SELECTION OF ASBESTOS FIBER AND ASPHALT CONTENTS

FOR

BRIDGE DECK PAVEMENTS

Report R 72-5

May 1972

VERMONT DEPARTMENT OF HIGHWAYS

John T. Gray, Commissioner

R. H. Arnold, Chief Engineer

A. W. Lane, Materials Engineer

Report Prepared by

Bituminous Concrete Section
Introduction

At the direction of Assistant Chief Engineer E. H. Stickney, an investigation was conducted for the purpose of designing a standard Vermont Type IV bituminous concrete pavement with asbestos fibers. Studies by others have shown that the use of asbestos fibers in bituminous pavements have permitted the use of higher asphalt contents with a resulting reduction in air voids. A reduction in air voids should produce a more impervious mix than obtained normally.

Asbestos Fibers have been used successfully by other States in bituminous pavements for approximately 12 years. Studies indicate that pavement flushing and shoving is not a problem when high asphalt contents are used with asbestos fibers.

Procedure

Aggregates were selected from the plant that will supply the mix to the first project in Vermont to Utilize this technique. The asbestos fibers meet the contract specifications for Canadian Mining Grade 7M.

A standard Marshall series was run for each asbestos fiber content of 1%, 1.5% and 2%. These fiber contents were selected because of conversation with neighboring States who have tried this item. The Marshall series was run varying the asphalt content from 6% to 9% in ½% increments. A total of 14 briquetts were made for each series.

The results for each series were computed on standard Marshall sheets, and then transferred onto Figures 1 through 7. For brevity, only the Figures are included in this report.

Discussion

(1) Selection of Asbestos Fiber Percentage

From Figures 4 and 5, an asbestos fiber percentage of 1.5% is more advantageous at any asphalt content relative to a minimum of air voids (% density) and the maximum weight per cubic foot. Figure 6 indicates that the curves are similar for either 1% or 1.5% asbestos, with both reducing quite rapidly. The 2% asbestos doesn't
have much initial stability and begins to lose after 8% asphalt content. Figure 7 shows flow increasing for all fiber contents, but at the upper asphalt contents, the 1½% appears to be increasing at the slowest rate.

From all the above, it appears that 1½% is the better choice of the three fiber contents tested.

(2) Selection of Asphalt Cement Content

From Figure 5 it appears that an asphalt content of between 8% and 8.5% will give the least amount of air voids for the 1½% fiber content already selected above. Inspection of the other three graphs indicates less desirable characteristics at 8.5% than at 8% asphalt. It is, therefore, concluded that 8% asphalt is the proper content to select in this case.

Recommendations

It is recommended for this aggregate that the fiber content be 1½% and the asphalt content be 8% for the base course on bridge decks.
Figure 1

Lbs Stability at 140°F

Wt per Cubic Foot (Lbs)

Flow Value in .01 inches

% Density

% Asphalt

% Asphalt
Figure 2
Figure 3
Figure 4
Figure 5

Asbestos Fibers

Bridges Deck Mix

Ac vs % Density

% Density

1½% fibers

1% fibers

2% fibers

% Asphalt

6 7 8 9
Asbestos Fibers

Bridge Design Mix

Ac vs Lbs. Stability at 190°F

Figure 6
Flow value in 0.01 inches

Figure 7

8 Asphalt

7.6

6

5

4

3

2

1

0

8 7 6 5 4 3 2 1 0

Flow % #12

#6 Flow

#2 Flow