STRENGTH EVALUATION
OF A TYPE IV MORTAR
VENUS MULTI-LEAF ALUMINUM NO. 195

REPORT 82-1
JANUARY 1982

REPORTING ON WORK PLAN 81-C-16

STATE OF VERMONT
AGENCY OF TRANSPORTATION
MATERIALS & RESEARCH DIVISION

T. EVSLIN, SECRETARY OF TRANSPORTATION
S. J. GAGE, P.E., DIRECTOR OF ENGINEERING & CONSTRUCTION
R. F. NICHOLSON, P.E., MATERIALS & RESEARCH ENGINEER
P. A. COVER, STRUCTURAL CONCRETE ENGINEER

Prepared By:
M. B. Morissette
Technician B

Reviewed By:
Date: Feb. 9, 1982
"The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. This report does not constitute a standard, specification, or regulation. Anyone, other than the Agency using this report does so with awareness that the Agency does not guarantee the opinions, findings, or conclusions contained therein."
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Materials</td>
<td>2</td>
</tr>
<tr>
<td>Procedures</td>
<td></td>
</tr>
<tr>
<td>Laboratory.</td>
<td>3</td>
</tr>
<tr>
<td>Field.</td>
<td>4</td>
</tr>
<tr>
<td>Test Results</td>
<td></td>
</tr>
<tr>
<td>Laboratory.</td>
<td>5</td>
</tr>
<tr>
<td>Field.</td>
<td>6</td>
</tr>
<tr>
<td>Summary and Conclusions.</td>
<td>7</td>
</tr>
<tr>
<td>Recommendations.</td>
<td>7</td>
</tr>
<tr>
<td>Appendix A.</td>
<td>8</td>
</tr>
<tr>
<td>Standard Specifications For Highway And Bridge Construction, March, 1976, Subsection 707.04 Mortar, Type IV</td>
<td></td>
</tr>
<tr>
<td>Appendix B.</td>
<td>9-11</td>
</tr>
<tr>
<td>Correspondence (three memos)</td>
<td></td>
</tr>
<tr>
<td>1) Request - W. M. Smith, Structures Engineer to R. F. Nicholson, P.E., Materials &amp; Research Engineer</td>
<td></td>
</tr>
<tr>
<td>2) Response - P. A. Cover, Structural Concrete Engineer to W. M. Smith, Structures Engineer</td>
<td></td>
</tr>
<tr>
<td>3) Response - W. L. Meyer, Technician C to J. L. Talbot, Resident Engineer</td>
<td></td>
</tr>
<tr>
<td>Appendix C.</td>
<td>12</td>
</tr>
<tr>
<td>Work Plan No. 81-C-16</td>
<td></td>
</tr>
</tbody>
</table>
This report documents laboratory and field testing of a Type IV non-shrinking cement mortar. Venus Multi-Leaf Aluminum No. 195 was selected as the aluminum powder admixture, based on its past history of successful use on Vermont Agency of Transportation projects. Mixing procedures outlined in Subsection 707.04 Mortar, Type IV of the Vermont Agency of Transportation Standard Specifications were followed in the laboratory and field mixes. High compressive strengths were exhibited from the laboratory mix and field mixes that were tested.
A request was received from the Structures Division to evaluate the compressive strength of a Type IV mortar. The mortar was to be used under the steel frame leg bearing plates for BR #1 on the Waterford - St. Johnsbury I 93-1(3) C/I project.

The Structural Concrete Subdivision had tested a number of non-shrinking cement mortars with the results presented in the report "NON-SHRINKING CEMENT MORTAR & GROUT EVALUATION REPORT", August 1, 1974, revised December 17, 1976. The tests in that report indicated that Venus Multi-Leaf Aluminum No. 195 was one of the better aluminum powder admixtures. The request to evaluate a Type IV mortar presented an opportunity to gain more information about this admixture.

MATERIALS

SAND:
Fine Aggregate for Concrete (Item 704.01)
Lawrence Sangravco, Guildhall, Vt.

CEMENT:
Type II
Glens Falls Portland Cement Company, Inc.
Glens Falls, N.Y.

ALUMINUM POWDER:
Venus Multi-Leaf Aluminum No. 195
U.S. Bronze Powders, Inc.
Flemington, N.J.
The Type IV mortar was designed and mixed according to Subsection 707.04 Mortar Type IV of the Vermont Agency of Transportation Standard Specifications with two exceptions.

1) Item 704.01, Fine Aggregate For Concrete, was substituted for Item 704.19, Sand For Cement Mortar. Because of the lack of availability of mortar sand in the area, this change was requested by the Resident Engineer. It was felt that a slight loss or workability which could result from substituting Item 704.01 would not affect the intended use of the Type IV mortar.

2) Portland cement was substituted for pozzolan or pumicite as the dispersing agent for the aluminum powder admixture. In past experiences, cement has performed well as the dispersing agent.

The following design was used for the laboratory mix:

- Sand: 94 lbs. (dry)
- Cement: 94 lbs.
- Aluminum Powder: 3 grams
- Net Water: 30.5 lbs. (Plastic Fluidity)

This mix design was calculated to yield approximately 1 1/2 c.f. of mortar.
The mortar was mixed in a 1 1/2 c.f. rotary drum mixer. Immediately following mixing, a unit weight test was performed while twelve 2'' cubes and eight 4''x8'' cylinders were cast. The cube molds were covered with brass plates and the cylinder molds were covered with glass plates. Weights were placed on the plates to keep the mortar restrained.

After twenty four hours the cubes and cylinders were removed from the molds. Three cubes and two cylinders were tested for compressive strength at the age of one day. The remaining cylinders and cubes were cured under standard fog room conditions until tested at the ages of 3, 7, and 28 days.

**FIELD**

The following mix design was recommended for use on the project:

- **Sand**: 94 lbs. (dry)
- **Cement**: 94 lbs.
- **Aluminum Powder**: 3 grams
- **Water/Cement Ratio**: .33 maximum

To insure that the correct mix proportions would be used on the project, three precautionary steps were followed:

1. The mix was designed to use a full bag of cement which eliminated the weighing of cement.

2. The aluminum powder was preweighed, blended one part aluminum powder to fifty parts cement, and placed in individual containers for each batch of mortar.

3. The sand was preweighed and bagged with adjustments made for aggregate moisture.
The mortar was mixed in a rotary drum mixer at the job site. The contractor followed the correct mixing procedure outlined in Subsection 707.04 Mortar Type IV of the Vermont Agency of Transportation Standard Specifications. Water was added as needed to obtain a plastic fluidity.

Six 2" cubes were cast from each of two random mixes. The method used to restrain the field mortar cubes was the same as followed in the laboratory. The cubes were field cured outside of the work area where they would not be disturbed.

After two days the cubes were transported to the Materials and Research Division Laboratory and cured under standard fog room conditions. Cubes from each mix were tested for compressive strength, three each at 7 and 28 days.

**TEST RESULTS**

**LABORATORY**

The unit weight test on the laboratory mix indicated a unit weight of 139.03 lbs/ft³.

The compressive strength test results on the laboratory mix are as shown in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>AGE</th>
<th>SPECIMEN NO.</th>
<th>AVE.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 Day</td>
<td>4039</td>
<td>4218</td>
</tr>
<tr>
<td>3 Day</td>
<td>5332</td>
<td>5391</td>
</tr>
<tr>
<td>7 Day</td>
<td>6187</td>
<td>6068</td>
</tr>
<tr>
<td>28 Day</td>
<td>7003</td>
<td>7381</td>
</tr>
</tbody>
</table>
TABLE 2
COMPRESSIVE STRENGTHS, PSI
2" CUBES

<table>
<thead>
<tr>
<th>AGE</th>
<th>SPECIMEN NO.</th>
<th>AVE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Day</td>
<td>4400</td>
<td>4338</td>
</tr>
<tr>
<td>3 Day</td>
<td>6450</td>
<td>6388</td>
</tr>
<tr>
<td>7 Day</td>
<td>7263</td>
<td>7025</td>
</tr>
<tr>
<td>28 Day</td>
<td>8150</td>
<td>7800</td>
</tr>
</tbody>
</table>

FIELD

The compressive strength test results on the field mixes are shown in Table 3.

TABLE 3
COMPRESSIVE STRENGTHS, PSI
2" CUBES

Field Mix #1

<table>
<thead>
<tr>
<th>AGE</th>
<th>SPECIMEN NO.</th>
<th>AVE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Day</td>
<td>7575</td>
<td>7538</td>
</tr>
<tr>
<td>28 Day</td>
<td>8575</td>
<td>7788</td>
</tr>
</tbody>
</table>

Field Mix #2

<table>
<thead>
<tr>
<th>AGE</th>
<th>SPECIMEN NO.</th>
<th>AVE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Day</td>
<td>8475</td>
<td>8625</td>
</tr>
<tr>
<td>28 Day</td>
<td>9075</td>
<td>9100</td>
</tr>
</tbody>
</table>
SUMMARY AND CONCLUSIONS

1) Venus Multi-Leaf Aluminum No. 195, used as an aluminum powder admixture, provided a high strength Type IV mortar.

2) Compressive Strengths obtained from Laboratory mixes will closely approximate field strengths provided exact mix proportions and mixing procedures are followed in the field. Close monitoring of the field operation is a must for this type of mix.

3) The substituting of Item 704.01, Fine Aggregate for Concrete, for Item 704.19, Sand for Cement Mortar, did not appear to have a negative affect on strength or workability.

4) Portland cement performed well as the dispersing agent for the aluminum powder admixture.

RECOMMENDATIONS

1) The precautions taken to ensure correct mix proportions on this project should be followed in future use of Type IV mortar.

2) Item 704.01, Fine Aggregate for Concrete, can be used to replace Item 704.19, Sand for Cement Mortar, when the latter is not readily available.

3) A change should be made in subsection 707.04, Mortar, Type IV in the Vermont Agency of Transportation Standard Specifications to reflect the use of Portland cement as a replacement for pozzolan or pumicite.
STATE OF VERMONT
AGENCY OF TRANSPORTATION

Standard Specifications for Highway and Bridge Construction

March, 1976

Section 707 - Joint Materials

707.04 MORTAR, TYPE IV. Mortar, Type IV, is generally used when a non-shrinking cement mortar is required.

The mortar shall be composed of 1 part cement and 1 part sand and mixed with sufficient water to form a plastic composition.

To produce a non-shrinking cement mortar, aluminum powder shall be added to the mix and proportioned as follows:

From 2 to 4 grams of the superfine unpolished variety of aluminum powder (about 1 or 2 teaspoons) shall be added for each sack of cement used in the mortar. The exact amount of aluminum powder shall be designated by the Engineer. The dosage per batch of mortar shall be carefully weighed. A number of weighings may be made in the laboratory and doses placed in glass vials for convenient use in the mix. The aluminum powder shall be blended with pozzolan or pumice in the proportion of 1 part aluminum powder to 50 parts pozzolan or pumice by weight. The blend shall be thoroughly mixed with the cement and sand before water is added to the batch, as it has a tendency to float on water. The amount of the blend used shall vary from 4½ ounces per sack of cement for a placing temperature of 70°F. to 7 ounces per sack of cement for a placing temperature of 40°F. After all ingredients are added, the batch shall be mixed for 3 minutes. Batches of mortar shall be placed within 45 minutes after mixing as the action of the aluminum powder becomes very weak after this time and it shall not be remixed or used after it has begun to set.

The cement, sand and water shall meet the following requirements:

(a) Cement. Cement shall conform to the requirements of Portland Cement, subsection 701.01.

(b) Sand. Sand shall conform to the requirements of Sand for Cement Mortar, subsection 704.19.

(c) Water. Water shall conform to the requirements of Water, subsection 745.01.

Upon request, the Department will furnish a list of products or additives that are considered satisfactory to use for a non-shrinking cement mortar in lieu of that specified.

Products not on the Department's approved list, that meet the specifications, shall be certified by a Type A Certification in accordance with Subsection 700.02.
AGENCY OF TRANSPORTATION

TO:        R.F. Nicholson, Materials & Research Engineer
FROM:      W.M. Smith, Structures Engineer
DATE:      June 2, 1981
SUBJECT:   Waterford I 93-1(3) Cont. 1, Br. 1 Type IV Mortar

Type IV Mortar is to be used under the bearing devices on the steel rigid frame. For our information, we would like to know the compressive strength of this mortar.

Would you conduct the necessary tests, according to applicable AASHTO standards, to determine its strength.

It is anticipated the frame will be erected in August 1981.

WMS/kg

c.c. Files
R.S. Haupt
TO: W. M. Smith, P.E., Structures Engineer
FROM: P. A. Cover, P.E., Structural Concrete Engineer via R. F. Nicholson, P.E., Materials & Research Engineer
DATE: July 2, 1981
SUBJECT: Waterford-St. Johnsbury I 93-1 (3) C/1 Br. 1
Type IV Mortar

Testing of a Standard Type IV Mortar with Venus Multi-Leaf Aluminum No. 195 admixture was carried out in August 1974 by the Materials and Research Division and is documented on page 26 of Report No. 74-5. Even though the mixture tested was in a flowable consistency, the data indicates an impressive strength capability. It is my opinion that mortar strengths over 3500 psi could be obtained under field conditions only if all the materials are preweighed, and a maximum w/c ratio of 0.5 is strictly adhered to. Joe Talbot has confirmed that the materials will be preweighed and machine-mixed. We both agreed that it would be a good idea to cast 2x2 cubes at the project site to monitor strength gain. The cube specimens should be cast in a "restrained" condition by clamping a glass or steel plate over the top of the mold. The curing regime should be the same as that used for a field cured specimen.

With respect to preparing the mixture, page 8 of Report 74-5 has some useful information. Also, because it is important to use the good volume change properties of the mixture, I recommend that only as much mortar as can be used in one half hour, should be prepared at any one time.

A copy of Report 74-5 is attached for your information.
TO: J. L. Talbot, R.E. via J. R. Phalen, Construction Engineer
FROM: W. L. Meyer, Technician C via R. F. Nicholson, P.E., Materials & Research Engineer
DATE: August 28, 1981

SUBJECT: Waterford-St. Johnsbury I 93-1 (3) C/1 Mortar, Type IV (Non-shrinking cement mortar)

Following is the mix design for Mortar, Type IV, using aggregate and cement from the Lawrence Sangeravco, St. Johnsbury plant.

Fine Aggregate - Lawrence Sangeravco, Guildhall, Vt. 94 lbs. (dry)

Cement - Type II - Glens Falls Portland Cement Co. Glens Falls, N.Y. 94 lbs.

Aluminum Powder - Venus MultiLeaf Aluminum No. 195 3 grams

Water/Cement Ratio .33 Maximum

The mix design is for a one bag batch and should yield approximately 1 1/2 ft³ of mortar when mixed. Section 707.04 MORTAR, TYPE IV of the Standard Specifications outlines the mixing procedures which must be followed when this material is used in the field.
STATE OF VERMONT
AGENCY OF TRANSPORTATION
MATERIALS & RESEARCH DIVISION

PRODUCT EVALUATION
Work Plan No. 81-C-16

Product Venus Multi-Leaf Aluminum No. 195
Manufacturer U.S. Bronze Powder
Distributor or Representative N/A

Evaluation Requested By W. M. Smith, Structures Eng. Date June 2, 1981
Date Evaluation Required N/A Date Product Information Received N/A
Date and Quantity of Samples Received N/A

Purpose of Evaluation To report the results of laboratory and field tests on Venus
Multi-Leaf Aluminum No. 195 used for a Type IV Non-shrinking cement mortar for Waterford-
St. Johnsbury I 93-1 (3) C/1, on the I 93 over Route 18 bridges. The results will add
to the data included in the report, "Non-Shrinking Cement Mortar & Grout Evaluation

Proposed Tests The Laboratory results will include:
1. Unit Weight 2. Compressive Strength of 2" cubes and 4"x8"
cylinders at 1, 3, 7 and 28 days.

The Field results will include:
1. Compressive strength of 2" cubes at 7 & 28 days

Proposal Discussed With R. Frascoia Projected Manpower Requirements 2 days
Evaluation To Be Conducted By Structural Concrete Subdivision
Proposed Starting Date Sept. 23, 1981 Estimated Completion Date Oct. 7, 1981

Approval/Disapproval by Materials & Research Engineer R. F. Nicholson 9/25/81
Comments by Materials & Research Engineer

Materials & Research Division
Agency of Transportation
Date Typed: Sept. 25, 1981