FIELD PERFORMANCE OF EXPERIMENTAL BRIDGE DECK MEMBRANE SYSTEMS IN VERMONT

By

RONALD I. FRASCOIA RESEARCH SPECIALIST

STATE OF VERMONT AGENCY OF TRANSPORTATION

For Presentation At The

54TH ANNUAL MEETING-NORTHEASTERN STATES MATERIALS ENGINEERS ASSOCIATION

> South Burlington, Vermont October 25, 1978

TABLE OF CONTENTS

	Page
Introduction	1
Field Evaluation Procedure	1
Membrane Performance	3
Summary	5
List of Products Applied	7
Summary of Membrane Performance by Class Based Upon Chemical Analysis of Cores	9
Summary of Membrane Performance by Class After a Specific Number of Years of Service	10
Individual Membrane Performance	11
Membrane Evaluation Summary	20

Field Performance of Experimental Bridge Deck Membrane Systems in Vermont

BY

Ronald I. Frascoia

Introduction

Vermont's membrane evaluation program began in 1971 with the application of two experimental systems on four new bridge decks. From that point to the present, a total of 33 different systems have been field applied on 69 new Portland Cement Concrete bridge decks. The products have included 15 preformed systems; 7 epoxies, 5 hot applied materials, 4 polyurethanes, and 2 tar emulsion systems. Because the membrane systems were considered experimental, the applications were closely monitored and reported under the National Experimental and Evaluation Program #12, Bridge Deck Protective Systems. The information included background data on deck construction, concrete test results, condition of the decks, membrane product data, laboratory test results, observations made during the membrane applications, cost information, preliminary field test results and discussions on the applications. Summaries of each membrane system were concluded with recommendations on further use.

Field Evaluation Procedure

Follow-up field evaluations of the membrane systems began in 1975 on products which were exposed to a minimum of two winters of deicing chemical applications. The investigation that year included 22 bridges which had been waterproofed with 14 different membrane systems. Field testing in 1976, 1977 and 1978 included 37, 34, and 47 structures respectively. Through the present date, field performance results have been obtained on 27 of the 33 experimental systems in

-1-

place.

Field testing the first two years included electrical resistivity readings, electrical half cell potential readings, and the recovery of concrete samples for the determination of chloride content by wet chemical analysis. Comparisons were made between the resistivity readings and the chloride levels detected at specific resistivity test locations. When correlation between the two test methods was found to be less than 60 per cent, resistivity testing was deleted from the evaluation program in the following years.

Steel potential readings obtained at the same grid points as the resistivity tests were all below the 0-.35 volt level considered to be the corrosion threshold. Such readings were in agreement with the core results which indicated chloride levels were insufficient to cause corrosion of the reinforcing steel.

For the past two years (1977-1978), the performance of the various membrane systems has been considered only in relation to the presence or absence of chloride above base levels as determined by chemical analysis of recovered concrete samples. Such samples were taken at points 1. 5 & 15 feet off the curb line. The 1 foot offset was selected because of the potential for leakage at the critical curb line area while the 15' offset establishes membrane performance in the wheel path area which is subject to aggregate puncture under continuous traffic. The 5 foot offset is located in the breakdown lane where satisfactory performance would be expected if the membrane was not damaged during paving or laterial leakage did not occur. In most cases the test areas were located on the low end of the decks where chloride concentrations would be heaviest. Where superelevations resulted in drainage away from the breakdown lane, concrete samples for chemical analysis were obtained from the opposite curb line. The pulverized concrete samples were procured from 0-1 inch and 1-2 inch depths with the aid of a rotary hammer and 3/4 inch carbide tipped twist drill. The overlying bituminous pavement was removed by the same procedure followed by cleaning with a blow out bulb.

-2-

A depth gauge attached to the drill was used to obtain the proper depth. A metal template was used to catch the pulverized sample brough up by the bit. Material remaining in the core hole was removed with a scoopula and blow out bulb. Core holes were patched with a quick-set cement.

A wet chemical analysis was used to determine the total chloride content in the recovered concrete samples. The basic procedure consisted of freeing chloride iron with nitric acid, adding silver nitrate solution, filtering, and titrating with a solution of ammonium thiocyanate.

Membrane Performance

At the present time, field test results have been obtained on 46 of the 69 experimental bridges which were subjected to an average of 3.7 winters of deicing chemical applications in which chloride applications averaged over 30 tons per two lane mile per year. The test results over the past four years which include 27 of the 33 products in use reveal that chloride contamination has occurred in the top inch of concrete at 38 per cent of all locations tested (see summaries on pages 9 and 10). The amount of chloride above the base level averaged 88 ppm or 0.35 pounds of chloride per cubic yard of concrete in the top inch of the contaminated samples. Seven percent of the 359 test locations exhibited chloride levels over one-half pound in the top inch of concrete with the highest reading recorded at 1.8 pounds. Contamination in the second inch of concrete was found on 19 percent of the cores with chloride levals averaging 70 ppm above base levels or 0.28 pounds per cubic yard of concrete. Chloride levels slightly over one-half pound were recorded on 2 percent of the samples. The difficulty of obtaining a satisfactory seal along the curb lines was evidenced by the detection of contamination in 54 percent of the cores taken at the one foot offset. Such cores made up 47 percent of all the contaminated samples while 28 percent were located at the 5 foot offset and the remaining 25 percent were at the 15 foot offset.

-3-

When the effectiveness of the various membranes are considered by general type, the best performance to date has been provided by the hot applied materials which have been exposed to an average of 4.7 winters of deicing salt applications. Contamination has been limited to 24 percent of the samples taken from the top inch of concrete with an average of less than 1/4 pound of chloride found in the contaminated cores. The test results to date show that Uniroyal 6125 and NEA 4000 are two of the more promising hot applied materials available for use. It should be noted that neither product is recommended for superelevated structures or on grades in excess of 3 percent due to the potential for stability problems with the bituminous overlays.

The standard preformed membranes (H.D. Bituthene, Protecto Wrap M400, Royston No. 10) were nearly as effective as the thermoplastic or thermosetting materials following an average exposure of 3.4 winters. Contamination was limited to 24 percent of the samples from the 0-1 inch depth and 8 percent from the second inch with less than 1/3 pound of chloride found in the average contaminated sample. Fifty percent of the contamination was found along the curbilines where it is hoped that more recent installations will be more effective since the specification now requires the use of compatible liquid polyurethane sealants along the membrane perimeter and vertical curb face. Poor performance has been obtained with all three products after five winters exposure. Further testing will be required to determine if such results occurred due to specific conditions or if they are an accurate indicator of the effective life of the three products.

The five vulcanized, cured or cross-linked preformed elastomer systems selected as the most promising membrane materials under Phase I of the NCHRP Project 12-11 have prevented chloride intrusion on 67 percent of the cores after an average of three winters exposure. Leakage detected on three of the five systems may have been due in part to blisters which occurred during and after the installation of the first one inch course of pavement.

-4-

Four polyurethane systems have prevented chloride intrusion on 59 percent of the samples taken after an average of 3.4 winters. At the present time, Duralseal 3100, a 100 percent solids material appears to be the most promising with no leakage detected through four winters exposure.

Epoxy and tar emulsion systems prevented intrusion on 47 and 45 percent of the samples respectively. Chloride levels averaged 1/3 pound with the epoxy products after an average of 3.2 winters. The structures treated with tar emulsion revealed an average of 0.45 pounds chloride in contaminated samples following an average of 4.6 years.

Summary

Vermont's experimental membrane evaluation program currently includes 33 different systems which have been field applied on 69 new bridge decks. Field performance results have been obtained on 27 of the 33 products in use. Such results obtained over the past four years reveal that chloride contamination has occurred at 38 percent of the test areas following an average of 3.7 winters of deicing chemical applications. Contamination above base levels averaged 88 ppm or 0.35 pounds of chloride per cubic yard of concrete in the top inch of contaminated samples. The difficulty of obtaining a satisfactory seal along curb lines was evidenced by the detection of contamination in 54 percent of all cores taken at the one foot offset.

The hot applied materials have provided the best performance to date with contamination limited to less than 1/4 pound of chloride in 24 percent of the samples after an average of 4.7 winters. The standard preformed membranes were nearly as effective with an average of less than 1/3 pound of chloride found in the top inch of 24 percent of all samples. Fair performance has been obtained with the five preformed elastometer systems selected as most promising under Phase I of NCHRP Project 12-11.

The polyurethane systems have prevented chloride intrusion at 59 percent of

-5-

the test locations with one of the four products 100 percent effective through four winters of exposure. Epoxy and tar emulsion systems were generally not satisfactory with contamination found at 53 and 55 percent of all test locations.

In general, the performance of the various products has been less than satisfactory although a few of the materials have been effective enough to be considered acceptable bridge deck protective systems.

VERMONT AGENCY OF TRANSPORTATION BRIDGE DECK MEMBRANE EVALUATION PROGRAM

JULY 1971 - OCTOBER 1978

TYPE SYSTEM	NO. OF PRODUCTS	NO. OF TRIAL BRIDGES
PREFORMED	15	38
EPOXY	7	8
HOT APPLIED	5	9
POLYURETHANE	4	7
EMULSION	2	7

TOTAL = 33 PRODUCTS ON 69 BRIDGES

LIST OF PRODUCTS APPLIED

Preformed Membrane Systems

Heavy Duty Bituthene - 65 mil reinforced rubberized asphalt
Protecto Wrap M 400 - 70 mil reinforced tar & synthetic resin modified
Royston No. 10 - 75 mil reinforced bituminous
Royston No. 10 P.V. - 75 mil prevented reinforced bituminous
Royston No. 15 - 60 mil prevented reinforced bituminous
Nordel - 65 mil reinforced non-cured hydrocarbon rubber
Hyload 125 - 125 mil pitch and poly vinyl chloride polymer
Gacoflex N-35 - 1/16 inch cured & buffed neoprene rubber
Sure-Seal Butyl - 65 mil cured Ethylene-Propylene-Diene-Monomer
Butylfelt - 60 mil butyl rubber and felt laminate
Hydro-Ban RUN-45 - 45 mil reinforced PVC and butyl rubber
Tri-Ply - 62 mil butyl neoprene
Polyguard 860 - 60 mil reinforced tar resin
Melnar 8 - 165 mil reinforced rubberized asphalt in semi-rigid 4 by 8 foot panels

Polyurethane Membrane Systems

Polytak 165 - asphalt modified polyurethane Bon-Lastic Membrane - tar modified polyurethane Duralseal 3100 - 100 per cent solids polyurethane Chevron Bridge Membrane - asphalt modified polyurethane

Thermoplastic or Thermosetting Membrane Systems

Uniroyal 6125 - 195 mil hot applied rubberized asphalt Hot Asphalt & Glass Frabric - 5 layer built up system NEA 4000 - 90 mil single component PVC Polymer Petromat - non-woven polyproplene fabric & asphalt content Gussasphalt - 2 inch mastic type paving mixture

Epoxy Membrane Systems

Duralkote 304	-	solvent cut epoxy
Duralkote 306	-	coal tar modified epoxy
Duralbond 102	-	100 per cent solids epoxy
Rambond 620-S	-	100 per cent solids epoxy
Rambond 223 -	10	0 per cent solids epoxy
Ramcoat Epoxy F	air	nt - solvent cut epoxy
Polyastics -	sõ]	vent cut epoxy

Tar Emulsion Systems

Tar Emulsion - 2 coats at 0.1-0.2 gal. per coat Tar Emulsion & Glass Fabric - 7 layer built up system

Membrane Type	Average Winters Cl ⁻ Applied	Contam	ores inated 1"-2"	Ave. Cl in Contaminated Cores #/cy 0-1" 1"-2"		
Standard Preformed	3.4	24	8	0.32	0.31	
Project 12-11 Preformed	3.0	33	10	0.58	0.42	
Polyurethane	3.4	41	30	0.28	0.24	
Thermoplastic or Thermosetting	4.7	24	9	0.23	0.22	
Ероху	3.2	53	28	0.32	0.21	
Tar Emulsion	4.6	55	33	0.45	0.36	
Weighted Average of All Systems	3.7	38	19	0.35	0.28	

SUMMARY OF MEMBRANE PERFORMANCE BY CLASS AFTER A SPECIFIC NUMBER OF YEARS OF SERVICE

TYPE SYSTEM	WINTERS SALTED	NO. OF BRIDGES	% CORES CONTAMINATED	AVE. C1 IN TOP INCH OF CONTAMINATED CORES
PREFORMED MEMBRANES	2 3 4 5	8 9 14 3	4 10 28 100	0.22 #/cy 0.25 #/cy 0.40 #/cy 0.46 #/cy
NCHR P PROJECT 12-11 MEMBRANES	2 3 4	5 5 3	13 53 34	0.52 #/cy 0.60 #/cy 0.64 #/cy
POLYURETHANE MEMBRANES	2 3 4 5	3 4 4 2	11 17 58 100	0.38 #/cy 0.15 #/cy 0.32 #/cy 0.32 #/cy
THERMOPLASTIC OR THERMOSETTING	3 4 5 6 7	3 5 3 2 2	44 27 0 17 33	0.32 #/cy 0.31 #/cy 0 0.22 #/cy 0.23 #/cy
EPOX Y SYSTEMS	2 3 4 5	6 8 8 1	28 55 63 100	0.24 #/cy 0.37 #/cy 0.32 #/cy 0.36 #/cy
TAR EMULSION	3 4 5 6 7	4 6 2 2	25 50 72 83 50	0.40 #/cy 0.42 #/cy 0.34 #/cy 0.77 #/cy 0.66 #/cy

•

		ED	(W	1 F(OFF (5 F OFF	EET CURB	15 FE OFF (
GE NO.	MEMBRANE SYSTEM		LEVEL (PPM)		ride tent PM)	Chloride Content (PPM)		Chloride Content (PPM)		
BRIDGE			WINTERS	SE CL		A INTR	REAS W USION	UNDERL	INED	
		IM	BASE	0-1"	1-2"	0-1"	1-2"	0-1"]-2"	
	STANDARD PRE	FORMED S	HEET	SYSTEMS						
11	Heavy Duty Bituthene 65 Mil Preformed Sheet	3 4 5 6	34	35 <u>84</u> 117 143	32 53 107	36 184 89	32 164	32 35 149 102	42 43 120	
24	Royston No. 10 75 Mil Preformed Sheet	2 3 4 5	28	37 48 <u>290</u> 105	39 40 <u>122</u>	35 43 78 119	34 32 52	40 53 83 150	52 37 80	
25	Protecto Wrap M 400 70 Mil Preformed Sheet	2 3 4 5	28	32 112 220	46 56 95	44 43 60 151	21 42 40	37 58 75 185	40 50 35	
28	Royston No. 10 75 Mil Preformed Sheet	2 3 4	61	70 100 250	50 88 83	73 53 56	67 49 49	60 70 71	56 50 58	
29	Heavy Duty Bituthene 65 Mil Preformed Sheet	4	44	<u>105</u>	60	102	58	77	52	
31	Protecto Wrap M 400 70 Mil Preformed Sheet	4	36	<u>153</u>	70	71	69	102	90	

		IED	(PPM)	1 FOOT OFF CURB	5 FEET OFF CURB	15 FEET OFF CURB
GE NO.	MEMBRANE SYSTEM	CL- APPLI	LEVEL (PF	Chloride Content (PPM)	Chloride Content (PPM)	Chloride Content (PPM)
BRIDGE		WINTERS	BASE CL ⁻		 REAS WITH CL RUSION UNDERL 0-1" 1-2"	

STANDARD PREFORMED SHEET SYSTEMS

Protecto Wrap M 400 70 Mil Preformed Sheet	2 3 4	52	50 59 60	55 51 52	56 71 65	50 49 45	55 70 76	54 49 41
Heavy Duty Bituthene 65 Mil Preformed Sheet	2 3 4	61	<u>117</u> 79 72	80 60 52	70 48 59	65 39 40	70 38 41	70 38 41
Protecto Wrap M 400	4	39	50	38	60	51	48	42
Protecto Wrap M 400 70 Mil Preformed Sheet	4	56	25	23	40	40	55	49
Protecto Wrap M 400 70 Mil Preformed Sheet	2 4	37	25 42	43 38	42 32	44 32	28 60	37 25
Heavy Duty Bituthene 65 Mil Preformed Sheet	4	53	122	53	66	52	36	34
Royston No. 10 75 Mil Preformed Sheet	4	65	72	77	83			
	70 Mil Preformed Sheet Heavy Duty Bituthene 65 Mil Preformed Sheet Protecto Wrap M 400 Protecto Wrap M 400 70 Mil Preformed Sheet Protecto Wrap M 400 70 Mil Preformed Sheet Heavy Duty Bituthene 65 Mil Preformed Sheet Royston No. 10	70 Mil Preformed Sheet3 4Heavy Duty Bituthene 65 Mil Preformed Sheet2 3 4Protecto Wrap M 4004Protecto Wrap M 400 70 Mil Preformed Sheet4Protecto Wrap M 400 70 Mil Preformed Sheet2 4Heavy Duty Bituthene 65 Mil Preformed Sheet4Heavy Duty Bituthene 65 Mil Preformed Sheet4Royston No. 104	70 Mil Preformed Sheet3 4Heavy Duty Bituthene 65 Mil Preformed Sheet2 3 461Protecto Wrap M 400439Protecto Wrap M 400 70 Mil Preformed Sheet456Protecto Wrap M 400 70 Mil Preformed Sheet2 437Heavy Duty Bituthene 65 Mil Preformed Sheet453Royston No. 10465	70 Mil Preformed Sheet3 459 60Heavy Duty Bituthene 65 Mil Preformed Sheet2 3 461 79 72Protecto Wrap M 4004 3939 50Protecto Wrap M 400 70 Mil Preformed Sheet4 5625Protecto Wrap M 400 70 Mil Preformed Sheet2 37 4237 42Heavy Duty Bituthene 65 Mil Preformed Sheet4 53 12253 122Royston No. 104 465 72	70 Mil Preformed Sheet3 4 $59 \\ 60 \\ 52 \\ 60 \\ 52 \\ 52 \\ 60 \\ 52 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 52 \\ 60 \\ 72 \\ 72 \\ 52 \\ 60 \\ 72 \\ 72 \\ 52 \\ 60 \\ 72 \\ 72 \\ 52 \\ 60 \\ 72 \\ 72 \\ 52 \\ 60 \\ 72 \\ 72 \\ 52 \\ 72 \\ 72 \\ 52 \\ 72 \\ 72$	70 Mil Preformed Sheet3 4 59 60 51 52 71 65 Heavy Duty Bituthene 65 Mil Preformed Sheet2 3 4 61 79 72 117 79 52 80 72 70 48 72 Protecto Wrap M 400439 50 38 60 Protecto Wrap M 400 70 Mil Preformed Sheet4 56 42 25 23 23 40 Protecto Wrap M 400 70 Mil Preformed Sheet2 4 37 42 25 43 32 42 32 Heavy Duty Bituthene 65 Mil Preformed Sheet4 53 122 122 53 53 66 Royston No. 104 65 72 77 77 83	70 Mil Preformed Sheet 3 4 59 60 51 52 71 65 49 65 Heavy Duty Bituthene 65 Mil Preformed Sheet 2 3 4 61 79 72 117 52 80 79 60 70 65 83 9 65 83 9 Protecto Wrap M 400 70 Mil Preformed Sheet 4 39 50 38 60 51 Protecto Wrap M 400 70 Mil Preformed Sheet 4 56 25 23 40 40 Protecto Wrap M 400 70 Mil Preformed Sheet 2 4 37 25 83 43 82 42 82 44 82 Heavy Duty Bituthene 65 Mil Preformed Sheet 4 53 122 53 66 52 Royston No. 10 4 65 72 77 83	70 Mil Preformed Sheet 3 4 59 51 71 49 70 Heavy Duty Bituthene 2 61 117 80 70 65 70 65 Mil Preformed Sheet 3 4 61 117 80 70 65 70 9 50 31 72 52 59 40 41 9 70 52 59 40 41 9 72 52 59 40 41 9 70 65 70 65 70 9 72 52 59 40 41 9 70 80 70 61 117 9 70 60 48 39 38 60 51 48 9 70 81 70 49 55 70 55 57 40 40 55 9 70 11 9 50 38 42 44 28 32 32 32 50

		IED	(PPM)	1 FOOT OFF CURB	5 FEET OFF CURB	15 FEET OFF CURB
GE NO.	MEMBRANE SYSTEM	CL- APPL	LEVEL (PP	Chloride Content (PPM)	Chloride Content (PPM)	Chloride Content (PPM)
BRIDGE		WINTERS	BASE CL ⁻	INTR	 REAS WITH CL USION UNDERL 0-1" 1-2"	

STANDARD PREFORMED SHEET SYSTEMS

48	Protecto Wrap M 400 70 Mil Preformed Sheet	2 3 4	33	70 75 65	50 48 51	48 57 63	25 39 60	35 44 58	25 37 56
52	Protecto Wrap M 400 70 Mil Preformed Sheet	2	47	62	52	56		82	

	MEMBRANE SYSTEM	MEMBRANE SYSTEM	MEMBRANE SYSTEM							ED	(MPP)	1 FC OFF (5 F OFF	EET CURB	15 F OFF	EET CURB
DGE NO.				CL- APPLIED	LEVEL (PF	Chlor Cont (Pf	tent		ride tent PM)	Con	ride tent PM)						
BRIC				WINTERS	SE CL				ITH CL UNDERL								
		IM	BASE	0-1"	1-2"	0-1"	1-2"	0-1"]-2"								
	PROJECT 12-1	PREFOR	1ed Sh	IEET SY	STEMS												
32	Hyload 125 125 Mil PVC Polymer	2 3 4	48	68 60 95	57 50 85	85 54 52	50 44 50	45 <u>348</u> 72	35 <u>200</u> 60								
33	Gaco-flex N-35 65 Mil Neoprene Rubber	2 3 4	128	140 158 420	110 137 161	105 139 145	75 63 88	90 <u>184</u> 87	110 129 52								
38	Sure-Seal EPDM 65 Mil EPDM Rubber	2 3 4	56	84 97 200	64 95 127	84 110 60	69 83 55	60 122 75	56 93 64								
39	Sure-Seal Butyl 65 Mil Butyl Rubber	2 3 4	56	60 114 268	46 105 218	70 96 50	30 51 52	60 93 58	60 68 49								
40	Butylfelt Butyl Rubber & Felt	2 3 4	44	105 110 59	70 62 56	245 98 54	195 75 45	50 73 39	60 48 39								

		.IED	(PPM)	1 FC OFF C		5 F OFF		15 F OFF	EET CURB	
DGE NO.	MEMBRANE SYSTEM	CL- APPLIED	LEVEL (PI	Chlor Cont (PF	ent	Con	ride tent PM)	Con	5 52 79 86 38 35	
BRIDGE		WINTERS	E CL				ITH CL UNDERL			
		IM	BASE	0-1"	1-2"	0-1"	1-2"	0-1"]-2"	
	POLYURE	THANE	SYSTE	MS						
7	Bonlastic Membrane Tar Modified Polyurethane	3 4 5	38	63 <u>124</u> 129	52 99 106	46 94 121	45 <u>76</u> 115	45 120 110	79	
15	Polytok 165 Asphalt Modified Polyurethane	3 4 5	37	53 109 118	40 60 113	32 30 109	37 20 98	31 53 120	35	
17	Polytok 165 Asphalt Modified Polyure- thane	2 3 4	35	29 75 175	26 50 126	36 70 101	32 50 65	30 60 100	24 50 90	
30	Duralseal 3100 100% Solids Polyurethane	2 3 4	81	40 60 68	40 60 61	61 70 70	75 49 58	114 57 69	99 51 62	
51	Chevron	2	44	140		68		72		
53	Chevron	2								

.

BRIDGE NO.		IED	(PPM)	1 FOOT OFF CURB	5 FEET OFF CURB	15 FEET OFF CURB	
	MEMBRANE SYSTEM	CL- APPLI	LEVEL (P	Chloride Content (PPM)	Chloride Content (PPM)	Chloride Content (PPM)	
		INTERS	SE CL ⁻		AREAS WITH CL		
		IM	BAS	0-1" 1-2"	0-1" 1-2"	0-1"]-2"	

THERMOPLASTIC OR THERMOSETTING SYSTEMS

2	Uniroyal 6125 Hot Rubberized Asphalt	4 5 6 7	41	52 50 57	56 43 48	82 50 60 57	50 38 54 55	63 48 48 43	51 38 35 35
4	Uniroyal 6125 Hot Rubberized Asphalt	4 5 6 7	39	60 61 55 68	51 57 30 31	35 50 95 95	33 40 <u>90</u> 45	46 55 35 100	37 60 35 58
18	Hot Asphalt & Glass Fabric	2 3 4	21	57 175 165	43 55 82	24 78 88	32 75 80	42 65 75	29 45 70
20	Hot Asphalt & Glass Fabric	2 3 4 5	26	26 68 53 74	31 50 50 60	21 66 50 77	27 61 48 67	32 94 58 69	32 64 53 61
35	NEA 4000 Hot PVC Polymer	2 3 4	60	70 97 100	66 90 64	93 71 86	66 59 80	61 88 78	61 60 72
50	Petromat	2	33	105	61	57	48	80	70

BRIDGE NO.		WINTERS CL- APPLIED	CL ⁻ LEVEL (PPM)	1 FOOT OFF CURB		5 FEET OFF CURB		15 FEET OFF CURB	
	MEMBRANE SYSTEM				tent PM) A	Con (P	oride Itent PM) NITH CL UNDERL		
		MIM	BASE	0-1"	1-2"	0-1"	1-2"	0-1"]-2"
	EMULS	ION SY	STEMS						
1	Tar Emulsion	4 5 6 7	32	1 <u>38</u> 149 493 230	67 66 224 128	37 60 <u>100</u> 62	35 60 <u>68</u> 58	43 25 <u>95</u> 70	44 25 75 57
3	Tar Emulsion	4 5 6 7	31	164 186 328 286	136 125 175 130	36 <u>85</u> <u>100</u> 45	33 80 50 38	35 150 67 78	34 85 44 57
6	Tar Emulsion & Glass Fabric	3 4 5 6	33	86 75 115	67 50 105	42 85 90	35 75 85	46 100 79	35 60 69
8	Tar Emulsion & Glass Fabric	3 4 5 6	30	48 50 60	35 23 30	<u>118</u> 58 65	66 17 58	61 65 66	45 35 26
12	Tar Emulsion & Glass Fabric	3 4 5 6	29	56 215 240	48 148 106	52 185 90	45 <u>168</u> 65	46 152 83	29 123 66
14	Tar Emulsion & Glass Fabric	3 4 5 6	25	183 106 108	85 45 73	38 33 82	40 24 58	45 33 68	45 50 59

		IED	(W	l FOOT OFF CURB Chloride Content (PPM)		5 FEET OFF CURB Chloride Content (PPM)		15 FEET OFF CURB Chloride Content (PPM)	
JGE NO.	MEMBRANE SYSTEM	CL- APPLIED	LEVEL (PPM)						
BRIDGE		WINTERS	E CL		A INTR	REAS WUSION	ITH CL UNDERLI	INED	
		IM	BASE	0-1"	1-2"	0-1"	1-2"	0-1"]-2"
	E	POXY SYS	TEMS						
9	Duralkote 304 Solvent Cut Epoxy	3 4	39	296 109	<u>89</u> 75	126	106	50	29
10	Duralkote 306 Coal Tar Modified Epoxy	3 4 , 5	32	<u>117</u> 135 135	64 80 105	82 114 118	84 90 80	<u>109</u> 50 116	81 50 67
16	Duralkote 102 100% Solids Epoxy	2 3 4	35	50 68 <u>121</u>	31 46 113	55 55 94	36 41 74	22 62 108	41 63 55
19	Rambond 620- S 100% Solids Epoxy	2 3 4	25	<u>78</u> 117 140	58 42 80	45 65 90	39 47 50	43 56 48	29 46 48
22	Polyastics Solvent Cut Epoxy	2 3 4	27	127 103 80	69 36 72	38 46 62	34 38 58	55 55 69	39 43 60
23	Duralkote 306 Coal Tar Modified Epoxy	2 3 4	26	30 50 100	29 55 90	40 <u>70</u> 55	35 63 51	39 <u>75</u> 45	32 48 41

BRIDGE NO.		IED	(Mqq)	1 FOOT OFF CURB Chloride Content (PPM)			EET CURB		5 FEET)FF CURB	
	MEMBRANE SYSTEM	CL ⁻ APPLJ	BASE CL ⁻ LEVEL (PF			Chloride Content (PPM)		Chloride Content (PPM)		
		WINTERS		AREAS WITH CL INTRUSION UNDERLINED						
		2		0-1"	1-2"	0-1"	1-2"	0-1"]-2"	
		EPOXY SY	STEMS							
26	Ramcoat Epoxy Paint Solvent Cut Epoxy	2 3 4	50	115 128 125	80 112 102	90 118 120	75 28 40	64 254 161	70 72 80	
27	Rambond 223 100% Solids Epoxy	2 3 4	50	96 60 65	66 35 58	75 60 85	50 40 58	64 55 80	30 35 55	

.

MEMBRANE EVALUATION SUMMARY

Membrane Type	Ease of Application	Flexibility	Bond & Seal at Curb	Blisters or Pinholes	Bond between Concrete Membrane & Pavement	Problems with Pavement Application	Cost per sy	Overall Performance	Recommendation
Standard Preformed	easy	good	fair	yes/ no	fair/ good	occ.	\$ 4.50	good	Continue Use
Niscellaneous Preformed	easy	good	poor	yes/ no	poor/ fair	yes	\$ 5.00	poor	Not recommended for use
Project 12-11 Preformed	hard	exc.	fair	yes/ no	good/ good with prot. boards	yes	\$10.65	fair to good	Not recommended unless other systems prove to be unsat.
Polyurethane	easy	good	exc.	no/ yes	good/ poor	occ.	\$ 5.19	fair	Restrict Use
Thermoplastic or Thermosetting	hard	poor to good	fair	no/ yes	fair/ fair	occ.	\$ 4.00	good	Consider further use
Ероху	easy	poor	fair	no/ yes	good/ poor	no	\$ 9.42	poor	Not recommended for use
Emulsion	very easy	poor	poor	no/ no	good/ good	no	\$1.32/ \$3.50	poor	Restrict Use

AGENCY OF TRANSPORTATION HUGHWARXXXXEPARTMENT

OFFICE MEMORANDUM

COMMISSIONER, CHIEF ENGINEER, DIVISION HEADS, & DIST. TRANSPORTATION ENGINEERS TO: R. F. Nicholson, P.E., Materials & Research Engineer

FROM:

DATE: November 14, 1978

SUBJECT: Field Performance of Experimental Bridge Deck Membrane Systems

Enclosed for your information is a copy of a paper presented at the Northeastern States Materials Engineers Meeting held October 24 and 25, 1978. The paper covers field performance results obtained on experimental membrane systems applied in Vermont over the past eight years.

Significant findings stated in the paper include the following:

Vermont's evaluation program currently includes 33 different membrane systems applied on 69 new bridge decks. No further experimental applications are anticipated in the immediate future.

Field performance results have been obtained on 27 of the 33 systems in use. Such results reveal that chloride contamination has occurred at 38 percent of the test areas following an average of 3.7 winters with contamination averaging 0.35 pounds of chloride per cubic yard of concrete in the top inch of contaminated samples.

The best performance to date has been provided by the hot applied materials and the standard preformed membranes with contamination limited to 24 percent of all cores taken on both classes of materials.

The control treatment consisting of tar emulsion with or without glass fabric has offered the least protection with contamination averaging 0.45 pounds of chloride recorded in 55 percent of the samples tested.

In general, the performance of the various products has been less than satisfactory although a few of the materials have been effective enough to be considered acceptable bridge deck protective systems.

This paper is being supplied for your information. If you do not wish to retain a copy for your files, please return it to the Materials & Research Division.

Enclosure

RFN/msd cc: RFN/Lab File R. Frascoia Central Files PROTECTO-WRAP M-400

I-91 SB Over State Aid No. 1

April 1973

Checking the puncture resistance of preformed sheet membranes subjected to applications of 275°F - 325°F bituminous mixes applied at a load of 200 ps1. Air bubbles in the solvent cut prime coat were broken with a squeegee prior to placing the membrane sheets.

Pressing the membrane into the mastic at the curb line with a one inch diameter wallpaper roller. Rolling the membrane and removing the polyethylene film to expose the self sealing edge. HOT MOPPED ASPHALT & GLASS FABRIC

I-91 NB Over State Aid No. 9

May 1973

Bubbles up to 3/4 inch in diameter appeared in the cutback asphalt prime coat shortly after application. Placing glass fabric in the first coat of asphalt along the curb. Note moisture sensing copper foil strips placed beneath the membrane to detect the passage of moisture.

Placing glass fabric in first coat of hot asphalt.

Bubbles and pinholes in the first coat of asphalt.

RAMBOND 620-S EPOXY

I-91 SB Over State Aid No. 9

April 1973

The application of multiple coats of epoxy reduced but did not eliminate all pinholes.

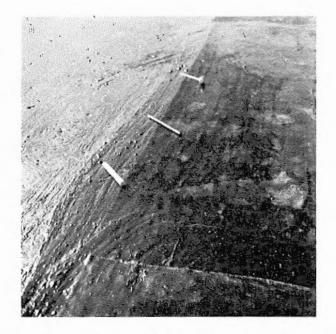
Electrical resistance readings averaged 41,500 ohms per square foot which indicates that some of the holes were open to the concrete.

POLYASTIC'S EPOXY I-91 NB Over Town Highway No. 9

Bubbles formed in the epoxy coating 16 to 20 hours after application.

Cohesive cracks occurred in a field applied coating 6 months after application.

HOT MOPPED ASPHALT & GLASS FABRIC I-91 NB Over State Aid No. 9 May 1973


Bubbles up to 3⁄4 inch in diameter appeared in the cutback asphalt prime coat shortly after application.

Placing glass fabric in the first coat of asphalt along the curb. Note moisture sensing copper foil strips placed beneath the membrane to detect the passage of moisture.

Placing glass fabric in first coat of hot asphalt.

Bubbles and pinholes in the first coat of asphalt.

PROTECTO WRAP M400

I 91 SB OVER STATE AID NO. 1

Deck paved April 20, 1973 Pictures taken July 3, 5, 1973

Low electrical resistance readings indicate damage to the membrane at some locations.

Membrane exposed when truck braked on deck