Structural Concrete Engineer or his representative will visit the site and determine:
 - (a) Does a stockpile of at least 50 cubic yards of processed material exist?
 - (b) Can samples be obtained in the standard manner from the stockpiles?
- If 2(a) and 2(b) are yes, the Structural Concrete Engineer shall make necessary arrangements for obtaining samples from the designated stockpile.
- The material shall be tested at the Central Laboratory using the Structural Concrete Subdivision Annual Aggregate Testing Program procedure.
- 5. Report the results (as an Evaluation Sample) on the Standard Materials and Research Division forms.

Phase II

- 1. The performance-in-concrete tests shall be performed on concrete prepared at the Central Laboratory. The proposed new aggregate will be evaluated by comparing results of tests performed on concrete using the new aggregate with results obtained from concrete containing a reference aggregate. Cement, admixtures, and aggregates, other than the proposed new aggregate, will be selected by the Structural Concrete Engineer. Normally, these materials will be the same as the materials currently in use at the Ready-mix plant where the proposed hew aggregate will be used.
- 2. Mix proportions for each class of concrete required shall be designed or approved by the Materials and Research Division and shall conform to Table 501.03A of the Vermont Standard Specifications for Highway and Bridge Construction, current edition.
- 3. Test cylinders shall be fabricated and cured in accordance with AASHTO T23. They shall be tested for compressive strength at ages 7, 14, and 28 days in accordance with AASHTO T22.
- 4. Tests of Slump, Air Content, and Unit Weight shall be in accordance with AASHTO TI19, AASHTO TI52, and AASHTO TI21, respectively.

EMARREL3

VERMONT AGENCY OF * TRANSPORTATION MATERIALS AND RESEARCH DIVISION APPENDIX B DISTRIBUTION Central Files R

REPORT ON SAMPLE OF AGGREGATE Preliminary Sample

Geologist

Correct Copy: Lab No: A910183 1 Report Date: 12/18/91 Project: Possible Future Use Sampled By: Kelly Pav Item: CONCRETE, CLASS B 501.25 Date Sampled: 04/04/91 Material Name/Type: Gradation Requirements for 3/4" Stone Sampled From: Stockpile Material Spec. No: 704.02B Date Received: 04/04/91 Sample Source: Persons Concrete Columbia N.H. Tested By: M.Lavin Material Source: Columbia Sand + Gravel Columbia N.H. Test Complete: 05/07/91 Quantity Rep: X-Ref No: CS: Comment: TEST RESULTS TOTAL SAMPLE OUTSIDE FINENESS MODULUS OUTSIDE SPECS % COARSER THAN SIEVE PASSING SPECS 4 1/2" No. 4 Fineness No. 8 Color 3 1/2" No. 16 3"-No. 30 Grading 14 2 1/2" No. 40 Percent of Wear 2 " No. 50 AASHTO T96 = 1 3/4" No. 100 1 1/2" Frac Face 1" Thine/Elon = 3/4" Soundness = 0.1 5/8" 1/2"

> Remarks: Results of tests performed are in compliance with specificaltions,

Comments:

3/8" No. 4(P)

No. 1 No. 3 No. 16 No. 30 No. 40 No. 50 No. 100 No. 200

Aviewed By: R.J.O'Brien Chemist Testing Lab. Supervisor

For: R.F.Cauley Materials and Research Engineer

187-

EMABRE13

Lab No: A910266 .

Project: Possible Euture Use

Material Spec. No: 704.01A

Pay Item: CONCRETE, CLASS B 501.25

VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

DISTRIBUTION Central Files

REPORT ON SAMPLE OF AGGREGATE Preliminary Sample

2

N.H.

Correct Copy:

Material Name/Type: Fine Aggregate for Concrete

Sample Source: Persons Concrete Columbia N.H.

Material Source: Columbia S+G Columbia

Geologist

Weaver

Report Date: 12/18/91

Sampled By: Kelly

Date Sampled: 04/04/91

Sampled From: Stockpile

Date Received: 04/04/91

Tested By: M.Lavin

X-Ref No:

Test Complete: 05/28/91

CS:

Quantity Rep:

Comment:

5 · · ·			TEST R	ESULT	S .					
TOTAL	SAMPLE	OUTSIDE	FINE	NESS	MODULUS.				OUTSIDE	
SIEVE	PASSING	SPECS	% CO	ARSER	THAN				SPECS	
4 1/2"	1	•	No.	4		Fineness	= '	1		
	i i		No.	8		Color	=	1		
5 1/2"			No.	16			· · ·	1		
3 **	1		No.	30		Grading	=	1		
2 1/2"			No.	40		Percent of	Wear	1		
2"	1		No.	50		AASHTO T96	z	- 1		
1:3/4"			No.	100						
1 1/2"	1		1			Frac Face	2	1		
1"	1	•	1			Thine/Elon	a .	1		
3/4"	i i i		1			Soundness	= 4.73	1		
5/8"	1	•	1			and the state of the				
1/2"	1									
3/8"	1		1					,		
No. 4(P)			Rem	arks:	Results	of tests pe	erformed	are	in	
			com	plian	ce with	specificait	ions.			
No. 4	1		;	-						
No. 8	{		1							
No. 16	1	·	1							
No. 30	1		1							
No: 40	1		1							
No. 50	1	·	1.							
No. 100	1		1.							
No. 200	:		1							
Comments	:									
1. 11										
1. ··· .						`		60	314	

Fviewed By: R. J. O'Brien, Chemist Testing Lab Supervisor

For: R. F. Cauley, Materials and Research Engineer

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

STODDARD
WEAVER
C.F.

Project Name <u>MACTER 20</u> Sampled By <u>MACTER 20</u> Sampled By <u>MACTER 20</u> Plant <u>Matter 104 (10)</u> Sampled By <u>MACTER 2016</u> Plant <u>Matter 104 (10)</u> Source of Material <u>Leaders Cluster</u> Plant <u>Matter 104 (10)</u> Source of Material <u>Leaders Cluster 5 First Conservent</u> Quantity Represented <u>50% (2)</u> Sample Type <u>Macce 2000 (1)</u> Sample Comparison <u>Mo</u> <u>Cross Reference Number</u> MATERIAL TESTED <u>3/4</u> <u>COUSTIED STRUE First Conservent</u> <u>MATERIAL TESTED <u>3/4</u> <u>COUSTIED STRUE First Conservent</u> <u>MATERIAL TESTED <u>3/4</u> <u>100</u> <u>Conservent</u> <u>Ret <u>4</u> <u>1,7</u> <u>4</u> <u>7</u> <u>1</u> <u>6</u> <u>Ret <u>4</u> <u>1,7</u> <u>7</u> <u>1</u> <u>6</u> <u>Ret <u>4</u> <u>1,7</u> <u>7</u> <u>1</u> <u>1</u> <u>6</u> <u>Ret <u>4</u> <u>1,7</u> <u>7</u> <u>1</u> <u>1</u> <u>6</u> <u>Ret <u>4</u> <u>1,7</u> <u>7</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>
Sampled By <u>decreptions</u> Date Sampled <u>Anil 9 /991</u> Examined For <u>TOULOT</u> Sampled From <u>specific</u> Plant <u>differ</u> <u>unst consumption</u> <u>unity</u> <u>Examined</u> For <u>TOULOT</u> Source of Material <u>Leadence crustico Stance</u> <u>unst consumption</u> <u>UII</u> Quantity Represented <u>SOUL CY</u> Sample Type <u>Acception</u> <u>UII</u> Sample Comparison <u>No</u> <u>Cross Reference Number</u> MATERIAL TESTED <u>3/4</u> ° <u>COUSTIED STONE For Concrete</u> <u>MATERIAL TESTED 3/4</u> ° <u>TOUSTIED STONE For Concrete</u> <u>Total Weight 8/40</u> <u>Final Weight 5355</u> <u>Bretent Wear 37.5</u> <u>AASHTO T96</u>
Sampled From <u>StarWeile</u> Plant <u>Miller</u> <u>UNET CEGEWERD UH</u> Source of Material <u>Leadmann Crustee Struct</u> <u>Leadmann HH</u> Quantity Represented <u>SOVALY</u> <u>Sample Type <u>Acce pravec</u> Sample Comparison <u>Adv</u> <u>Crustee Struct</u> <u>Cross Reference Number</u> MATERIAL TESTED <u>3/4</u> <u>CCUSHED STRUE For Concrete</u> <u>MATERIAL TESTED <u>3/4</u> <u>CCUSHED STRUE For Concrete</u> <u>RET <u>HNDV</u>, <u>RUDV</u>, <u>CUMUL</u>, <u>CUMU</u>, <u>CUMUL</u>, <u>CUMUL</u>, <u></u></u></u></u>
Source of Material Leaderson Crusted STRACE Later Leaderson MI Quantity Represented SOLUY Sample Type Acception Material Sample Comparison <u>No</u> Cross Reference Number MATERIAL TESTED <u>3/4</u> COUSTRED STONE For CONCRETE MATERIAL <u>100</u> <u>4/99</u> MATERIAL <u>100</u> <u>100</u> Fineness Modulus Cumul. Total Retained/100 <u>Take = <u>1/4</u> = <u>1/67</u> % Thin & Elongated Pieces Total Weight <u>8/40</u> <u>Fractures = <u>840</u> = <u>100</u> % Fractured Faces Total Weight <u>5355</u> <u>Percent Wear <u>37.9</u> AASHTO T96</u></u></u>
Sample Comparison <u>Mo</u> Sample Comparison <u>Mo</u> MATERIAL TESTED <u>3/4</u> <u>COUSTIED STOUE For Counter</u> <u>SIEVE</u> <u>WEIGHT</u> <u>SRETAINED</u> <u>Spassing</u> <u>SIEVE</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>Spassing</u> <u>SIEVE</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>Spassing</u> <u>SIEVE</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>Spassing</u> <u>SIEVE</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>SPASSING</u> <u>SRETAINED</u> <u>SPASSING</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>SRETAINED</u> <u>SRETAINES</u> <u>SR</u>
MATERIAL TESTED $3/4^{\circ}$ (COSHED STONE For CONCRETE MATERIAL TESTED $3/4^{\circ}$ (COSHED STONE For CONCRETE RET $\frac{1}{100^{\circ}}$ $\frac{1}{100^{\circ}$
MATERIAL TESTED 34° COUSTED STONE For CONCRETE SIZE WEIGHT SRETAINED SPASSING CUMUL CUMUL CUMUL CUMUL CUMUL RET $\frac{1}{100}$ $\frac{1000}{100}$ $\frac{1000}$
SHEVE WEIGHT S RETAINED S PASSING CUMUL RET RET RET RET RET RET
SIZE INDIV. INDIV. CUMUL. CUMUL. RET $\frac{1}{2}$ $\frac{1}{2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{34}{\text{Ret}} = \frac{34}{2} + \frac{94}{2} + \frac{99}{4} + 99$
$\frac{y_{2}}{ReT} = \frac{10.5}{44} = \frac{44}{55}$ $\frac{36^{2}}{RET} = \frac{10.5}{44} = \frac{10.5}{44} = \frac{100}{44}$ $\frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{46} = \frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{100} = \frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{100} = \frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{100} = \frac{100}{100} = \frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{100} = \frac{100}{100} = \frac{100}{100} = \frac{100}{100}$ $\frac{100}{ReT} = \frac{100}{100} =$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NET Image: Constraint of the second sec
RET D.9 Z O PAN D.9 Z O TOTAL $\frac{46.4}{10.0}$ 100 O Fineness Modulus Cumul, Total Retained/100 O O Organic Impurities: Color O O Total Weight $\frac{840}{840}$ = 1.67 % Thin & Elongated Pieces Total Weight $\frac{840}{840}$ = 100 % Fractured Faces Total Weight $\frac{640}{840}$ Grading $\frac{32.9}{100}$ AASHTO T96
FAN TOTAL 46.4 100 Fineness Modulus Cumul. Total Retained/100 Organic Impurities: Color T&E = 14 = 1.67 % Thin & Elongated Pieces Total Weight 840 Fractures = 840 = 100 % Fractured Faces Total Weight 840 Fractures = 840 = 100 % Fractured Faces Total Weight 840 Fractures = 840 = 100 % Fractured Faces Total Weight 840 Original Weight 5000 Grading B Percent Wear 37.4 AASHTO T96
Fineness Modulus Cumul. Total Retained/100 Organic Impurities: Color $\frac{T\&E}{Total Weight} = \frac{1.67}{840} \% \text{ Thin & Elongated Pieces}$ $\frac{T\&E}{Total Weight} = \frac{840}{840} = \frac{100}{700} \% \text{ Fractured Faces}$ $\frac{Fractures}{Total Weight} = \frac{840}{840} = \frac{100}{700} \% \text{ Fractured Faces}$ Original Weight $\frac{5000}{5353} \text{ Grading} = \frac{37.5}{100} \text{ AASHTO T96}$
Theress modulus Cumul. Total Retained/100 Organic Impurities: Color $ \frac{T\&E}{Total Weight} = \frac{144}{840} = \frac{1.67}{70} \text{ \% Thin \& Elongated Pieces} $ Total Weight $ Fractures = \frac{840}{840} = \frac{100}{70} \text{ \% Fractured Faces} $ Total Weight $ Original Weight = \frac{5000}{5355} \text{ Grading } \frac{B}{Percent Wear} = \frac{37.51}{37.51} \text{ AASHTO T96} $
Organic Impurities: Color $\frac{T\&E}{Total Weight} = \frac{167}{840} \% \text{ Thin \& Elongated Pieces}$ $\frac{Fractures}{Fractures} = \frac{640}{840} = \frac{100}{700} \% \text{ Fractured Faces}$ $\frac{Fractures}{Total Weight} = \frac{5000}{840} \text{ Grading} = \frac{2}{37.9} \text{ AASHTO T96}$
$\frac{T\&E}{Total Weight} = \frac{14}{840} = \frac{167}{9} \% \text{ Thin \& Elongated Pieces}$ $\frac{TWE}{Total Weight} = \frac{100}{840} \% \text{ Fractured Faces}$ $\frac{TWE}{Total Weight} = \frac{100}{840} \% \text{ Fractured Faces}$ $\frac{TWE}{Final Weight} = \frac{5000}{3353} \text{ Grading} = \frac{32.9}{100} \text{ AASHTO T96}$
Total Weight 840 100 $\%$ Fractured FacesTotal Weight 840 $= 100$ $\%$ Fractured FacesTotal Weight 840 $= 100$ $\%$ Fractured FacesOriginal Weight 5000 Grading B Final Weight 5353 Percent Wear 32.4
$\frac{\text{Fractures}}{\text{Total Weight}} = \frac{640}{840} = 100 \% \text{ Fractured Faces}$ $\frac{\text{Original Weight}}{\text{Sight}} = \frac{5000}{3353} \% \text{ Grading} = \frac{32.9}{100} \text{ AASHTO T96}$
Total WeightE40Original Weight5000Final Weight5353GradingPercent Wear32.9AASHTO T96
Original Weight 5000 Grading B Final Weight 3353 Percent Wear 32.1 AASHTO T96
Final Weight 3353 Percent Wear 32.1 AASHTO T96
(\checkmark) Test results are in compliance with specifications.
() Test results are outside specifications.
Comments:
that That
Date Completed April 6 199 Date 25 John H. Weaver, P.E. 01/0/

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

STODDARD weaver CF

Labora	atory Number	6910	0063		Pay Item	501.25		
Project	t Name HARTFOR	2D		Pro	ject Number	BR7 1444/10)		
Sample	Sampled By Acoustrous ICHS Date Sampled Arel 9 1991 Examined For 7/14 01							
Sample	ed From STOCK	PILE	· Pl	ant mill	1111			
Source	Source of Material LeBanery Crushen Strate West Lebanos							
Quanti	ty Represented	50 1/2	Sample T	ype Au	PATAKE			
Sample	Comparison	Va		Cross	Reference Nu	imber		
	MATERIAL TE	sted <u>Fine</u>	Aggre	gete				
	SIEVE	WEIGHT	% RE	TAINED	% PASSING			
	SIZE	INDIV.	IND'V.	CUMUL.	CUMUL.			
	RET							
	3/8	-	-	-		T		
	4	-	-	-	100			
	RET -	86	11	11		t		
	RET	1/1/1	19	20	20	+		
	RET	1721	22	50	10			
	RET 50	107	24	56	70			
	RET	182	10	16	64			
	RET 100	1.37	10	79	6			
	PAN	-4.5	6	100		-		
	TOTAL	75 1 1	100					
	Fineness Modu	lus						
	Cumul. 7	fotal Retained	1/100	2.63				
	Organic Impuri	ties: Color _	<1	_	-			
	T&E ==	-		% Thin & 1	Elongated Pie	eces		
	Total Weight							
	Fractures =		- 9	% Fracture	d Faces			
	Total Weight							
	Original Weight		G	rading				
	Final Weight		- Pe	ercent Wear		AASHTO T96		
	. –							
(1)	Test results are in	a compliance	with speci	ifications.				
() :	Test results are of	utside specific	cations.					
Commen	ts:							
	····							
		··· ·						
	110	11-			1.0.	Tih.		
Tested B	y land	a 1001		Data 2	a By John	H. Weaver, P.E. Initials		
Date Con	apreney Apal	7,1991		Date 2	0			

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

	C910044	13			
Laboratory Number	401001	NO I		Pay Item	501.
Project Name WORK	CPIAN		Pro	ject Number	91-C-6
Sampled By ALLEH	100	Date Sa	mpled 03	12.191	Examined For 704.01
Source of Material	KPILE	P	ant PER	SONTS (ONCRETE, COLUMBIA NH
Quantity Represented	OLOMISIA	Sample 7	DY GRA	IVEL CO	
Sample Comparison	NO	Sumple 1	Cross I	Reference Nu	umber
MATERIAL TE	STED FIL	IE AL	62ECA	TE FOR	(OLLRETE
SIEVE	WEIGHT	% RE	TAINED	% PASSING	
SIZE	INDIV.	IND'V.	CUMUL.	CUMUL.	+
RET			2		+
RET 3/8					
4				100	
RET	527	8	8	91	T
RET	120.0	21	20	-11	+
RET 16	137.0	20	67		+
RET 20	183.2	68	57	45	+
RET 50	176.6	27	84	10	
RET 100	67.8	10	99	le	
	39.5	6	100	0	
PAN	Laco.10	100		18	Ť
IUIAL				Less.	±
Fineness Mod	ulus Total Retaine	d/100	777		
Cumur,	Total Retaile	u/100	6.14		
Organic Impur	rities: Color	1	_		
T&E =		=	% Thin &	Elongated P	ieces
Total Weight			•		
Fractures :	-		% Fracture	d Faces	
Total Weight					
Oniginal Word			mading		
Final Weight	it	- 1	Percent Wea	r	AASHTO T98
r mur Weight		_ `		·	
(/) Test results are	in compliance	with spe	cifications.		
() Test results and	outside specif	ications			
() rest results are	outside spech	ications.			
Comments:				1	
				1	
Λ		~	1.	Th	leaver +11.1
Tested By	of Vol	Va	Review	ed By C. C.	Benda, P.E. JHW
Date Completed	3/28/91	1	Date	7/12	/91 Initials
	,		27	/	1 410

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS AND RESEARCH DIVISION

Tabanatan Marina	G9100444	1		_	
Laboratory Number	11 11 1.1			Pay Item	501
Sampled Br All	RE PIAN	Data Cam	Proj	ject Number	91-6-6
Sampled By ALLEL	- MC BEAL	Date Sam	plea 03	12/91	Examined For 104.02
Sampled From 5100	KPILE_	Pla	nt PER	50L15 (OLICETE COLOMBIA
Quantity Danmagantad	OLOMBIA	StG			(10)
Sample Comparison		sample Ty	pe FRE	LININ	ARY
Sample Comparison	NO		Cross r	tererence in	
MATERIAL T	ested <u>3/4</u> "	CRUS	HED G	RAVEL	FOR CONCRETE
SIEVE	WEIGHT	% RET	AINED	% PASSING	
SIZE	INDIV.	INDIV.	CUMUL.	CUMUL.	
RET					-
RET					
111					
RET		· · · · · · · · · · · · · · · · · · ·		1000	
RET 2/4			,	100	
1/2	2880	28		72	1
RET 310	Anna	10	•	37	-
RET	7000	40		JE	+
RET 4	LOM	28		4	
8	146	2		2	
RET	201-	2	-		-
PAN	inter	6			-
TOTAL	10117	100			
Fineness Moo Cumul	dulus . Total Retained			_	
Organic Impu	rities: Color		_		
T&E	= 18 =	- 4.3	% Thin &	Elongated P	lieces
Total Weight	422	00.			
Fractures	= <u>367</u> =	81.0	% Fracture	ed Faces	
Total Weight	422				
Original Weig Final Weight	ght <u>5077</u>	- G	rading ercent Wea	3" r 23.19	AASHTO T96
() Test results are	e in compliance	with spec	ifications.		
() Test results are	e outside specifi	cations.			
Comments:					
· · · · · · · · · · · · · · · · · · ·					
Tested By Date Completed	ph A 1/1 03/28/91	Velly	Review Date 28	ed By C.C.	Benda, P.E JAW Initials

AGENCY OF TRANSPORTATION

OFFICE MEMORANDUM

TO: John Weaver, Structural Concrete Engineer

FROM: Alan J. McBean, Chief Geologist

DATE: August 19, 1991

SUBJECT: Petrographic Analyses of Coarse and Fine Aggregates for Structural Concrete, Columbia Sand and Gravel, Colebrook, New Hampshire

The evaluation of aggregate from Columbia Sand and Gravel is based on a field visit on March 12, 1991 and a laboratory analysis completed on August 13, 1991.

Samples were taken from existing stockpiles at Columbia's plant in Colebrook, N.H. The stockpiles were generated to supply Persons Concrete with aggregates for structural concrete. Material was excavated from the stockpile, well blended with a loader and then sampled at several different points to assure a random and representative mixture of aggregate. The petrographic analyses (Tables 1 and 2) were done with a 10-70x stereozoom binocular microscope. The physical and chemical condition, lithologic variation and coatings of the aggregate were noted.

The Columbia pit in Colebrook is a well stratified, bouldery gravel. It appears to be either an ice contract kame or kame moraine deposit. The material is processed through a primary jaw crusher and then enters a cone crusher and wash plant. The products are well fractured and reasonably free of weak particles.

Tables 1 and 2 indicate the gravel is composed of a variety of rock types which appear to be derived from surrounding bedrock lithologies. Included are micaceous quartzite, granitic rock types, phyllite, porphyritic volcanics of felsic composition (felsite), siliceous limestone, gneiss and schist. Individual minerals which these rocks are composed of appear in the finer grain sizes. These include quartz, biotite, feldspar and pyroxene.

Table 1 indicates the lithographic variation seen in the coarse aggregate. The percent of phyllite increases with a decrease in grain size while both quartzite and felsite decrease. No trends are present for granite or quartz.

Table 2 indicates the distribution of various minerals and lithologies in the fine aggregate samples. As previously stated, individual minerals are most abundant in the fine sizes and appear to be generated by the disaggregation of the rock types present. Granite and phyllite fragments decrease in abundance as grain size decreases and the percent of quartz present increases in the finer sizes.

Page 2

Most of the rock types and minerals present are characterized by equant particle shape. The phyllite tends to be oblong and the mica in the fine aggregate is platy. The material is subround to subangular. The noncrushed material increases in angularity with a decrease in grain size. Surface roughness varies with mineralogy and number of fractured faces. The only material which could provide structurally weak faces is the mica. This mineral is confined to the smallest sized particles and does not represent a significant proportion of the overall product.

Physical strength of all rock types appears good. There is no friable material present.

Chemically the aggregate appears moderately stable. Pyrite and biotite are the least stable minerals present but in general are fresh or only slightly weathered in the material examined. The degree of weathering of other rock types is slight or nonexistent.

Overall this material should make an excellent concrete aggregate. It is not anticipated that any adverse reactions with Portland cement will occur.

AJM:sls

cc: RFC/Lab AJM File Read File CF

Columbia Sand and Gravel Coarse Aggregate For Structural Concrete

% Mineral/Lithology Retained

Mineral/Lithology	1/2	3/8	<u>No.4</u>	<u>No.8</u>
Granite	28.2	31.4	14.7	29.6
Quartzite	57.3	44.5	44.1	34.6
Phyllite	3.6	14.7	23.5	30.3
Felsite	4.5	3.7	6.7	1.0
Quartz	6.4	5.8	10.9	4.6

Columbia Sand and Gravel Fine Aggregate For Structural Concrete

% Mineral/Lithology Retained

Mineral/Lithology	NO.4	<u>No.8</u>	<u>No.16</u>	<u>No.30</u>	<u>No.50</u>	<u>No.100</u>
Granite	16.5	18.1	6.5	5.0	0.5	
Quartzite	61.1	45.0	44.0	42.1	60.8	28.5
Phyllite	13.3	29.5	22.0	13.5	4.0	3.6
Felsite	1.8	0.6	0.3			
Quartz	5.6	4.0	15.5	18.0	19.1	44.0
Siliceous Limestone	1.8	2.3	0.3			
Gneiss		0.6				
Schist			11.1	16.2	5.6	
Mica			0.3	3.7	8.0	21.2
Feldspar				1.5	1.5	2.5
Pyroxene					0.5	0.2

·			and the second second second
LABRPT	Vermont Agency of Tran Materials and Researc	heportation Ch Division	Distribution Central Files J. WEAVER J. WEAVER
	Report on Concrete	Cylinders	
Lab No. CONVICT	Preliminary Sa	ample	
LAD NO: C91WPU1		Poport Datas	07/10/01
Project WORK DI MI OT	0.6	Report Date:	07719791
Project: WORK PLAN 91-	-C-6	Compled Dur	
Pay Itom: Concrete 01	BAR B 501 25	Sampled By:	
Pay Item: Concrete, Cl	ass B 501.25	Date Sampled.	04/22/91
Material Name/Type: Co	norete Class B 501,034	babe bampred.	04/22/01
Haber far Hame, type: oc		Sampled From:	LAB MIXER
Resident: J. WEAVER			
		Quantity Rep:	1.8 cf
Submitted By: J. KELLY	LFP		
		Field Test By:	CONCRETE DIV.
Material Source: MATER	IALS+RESEARCH LAB		
		Tested By:	CONCRETE DIV.
Location Used: PERFORM	ANCE IN CONCRETE EVALUA	TION Y Def No.	
		X-RET NO:	CS :
Eine Agg : COLUMBIA	S&G	Total Ago	Dry Wat . 2986
Cement Brand NORTHEAS	T OUEBEC CA	Type II	ibs: 611
Comerce Brand. Northers	QUEBEC CA		2001 011
A/E Admix: DARAVAIR		Dosage: 3	oz/cy
Admixture: WRDA / HYCO		Dosage: 3	oz/cwt
Admixture:		Dosage:	

Comments:

			Specs				Indicates if		
Test	Test			in	Max		Outside	of Specs	
Unit Wgt of Fresh Concrete	,pcf 1	43.9	1			1			
Air Content, Percent	1	5.9	1	4.	6				
Slump, Inches	1	3.	1	2.	4				
Total Water, Gal/cy	1	31.3	1		35.7	5			
W/C Ratio	0	.428	1		0.4	9			
Concrete Temperature, Deg I	F.	76	1	50	8	0			
Ambient Temperature, Deg F	• •		1	10	8	5			
Specm. Cyl Unit Date	Date	Des	Age	Cure	Brk	Avg	28 Day	Indic. if	
No. Wgt pcf Received I	Broken	Age	Brk	Туре	PSI	PSI	Spec	Out. Specs	
PC-B1 1	04/29/91	7	7	S	3477	3454	3500		
PC-B1 2	04/29/91	7	7	S	3431	3454	3500		
PC-B1 3	05/06/91	14	14	S	4234	4117	3500		
PC-B1 4	05/06/91	14	14	S	4000	4117	3500		
PC-B1 5 (05/20/91	28	28	S	4613	4645	3500		
PC-B1 6	05/20/91	28	28	S	4676	4645	3500		

Remarks: Results of tests performed are in compliance with Specifications. Comments:

Reviewed By: R. J. O'Brien, Testing Lab Supervisor For: R. F. Cauley, Materials and Research Engineer 33

الجارية متحصرت والمتحمد سوالما مراجا المراجع والمراجع

LABRPT	Vermont Agency of Materials and Res	Transportation Distribution earch Division Central Files J. WEAVER J. WEAVER					
	Report on Concr Preliminar	ete Cylinders v Sample					
Lab No: C91WP02							
Project: WORK PLAN 91-	C-6	Report Date: 07/19/91					
Pay Item: Concrete, Cla	ass B 501.25	Sampred By.					
Material Name/Type: Co	ncrete Class B 501.	Date Sampled: 04/22/91 03A					
Resident: J. WEAVER		Sampled From: LAB MIXER					
Submitted By: J. KELLY	LFP	Quantity Rep: 1.8 cf					
Field Test By: CONCRETE DIV.							
Tested By: CONCRETE DIV.							
Location Used: PERFORM	ANCE IN CONCRETE EV.	ALUATION X-Ref No: CS:					
Coarse Agg : COLUMBIA Fine Agg : COLUMBIA Cement Brand: NORTHEAS	S&G S&G T QUEBEC CA	Total Agg. Dry Wgt: 2986 Type: II Lbs: 611					
A/E Admix: DARAVAIR Admixture: WRDA / HYCO Admixture:		Dosage: 2.5 oz/cy Dosage: 3 oz/cwt Dosage:					
Comments:							
		Space Indicatos if					
Test		Min Max Outside of Specs					
Unit Wgt of Fresh Conce Air Content, Percent Slump, Inches Total Water, Gal/cy W/C Ratio Concrete Temperature, I Ambient Temperature, De	rete,pcf 144.2 5.2 2. 31.2 0.426 Deg F. 72 eg F.	4. 6. 2. 4. 35.75 0.49 50 80 10 85					
Specm. Cyl Unit Date No. Wgt pcf Receive	Date Des Ag ad Broken Age B	ge Cure Brk Avg 28 Day Indic. if rk Type PSI PSI Spec Out. Specs					
PC-B2 1 PC-B2 2 PC-B2 3 PC-B2 4 PC-B2 5 PC-B2 6	04/29/91 7 04/29/91 7 05/06/91 14 05/06/91 14 05/20/91 28 05/20/91 28	7 S 3761 3712 3500 7 S 3663 3712 3500 14 S 4325 4410 3500 14 S 4495 4410 3500 14 S 4495 4410 3500 28 S 4860 4839 3500 28 S 4818 4839 3500					

Remarks: Results of tests performed are in compliance with Specifications. Comments:

LABREI Vermont Agency of Transportation Distribution Materials and Research Division Central Files J. WEAVER J. WEAVER Report on Concrete Cylinders Preliminary Sample Lab No: C91WP03 Report Date: 07/19/91 Project: WORK PLAN 91-C-6 Sampled By: Pay Item: Concrete, Class B 501.25 Date Sampled: 04/22/91 Material Name/Type: Concrete Class B 501.03A Sampled From: LAB MIXER Resident: J. WEAVER Quantity Rep: 1.8 cf Submitted By: J. KELLY LFP Field Test By: CONCRETE DIV. Material Source: MATERIALS+RESEARCH LAB Tested By: CONCRETE DIV. Location Used: PERFORMANCE IN CONCRETE EVALUATION X-Ref No: CS: Coarse Agg : LEBANON CRUSHED STON WEST LEBANON NH Fine Agg : LEBANON CRUSHED STON WEST LEBANON NH Total Agg. Dry Wgt: 3127 Cement Brand: NORTHEAST QUEBEC CA Type: II Lbs: 611 A/E Admix: DARAVAIR Dosage: 3.5 oz/cy Admixture: WRDA / HYCOL Dosage: 3 oz/cwt Admixture: Dosage:

Comments:

		Spec	CS	Indicates if		
Test		Min	Max	Outside of Specs		
Unit Wgt of Fresh Concrete,pcf	148.4	!	:			
Air Content, Percent	5.7	4.	6.			
Slump, Inches	3.	2.	4.			
Total Water, Gal/cy	31.56		35.75			
W/C Ratio	0.431		0.49			
Concrete Temperature, Deg F.	72	50	80			
Ambient Temperature, Deg F.	1	10	85			
Specm. Cyl Unit Date Date	Des	Age Cure	Brk Avg	28 Day Indic. if		
Ma Mak web Deserved Dustra		Durle Trees	DOT DOT	0 0		

NO.	wgt рст	Received.	Broken	Age	вгк	type	PSI	PSI	Spec	out.	specs
R-B1	1		04/29/91	7	7	S	3396	3691	3500		
R-B1	2		04/29/91	7	7	S	3986	3691	3500		
R-B1	3		05/06/91	14	14	S	3986	3976	3500		
R-B1	4		05/06/91	14	14	S	3965	3976	3500		
R-B1	5		05/20/91	28	28	S	4535	4535	3500		

Remarks: Results of tests performed are in compliance with Specifications. Comments:

Distribution LABRPT Vermont Agency of Transportation Materials and Research Division Central Files J. WEAVER J. WEAVER Report on Concrete Cylinders Preliminary Sample Lab No: C91WP04 Report Date: 07/19/91 Project: WORK PLAN 91-C-6 Sampled By: Pay Item: Concrete, Class B 501.25 Date Sampled: 04/22/91 Material Name/Type: Concrete Class B 501.03A Sampled From: LAB MIXER Resident: J. WEAVER Quantity Rep: 1.8 cf Submitted By: J. KELLY LFP Field Test By: CONCRETE DIV. Material Source: MATERIALS+RESEARCH LAB Tested By: CONCRETE DIV. Location Used: PERFORMANCE IN CONCRETE EVALUATION X-Ref No: CS: Coarse Agg : LEBANON CRUSHED STON WEST LEBANON NH Fine Agg : LEBANON CRUSHED STON WEST LEBANON NH Total Agg. Dry Wgt: 3127 Cement Brand: NORTHEAST QUEBEC CA Type: II Lbs: 611 A/E Admix: DARAVAIR Dosage: 4 oz/cy Admixture: WRDA / HYCOL Dosage: 3 oz/cwt Admixture: Dosage:

Comments:

			Specs				Indicat	es if
Test			м	in	Max	:	Outside	of Specs
Unit Wgt of Fresh Concret	e,pcf ;	148.6	1			!		
Air Content, Percent		5.8	1	4.	6			
Slump, Inches		2.5	i –	2.	4			
Total Water, Gal/cy	- i	31.41	1		35.7	5		
W/C Ratio		0.429	1		0.4	9		
Concrete Temperature, Deg	F.	72	1	50	8	0		
Ambient Temperature, Deg	F.		1	10	8	5		
Specm. Cyl Unit Date	Date	Des	Age	Cure	Brk	Avg	28 Day	Indic. if
No. Wgt pcf Received	Broken	Age	Brk	Туре	PSI	PSI	Spec	Out. Specs
	04/00/0			 C	2606	2620	2500	

11 02		04/25/51	,	1	0	2000	0020	3300	
R-B2	2	04/29/91	7	7	S	3649	3628	3500	
R-B2	3	05/06/91	14	14	S	4155	4175	3500	
R-B2	4	05/06/91	14	14	S	4195	4175	3500	
R-B2	5	05/20/91	28	28	S	4581	4551	3500	
R-B2	6	05/20/91	28	28	S	4521	4551	3500	

Remarks: Results of tests performed are in compliance with Specifications. Comments:

LABRPT	Vermont Agency of Tran Materials and Researc	nsportation ch Division	Distribution Central Files J. WEAVER J. WEAVER
	Report on Concrete	Cylinders	
Lab No: C91WP05	Frei minary Sc		
		Report Date:	07/19/91
Project: WORK PLAN	91-C-6	Sampled By:	
Pay Item: Concrete	, Class A 501.22	Data Campled.	04/00/04
Matorial Name/Type	· Concrete Class & 501 034	Date Sampled:	04/23/91
Mater fai Malley Type	. concrete crass A sorrosa	Sampled From:	LAB MIXER
Resident: J. WEAVER	२		
		Quantity Rep:	1.8 cf
Submitted By: J. K	ELLY LFP	Field Test Due	OONODETE DIV
Matarial Courses M	TEDTAL STRESEADON 1 AD	Field lest By:	CONCRETE DIV.
Material Source. M	ATERIALSTRESEARCH LAB	Tested By:	CONCRETE DIV.
Location Used: PERM	FORMANCE IN CONCRETE EVALUA	TION	
		X-Ref No:	CS:
Coarse Agg : COLUN	MBIA S&G	T	Dury Mathematica
Fine Agg : COLUN	MBIA S&G	Type: IT	. Dry Wgt: 2868
Cement Brand: NORT	TEAST QUEBEC CA	Type. II	LDS. 000
A/E Admix: DARAVAIR	۲	Dosage: 5	.5 oz/cy
Admixture: WRDA / H	HYCOL	Dosage: 3	oz/cwt
Admixture:		Dosage:	

Comments:

			Spe	cs		Indicates if	
Test			in	Max		Outside	of Specs
Unit Wgt of Fresh Concrete,pcf	145.	;			1		
Air Content, Percent	5.7	1	5.	7			
Slump, Inches	2.75	1	2.	4			
Total Water, Gal/cy	31.56	1		35.	1		
W/C Ratio	0.399	1		0.4	4		
Concrete Temperature, Deg F.	70	1	50	8	0		
Ambient Temperature, Deg F.		1	10	8	5		
Specm. Cyl Unit Date Date	Des	Age	Cure	Brk	Avg	28 Day	Indic. if
No. Wgt pcf Received Broker	n Age	Brk	Туре	PSI	PSI	Spec	Out. Specs
PA-2 1 04/30/	/91 7	7	s	3940	3979	4000	
PA-2 2 04/30/	91 7	7	S	4018	3979	4000	
PA-2 3 05/07/	91 14	14	S	4393	4474	4000	
PA-2 4 05/07/	91 14	14	S	4555	4474	4000	
PA-2 5 05/21/	91 28	28	S	4983	5026	4000	
PA-2 6 05/21/	91 28	28	S	5068	5026	4000	

Remarks: Results of tests performed are in compliance with Specifications. Comments:

LABRPT	Vermont Agency of Tran Materials and Researc	Distribution Central Files J. WEAVER J. WEAVER	
	Report on Concrete Preliminary Sa	Cylinders ample	
Lab No: C91WP06			
Breisste WORK DIAN	1-0-6	Report Date: (07/19/91
Project: WORK PLAN :	-C-8	Sampled By.	
Pay Item: Concrete.	Class A 501.22	bumprou by.	
,,		Date Sampled: C	04/23/91
Material Name/Type:	Concrete Class A 501.03A		
		Sampled From: L	AB MIXER
Resident: J. WEAVER		Ourset days Dame in	00
Submitted By I KEI	IVIED	Quantity Rep: 1	.8 CT
Subilituded by: J. Ker	LI LFF	Field Test By C	ONCRETE DIV
Material Source: MAT	ERIALS+RESEARCH LAB		CHOREFE DIT.
		Tested By: C	CONCRETE DIV.
Location Used: PERFC	RMANCE IN CONCRETE EVALUA	TION	
		X-Ref No:	CS:
Coarse Agg : COLUME	SIA S&G	Tatal Ass	Day Mate 0000
Fine Agg : COLUME	SIA S&G	TVDO: IT	Dry Wgt: 2868
cellent Brand. Northe	AST QUEBEC CA	Type. II	LDS. 000
A/E Admix: DARAVAIR	· · ·	Dosage: 5.	5 oz/cy
Admixture: WRDA / HY	COL	Dosage: 3	oz/cwt
Admixture:		Dosage:	

Comments:

..

				Spe	cs		Indicates if	
lest			M	in 	max			or specs
Unit Wgt of Fresh Concrete	e,pcf 1	44.7	1			1		
Air Content, Percent	1	6.	1	5.	7			
Slump, Inches	1	2.75	1	2.	4			
Total Water, Gal/cy	1 3	1.32	Í.		35.	1		
W/C Ratio	1 0	.396	1		0.4	4		
Concrete Temperature, Deg	F.	70	1	50	8	0		
Ambient Temperature, Deg F	⁼. ¦		1	10	8	5		
Specm. Cyl Unit Date No	Date Broken	Des Age	Age Brk	Cure Type	Brk PSI	Avg PSI	28 Day Spec	Indic. if Out. Specs
PA-1 1	04/30/91	7	7	S	3657	3692	4000	
PA-1 2	04/30/91	7	7	S	3727	3692	4000	
PA-1 3	05/07/91	14	14	S	4386	4384	4000	
PA-1 4	05/07/91	14	14	S	4382	4384	4000	
PA-1 5	05/21/91	28	28	S	4789	4800	4000	
PA-1 6	05/21/91	28	28	S	4810	4800	4000	

Remarks: Results of tests performed are in compliance with Specifications. Comments:

Vermont Agency of Transportation Distribution LABRPT Materials and Research Division Central Files J. WEAVER J. WEAVER Report on Concrete Cylinders Preliminary Sample Lab No: C91WP07 Report Date: 07/19/91 Project: WORK PLAN 91-C-6 Sampled By: Pay Item: Concrete, Class A 501.22 Date Sampled: 04/22/91 Material Name/Type: Concrete Class A 501.03A Sampled From: LAB MIXER Resident: J. WEAVER Quantity Rep: 1.8 cf Submitted By: J. KELLY LFP Field Test By: CONCRETE DIV. Material Source: MATERIALS+RESEARCH LAB Tested By: CONCRETE DIV. Location Used: PERFORMANCE IN CONCRETE EVALUATION X-Ref No: CS: Coarse Agg : LEBANON CRUSHED STON WEST LEBANON NH Fine Agg : LEBANON CRUSHED STON WEST LEBANON NH Total Agg. Dry Wgt: 3007 Cement Brand: NORTHEAST QUEBEC CA Type: II Lbs: 660 A/E Admix: DARAVAIR Dosage: 5 oz/cy Dosage: 3 oz/cwt Admixture: WRDA / HYCOL Dosage: Admixture:

Comments:

		Specs				Indicates if		
Test		M	in	Мах		Outside	of Specs	
Unit Wgt of Fresh Concrete,pcf ;	147.1	1			1			
Air Content, Percent	5.9	1	5.	7				
Slump, Inches	2.5	1	2.	4				
Total Water, Gal/cy	31.4	1		35.	1			
W/C Ratio	0.397	1		0.4	4 ¦			
Concrete Temperature, Deg F.	72	1	50	8	0			
Ambient Temperature, Deg F.		1	10	8	5 ¦			
Specm. Cyl Unit Date Date	Des	Age	Cure	Brk	Avg	28 Day	Indic. if	
No. Wgt pcf Received Broken	Age	Brk	Туре	PSI	PSI	Spec	Out. Specs	
R-A1 1 04/29/	91 7	7	S	3750	3831	4000		
R-A1 2 04/29/	91 7	7	S	3911	3831	4000		
R-A1 3 05/06/	91 14	14	S	4269	4342	4000		
R-A1 4 05/06/	91 14	14	s	4414	4342	4000		
R-A1 5 05/20/	91 28	28	S	4811	4749	4000		
R-A1 6 05/20/	91 28	28	S	4687	4749	4000		

Remarks: Results of tests performed are in compliance with Specifications. Comments:

LABRPT	Vermont Agency of Materials and Re	Transportation search Division	Distribution Central Files J. WEAVER J. WEAVER
	Report on Conc Prelimina	rete Cylinders ry Sample	
Lab No: C91WP08			
		Report Date:	07/19/91
Project: WORK PLAN	91-C-6		
		Sampled By:	
Pay Item: Concrete,	Class A 501.22	Dete Complede	04/00/01
Material Name/Type:	Concrete Class A 501	Date Sampred:	04/23/91
Mater fat Mane/Type.	Concrette trass A Sor	Sampled From:	LAB MIXER
Resident: J. WEAVER		camp rou ri omi	
		Quantity Rep:	1.8 cf
Submitted By: J. KE	LLY LFP		
		Field Test By:	CONCRETE DIV.
Material Source: MA	FERIALS+RESEARCH LAB	Tested Due	CONODETE DIV
Location Hoods DERE	DRMANCE IN CONCRETE E	Iested By:	CONCRETE DIV.
LOCACION USED. PERFC	DRMANCE IN CONORETE E	X-Ref No.	CS.
Coarse Agg : LEBANG	ON CRUSHED STON WEST	LEBANON NH	
Fine Agg : LEBANG	ON CRUSHED STON WEST	LEBANON NH Total Agg	. Dry Wgt: 3007
Cement Brand: NORTHE	EAST QUEBEC CA	Type: II	Lbs: 660
A/E Admix: DARAVAIR		Dosage: 5	oz/cy
Admixture: WRDA / H)	COL	Dosage: 3	OZ/CWT
Admixture:		Dosage:	

Comments:

.

Test							Specs			Indicates if	
						М	Min Max			Outside of Specs	
Unit Wgt of Fresh Concrete, pcf 149.6						1			;		
Air Content, Percent 5.5						1	5.	7			
Slump, Inches 2					2.5	1 1	2.	4			
Total Water, Gal/cy 30.69					30.69	1		35.	1 1		
W/C Ratio 0.388					0.388	1	0.44				
Concrete Temperature, Deg F					1	50	80				
Ambient Temperature, Deg F.						1	10	85			
Specm.	Cyl	Unit	Date	Date	Des	Age	Cure	Brk	Avg	28 Day	Indic. if
No.	Wgt	pcf	Received	Broken	Age	Brk	Туре	PSI	PSI	Spec	Out. Specs
R-A2 1				04/30/9	1 7	7	S	3876	3800	4000	
R-A2 2				04/30/9	1 7	7	S	3724	3800	4000	
R-A2 3			•	05/07/9	1 14	14	S	4591	4595	4000	
R-A2 4				05/07/9	1 14	14	S	4598	4595	4000	
R-A2 5				05/21/9	1 28	28	S	5125	5063	4000	
R-A2 6				05/21/9	1 28	28	S	5001	5063	4000	

Remarks: Results of tests performed are in compliance with Specifications. Comments:

Reviewed By: R. J. O'Brien, Testing Lab Supervisor For: R. F. Cauley, Materials and Research Engineer TA 565 Rev. 4/79

×.

APPENDIX E Prepared By: R. Holt Date: 03/20/91 Sheet 1 of 1

STATE OF VERMONT AGENCY OF TRANSPORTATION MATERIALS & RESEARCH DIVISION

RESEARCH INVESTIGATION

Work Plan No. 91-C-6

Subject Evaluation of Fine Aggregate and 3/4" Crushed Gravel Coarse Aggregate
Investigation Requested Rue Steven Persons
Investigation Requested By Steven Fersons Date 03/12/91
Date Information Required As soon as possible
Purpose of Investigation To evaluate a fine aggregate and a 3/4" crushed
gravel coarse aggregate from the Columbia Sand & Gravel facility in
Columbia, N.H., proposed for use as structural concrete aggregates.
Proposed Tests or Evaluation Procedure See Vermont Procedure for Evaluating
a New Source of Structural Concrete Aggregate, VT-AOT-MRD 9-82.
1. Performance-in-concrete tests will be performed using two batches each of
Class A & Class B concrete containing the proposed new aggregates and two
batches each of Class A & Class B concrete containing a reference aggregate.
2. Prepare speciments from each batch of concrete to determine resistance to
freezing and thawing
Proposal Discussed With John Weaver Projected Manpower Requirements 25 man-days
Investigation To Be Conducted By Structural Concrete Subdivision
Proposed Starting Date 03/25/91 Estimated Completion Date 05/24/91
Approval/DIsapproval by Materials & Research Engineer N.F. Cauly
Comments by Materials & Research Engineer
Materials & Research Division Agency of Transportation Date Typed: 03/28/91 41